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Preface

This e-book is devoted to global optimization algorithms, which are methods to find opti-
mal solutions for given problems. It especially focuses on Evolutionary Computation by dis-
cussing evolutionary algorithms, genetic algorithms, Genetic Programming, Learning Classi-
fier Systems, Evolution Strategy, Differential Evolution, Particle Swarm Optimization, and
Ant Colony Optimization. It also elaborates on other metaheuristics like Simulated An-
nealing, Extremal Optimization, Tabu Search, and Random Optimization. The book is no
book in the conventional sense: Because of frequent updates and changes, it is not really
intended for sequential reading but more as some sort of material collection, encyclopedia,
or reference work where you can look up stuff, find the correct context, and are provided
with fundamentals.
With this book, two major audience groups are addressed:

1. It can help students since we try to describe the algorithms in an understandable, consis-
tent way and, maybe even more important, includes much of the background knowledge
needed to understand them. Thus, you can find summaries on stochastic theory and the-
oretical computer science in Part IV on page 455. Additionally, application examples are
provided which give an idea how problems can be tackled with the different techniques
and what results can be expected.

2. Fellow researchers and PhD students may find the application examples helpful too. For
them, in-depth discussions on the single methodologies are included that are supported
with a large set of useful literature references.

If this book contains something you want to cite or reference in your work, please use the
citation suggestion provided in Chapter D on page 591.

In order to maximize the utility of this electronic book, it contains automatic, clickable links.
They are shaded with dark gray so the book is still b/w printable. You can click on

1. entries in the table of contents,
2. citation references like [916],
3. page references like “95”,
4. references such as “see Figure 2.1 on page 96” to sections, figures, tables, and listings,

and
5. URLs and links like “http://www.lania.mx/~ccoello/EMOO/ [accessed 2007-10-25]”.1

The following scenario is now for example possible: A student reads the text and finds a
passage that she wants to investigate in-depth. She clicks on a citation in that seems inter-
esting and the corresponding reference is shown. To some of the references which are online

1 URLs are usually annotated with the date we have accessed them, like http://www.lania.

mx/~ccoello/EMOO/ [accessed 2007-10-25]. We can neither guarantee that their content remains un-
changed, nor that these sites stay available. We also assume no responsibility for anything we
linked to.

http://www.lania.mx/~ccoello/EMOO/
http://www.lania.mx/~ccoello/EMOO/
http://www.lania.mx/~ccoello/EMOO/
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available, links are provided in the reference text. By clicking on such a link, the Adobe
ReaderR©2 will open another window and load the regarding document (or a browser window
of a site that links to the document). After reading it, the student may use the “backwards”
button in the navigation utility to go back to the text initially read in the e-book.

The contents of this book are divided into four parts. In the first part, different optimization
technologies will be introduced and their features are described. Often, small examples will
be given in order to ease understanding. In the second part starting at page 315, we elab-
orate on different application examples in detail. With the Sigoa framework, one possible
implementation of optimization algorithms in Java, is discussed and we show how some of
solutions of the previous problem instances can be realized in Part III on page 439. Finally,
in the last part following at page 455, the background knowledge is provided for the rest of
the book. Optimization is closely related to stochastic, and hence, an introduction into this
subject can be found here. Other important background information concerns theoretical
computer science and clustering algorithms.

However, this book is currently worked on. It is still in a very preliminary phase where
major parts are still missing or under construction. Other sections or texts are incomplete
(tagged with TODO). There may as well be errors in the contents or issues may be stated
ambiguously (I do not have proof-readers). Additionally, the sequence of the content is not
very good. Because of frequent updates, small sections may grow and become chapters, be
moved to another place, merged with other sections, and so on. Thus, this book will change
often. I choose to update, correct, and improve this book continuously instead of providing
a new version each half year or so because I think this way it has a higher utility because
it provides more information earlier. By doing so, I also risk confusing you with strange
grammar and structure, so if you find something fishy, please let me know so I can correct
and improve it right away.

The updates and improvements will result in new versions of the book, which will regularly
appear on the website http://www.it-weise.de/. The direct download link to the newest
version of this book is http://www.it-weise.de/projects/book.pdf. The LATEX source
code of this book including all graphics and the bibliography is available at http://www.

it-weise.de/projects/bookSource.zip. The source may not always be the one of the
most current version of the book. Compiling it requires multiple runs of BibTEX because of
the nifty way the references are incorporated.

I would be very happy if you provide feedback, report errors or missing things that you have
found, criticize something, or have any additional ideas or suggestions. Do not hesitate to
contact me via my email address tweise@gmx.de.
Matter of fact, a large number of people helped me to improve this book over time. I
have enumerated the most important contributors in Chapter C – Thank you guys, I really
appreciate your help!
Copyright c© 2006-2009 Thomas Weise.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled GNU Free
Documentation License (FDL). You can find a copy of the GNU Free Documentation Li-
cense in appendix Chapter A on page 575.

2 The Adobe ReaderR© is available for download at http://www.adobe.com/products/reader/

[accessed 2007-08-13].

http://www.it-weise.de/
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/bookSource.zip
http://www.it-weise.de/projects/bookSource.zip
mailto:tweise@gmx.de
http://www.adobe.com/products/reader/
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At many places in this book we refer to Wikipedia [2219] which is a great source of knowl-
edge. Wikipedia [2219] contains articles and definitions for many of the aspects discussed in
this book. Like this book, it is updated and improved frequently. Therefore, including the
links adds greatly to the book’s utility, in my opinion.

Important Notice
Be aware that this version of this book marks a point of transition from the first edition to
the second one. Major fractions of the text of the first edition have not yet been revised and
are, thus, not included in this document. However, I believe that this version corrects many
shortcomings as well as inconsistencies from the first edition plus is better structured.
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Part I

Global Optimization





1

Introduction

One of the most fundamental principles in our world is the search for an optimal state.
It begins in the microcosm where atoms in physics try to form bonds1 in order to minimize
the energy of their electrons [1625]. When molecules form solid bodies during the process of
freezing, they try to assume energy-optimal crystal structures. These processes, of course,
are not driven by any higher intention but purely result from the laws of physics.

The same goes for the biological principle of survival of the fittest [1940] which, together
with the biological evolution [485], leads to better adaptation of the species to their environ-
ment. Here, a local optimum is a well-adapted species that dominates all other animals in
its surroundings. Homo sapiens have reached this level, sharing it with ants, bacteria, flies,
cockroaches, and all sorts of other creepy creatures.

As long as humankind exists, we strive for perfection in many areas. We want to reach
a maximum degree of happiness with the least amount of effort. In our economy, profit and
sales must be maximized and costs should be as low as possible. Therefore, optimization is
one of the oldest of sciences which even extends into daily life [1519].

If something is important, general, and abstract enough, there is always a mathematical
discipline dealing with it. Global optimization2 is the branch of applied mathematics and nu-
merical analysis that focuses on, well, optimization. The goal of global optimization is to find
the best possible elements x⋆ from a set X according to a set of criteria F = {f1, f2, .., fn}.
These criteria are expressed as mathematical functions3, the so-called objective functions.

Definition 1.1 (Objective Function). An objective function f : X 7→ Y with Y ⊆ R is
a mathematical function which is subject to optimization.

The codomain Y of an objective function as well as its range must be a subset of the real
numbers (Y ⊆ R). The domain X of f is called problem space and can represent any type
of elements like numbers, lists, construction plans, and so on. It is chosen according to the
problem to be solved with the optimization process. Objective functions are not necessarily
mere mathematical expressions, but can be complex algorithms that, for example, involve
multiple simulations. Global optimization comprises all techniques that can be used to find
the best elements x⋆ in X with respect to such criteria f ∈ F .

In the remaining text of this introduction, we will first provide a rough classification
of the different optimization techniques which we will investigate in the further course of
this book (Section 1.1). In Section 1.2, we will outline how these best elements which we
are after can be defined. We will use Section 1.3 to shed some more light onto the meaning
and inter-relation of the symbols already mentioned (f , F , x, x⋆, X, Y , . . . ) and outline

1 http://en.wikipedia.org/wiki/Chemical_bond [accessed 2007-07-12]

2 http://en.wikipedia.org/wiki/Global_optimization [accessed 2007-07-03]

3 The concept of mathematical functions is outlined in set theory in Definition 27.27 on page 462.

http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Global_optimization


22 1 Introduction

the general structure of optimization processes. If optimization was a simple thing to do,
there wouldn’t be a whole branch of mathematics with lots of cunning people dealing with
it. In Section 1.4 we will introduce the major problems that can be encountered during
optimization. We will discuss Formae as a general way of describing properties of possible
solutions in Section 1.5. In this book, we will provide additional hints that point to useful
literature, web links, conferences, and so on for all algorithms which we discuss. The first
of these information records, dealing with global optimization in general, can be found in
Section 1.6.

In the chapters to follow these introductory sections, different approaches to optimization
are discussed, examples for the applications are given, and the mathematical foundation and
background information is provided.

1.1 A Classification of Optimization Algorithms

In this book, we will only be able to discuss a small fraction of the wide variety of global
optimization techniques [1614]. Before digging any deeper into the matter, I will attempt to
provide a classification of these algorithms as overview and discuss some basic use cases.

1.1.1 Classification According to Method of Operation

Figure 1.1 sketches a rough taxonomy of global optimization methods. Generally, optimiza-
tion algorithms can be divided in two basic classes: deterministic and probabilistic algo-
rithms. Deterministic algorithms (see also Definition 30.11 on page 550) are most often used
if a clear relation between the characteristics of the possible solutions and their utility for a
given problem exists. Then, the search space can efficiently be explored using for example a
divide and conquer scheme4. If the relation between a solution candidate and its “fitness”
are not so obvious or too complicated, or the dimensionality of the search space is very high,
it becomes harder to solve a problem deterministically. Trying it would possible result in
exhaustive enumeration of the search space, which is not feasible even for relatively small
problems.

Then, probabilistic algorithms5 come into play. The initial work in this area which now
has become one of most important research fields in optimization was started about 55 years
ago (see [1743, 750, 219], and [287]). An especially relevant family of probabilistic algorithms
are the Monte Carlo6-based approaches. They trade in guaranteed correctness of the solution
for a shorter runtime. This does not mean that the results obtained using them are incorrect
– they may just not be the global optima. On the other hand, a solution a little bit inferior
to the best possible one is better than one which needs 10100 years to be found. . .

Heuristics used in global optimization are functions that help decide which one of a set
of possible solutions is to be examined next. On one hand, deterministic algorithms usually
employ heuristics in order to define the processing order of the solution candidates. An
example for such a strategy is informed searche, as discussed in Section 17.4 on page 295.
Probabilistic methods, on the other hand, may only consider those elements of the search
space in further computations that have been selected by the heuristic.

Definition 1.2 (Heuristic). A heuristic7 [1407, 1711, 1626] is a part of an optimization
algorithm that uses the information currently gathered by the algorithm to help to decide
which solution candidate should be tested next or how the next individual can be produced.
Heuristics are usually problem class dependent.

4 http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm [accessed 2007-07-09]

5 The common properties of probabilistic algorithms are specified in Definition 30.18 on page 552.
6 See Definition 30.20 on page 552 for a in-depth discussion of the Monte Carlo-type probabilistic

algorithms
7 http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
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Monte Carlo
Algorithms

Evolutionary
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Soft Computing
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Intelligence (AI)

Computational
Intelligence (CI)
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Bound
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Memetic
Algorithms

Swarm
Intelligence (SI)
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Optimization (ACO)

Particle Swarm
Optimization )(PSO

Evolutionary
Algorithms (EA)
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Algorithms (GA)
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Differential
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Programming
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Carlo Sampling

Harmonic
Search (HS)

Figure 1.1: The taxonomy of global optimization algorithms.

Definition 1.3 (Metaheuristic). A metaheuristic8 is a method for solving very general
classes of problems. It combines objective functions or heuristics in an abstract and hopefully
efficient way, usually without utilizing deeper insight into their structure, i. e., by treating
them as black-box-procedures [813, 832, 233].

This combination is often performed stochastically by utilizing statistics obtained from
samples from the search space or based on a model of some natural phenomenon or physical
process. Simulated annealing, for example, decides which solution candidate to be evalu-
ated next according to the Boltzmann probability factor of atom configurations of solid-
ifying metal melts. Evolutionary algorithms copy the behavior of natural evolution and
treat solution candidates as individuals that compete in a virtual environment. Unified

8 http://en.wikipedia.org/wiki/Metaheuristic [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Metaheuristic
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models of metaheuristic optimization procedures have been proposed by Vaessens et al.
[2087, 2088], Rayward-Smith [1710], Osman [1588], and Taillard et al. [1996].

An important class of probabilistic Monte Carlo metaheuristics is Evolutionary Compu-
tation9. It encompasses all algorithms that are based on a set of multiple solution candidates
(called population) which are iteratively refined. This field of optimization is also a class
of Soft Computing10 as well as a part of the artificial intelligence11 area. Some of its most
important members are evolutionary algorithms and Swarm Intelligence, which will be dis-
cussed in-depth in this book. Besides these nature-inspired and evolutionary approaches,
there exist also methods that copy physical processes like the before-mentioned Simulated
Annealing, Parallel Tempering, and Raindrop Method, as well as techniques without direct
real-world role model like Tabu Search and Random Optimization. As a preview of what can
be found in this book, we have marked the techniques that will be discussed with a thicker
border in Figure 1.1.

1.1.2 Classification According to Properties

The taxonomy just introduced classifies the optimization methods according to their algo-
rithmic structure and underlying principles, in other words, from the viewpoint of theory. A
software engineer or a user who wants to solve a problem with such an approach is however
more interested in its “interfacing features” such as speed and precision.

Speed and precision are conflicting objectives, at least in terms of probabilistic algo-
rithms. A general rule of thumb is that you can gain improvements in accuracy of opti-
mization only by investing more time. Scientists in the area of global optimization try to
push this Pareto frontier12 further by inventing new approaches and enhancing or tweaking
existing ones.

Optimization Speed

When it comes to time constraints and hence, the required speed of the optimization algo-
rithm, we can distinguish two main types of optimization use cases.

Definition 1.4 (Online Optimization). Online optimization problems are tasks that need
to be solved quickly in a time span between ten milliseconds to a few minutes. In order to
find a solution in this short time, optimality is normally traded in for speed gains.

Examples for online optimization are robot localization, load balancing, services com-
position for business processes (see for example Section 22.2.1 on page 384), or updating
a factory’s machine job schedule after new orders came in. From the examples, it becomes
clear that online optimization tasks are often carried out repetitively – new orders will, for
instance, continuously arrive in a production facility and need to be scheduled to machines
in a way that minimizes the waiting time of all jobs.

Definition 1.5 (Offline Optimization). In offline optimization problems, time is not so
important and a user is willing to wait maybe even days if she can get an optimal or close-
to-optimal result.

Such problems regard for example design optimization, data mining (see for in-
stance Section 22.1 on page 373), or creating long-term schedules for transportation crews.
These optimization processes will usually be carried out only once in a long time.

Before doing anything else, one must be sure about to which of these two classes the
problem to be solved belongs.

9 http://en.wikipedia.org/wiki/Evolutionary_computation [accessed 2007-09-17]

10 http://en.wikipedia.org/wiki/Soft_computing [accessed 2007-09-17]

11 http://en.wikipedia.org/wiki/Artificial_intelligence [accessed 2007-09-17]

12 Pareto frontiers will be discussed in Section 1.2.2 on page 31.

http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Soft_computing
http://en.wikipedia.org/wiki/Artificial_intelligence
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TODO

Number of Criteria

Optimization algorithms can be divided in such which try to find the best values of single
objective functions f and such that optimize sets F of target functions. This distinction
between single-objective optimization and multi-objective optimization is discussed in depth
in Section 1.2.2.

1.2 What is an optimum?

We have already said that global optimization is about finding the best possible solutions
for given problems. Thus, it cannot be a bad idea to start out by discussing what it is that
makes a solution optimal13.

1.2.1 Single Objective Functions

In the case of optimizing a single criterion f , an optimum is either its maximum or minimum,
depending on what we are looking for. If we own a manufacturing plant and have to assign
incoming orders to machines, we will do this in a way that miniminzes the time needed
to complete them. On the other hand, we will arrange the purchase of raw material, the
employment of staff, and the placing of commercials in a way that maximizes our profit. In
global optimization, it is a convention that optimization problems are most often defined
as minimizations and if a criterion f is subject to maximization, we simply minimize its
negation (−f).

Figure 1.2 illustrates such a function f defined over a two-dimensional space X =
(X1,X2). As outlined in this graphic, we distinguish between local and global optima. A
global optimum is an optimum of the whole domain X while a local optimum is an optimum
of only a subset of X.

Definition 1.6 (Local Maximum). A (local) maximum x̂l ∈ X of one (objective) function
f : X 7→ R is an input element with f(x̂l) ≥ f(x) for all x neighboring x̂l.

If X ⊆ Rn, we can write:

∀x̂l ∃ε > 0 : f(x̂l) ≥ f(x) ∀x ∈ X, |x− x̂l| < ε (1.1)

Definition 1.7 (Local Minimum). A (local) minimum x̌l ∈ X of one (objective) function
f : X 7→ R is an input element with f(x̌l) ≤ f(x) for all x neighboring x̌l.

If X ⊆ R, we can write:

∀x̌l ∃ε > 0 : f(x̌l) ≤ f(x) ∀x ∈ X, |x− x̌l| < ε (1.2)

Definition 1.8 (Local Optimum). A (local) optimum x⋆
l ∈ X of one (objective) function

f : X 7→ R is either a local maximum or a local minimum.

Definition 1.9 (Global Maximum). A global maximum x̂ ∈ x of one (objective) function
f : X 7→ R is an input element with f(x̂) ≥ f(x) ∀x ∈ X.

Definition 1.10 (Global Minimum). A global minimum x̌ ∈ X of one (objective) func-
tion f : X 7→ R is an input element with f(x̌) ≤ f(x) ∀x ∈ X.

13 http://en.wikipedia.org/wiki/Maxima_and_minima [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Maxima_and_minima
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Figure 1.2: Global and local optima of a two-dimensional function.

Definition 1.11 (Global Optimum). A global optimum x⋆ ∈ X of one (objective) func-
tion f : X 7→ R is either a global maximum or a global minimum.

Even a one-dimensional function f : X = R 7→ R may have more than one global
maximum, multiple global minima, or even both in its domain X. Take the cosine function
for example: It has global maxima x̂i at x̂i = 2iπ and global minima x̌i at x̌i = (2i+ 1)π for
all i ∈ Z. The correct solution of such an optimization problem would then be a set X⋆ of
all optimal inputs in X rather than a single maximum or minimum. Furthermore, the exact
meaning of optimal is problem dependent. In single-objective optimization, it either means
minimum or maximum. In multi-objective optimization, there exist a variety of approaches
to define optima which we will discuss in-depth in Section 1.2.2.

Definition 1.12 (Optimal Set). The optimal set X⋆ is the set that contains all optimal
elements.

There are normally multiple, often even infinite many optimal solutions. Since the mem-
ory of our computers is limited, we can find only a finite (sub-)set of them. We thus dis-
tinguish between the global optimal set X⋆ and the set X⋆ of (seemingly optimal) elements
which an optimizer returns. The tasks of global optimization algorithms are

1. to find solutions that are as good as possible and
2. that are also widely different from each other [534].

The second goal becomes obvious if we assume that we have an objective function f :
R 7→ R which is optimal for all x ∈ [0, 10] ⇔ x ∈ X⋆. This interval contains uncountable
many solutions, and an optimization algorithm may yield X⋆

1 = {0, 0.1, 0.11, 0.05, 0.01} or
X⋆

2 = {0, 2.5, 5, 7.5, 10} as result. Both sets only represent a small subset of the possible
solutions. The second result (X⋆

2 ), however, gives us a broader view on the optimal set.
Even good optimization algorithms do not necessarily find the real global optima but may
only be able to approximate them. In other words, X⋆

3 = {−0.3, 5, 7.5, 11} is also a possible
result of the optimization process, although containing two sub-optimal elements.

In Chapter 19 on page 307, we will introduce different algorithms and approaches that
can be used to maintain an optimal set or to select the optimal elements from a given set
during an optimization process.



1.2 What is an optimum? 27

1.2.2 Multiple Objective Functions

Global optimization techniques are not just used for finding the maxima or minima of single
functions f . In many real-world design or decision making problems, they are rather applied
to sets F consisting of n = |F | objective functions fi, each representing one criterion to be
optimized [537, 360, 716].

F = {fi : X 7→ Yi : 0 < i ≤ n, Yi ⊆ R} (1.3)

Algorithms designed to optimize such sets of objective functions are usually named with
the prefix multi-objective, like multi-objective evolutionary algorithms which are discussed
in Definition 2.2 on page 96.

Examples

Factory Example

Multi-objective optimization often means to compromise conflicting goals. If we go back to
our factory example, we can specify the following objectives that all are subject to optimiza-
tion:

1. Minimize the time between an incoming order and the shipment of the corresponding
product.

2. Maximize profit.
3. Minimize costs for advertising, personal, raw materials etc..
4. Maximize product quality.
5. Minimize negative impact on environment.

The last two objectives seem to contradict clearly the cost minimization. Between the per-
sonal costs and the time needed for production and the product quality there should also be
some kind of (contradictive) relation. The exact mutual influences between objectives can
apparently become complicated and are not always obvious.

Artificial Ant Example

Another example for such a situation is the Artificial Ant problem14 where the goal is to
find the most efficient controller for a simulated ant. The efficiency of an ant should not only
be measured by the amount of food it is able to pile. For every food item, the ant needs
to walk to some point. The more food it piles, the longer the distance it needs to walk. If
its behavior is driven by a clever program, it may walk along a shorter route which would
not be discovered by an ant with a clumsy controller. Thus, the distance it has to cover
to find the food or the time it needs to do so may also be considered in the optimization
process. If two control programs produce the same results and one is smaller (i. e., contains
fewer instructions) than the other, the smaller one should be preferred. Like in the factory
example, the optimization goals conflict with each other.

From these both examples, we can gain another insight: To find the global optimum
could mean to maximize one function fi ∈ F and to minimize another one fj ∈ F, (i 6= j).
Hence, it makes no sense to talk about a global maximum or a global minimum in terms
of multi-objective optimization. We will thus retreat to the notation of the set of optimal
elements x⋆ ∈ X⋆ ⊆ X.

Since compromises for conflicting criteria can be defined in many ways, there exist mul-
tiple approaches to define what an optimum is. These different definitions, in turn, lead to
different sets X⋆.



28 1 Introduction

y=f (x)1

y=f (x)2

y

x̂
1

x̂
2 x X1Î

Figure 1.3: Two functions f1 and f2 with different maxima x̂1 and x̂2.

Graphical Example 1

We will discuss some of these approaches in the following by using two graphical examples
for illustration purposes. In the first example pictured in Figure 1.3, we want to maximize
two independent objective functions F1 = {f1, f2}. Both objective functions have the real
numbers R as problem space X1. The maximum (and thus, the optimum) of f1 is x̂1 and
the largest value of f2 is at x̂2. In Figure 1.3, we can easily see that f1 and f2 are partly
conflicting: Their maxima are at different locations and there even exist areas where f1 rises
while f2 falls and vice versa.

Graphical Example 2

x3
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^
x1

^
x2

^

X2

x 2 x 2x
1

x
1

f3 f4

Figure 1.4: Two functions f3 and f4 with different minima x̌1, x̌2, x̌3, and x̌4.

The objective functions f1 and f2 in the first example are mappings of a one-dimensional
problem space X1 to the real numbers that are to be maximized. In the second exam-
ple sketched in Figure 1.4, we instead minimize two functions f3 and f4 that map a two-
dimensional problem space X2 ⊂ R2 to the real numbers R. Both functions have two global
minima; the lowest values of f3 are x̌1 and x̌2 whereas f4 gets minimal at x̌3 and x̌4. It
should be noted that x̌1 6= x̌2 6= x̌3 6= x̌4.

14 See Section 21.3.1 on page 354 for more details.
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Weighted Sums (Linear Aggregation)

The simplest method to define what is optimal is computing a weighted sum g(x) of all
the functions fi(x) ∈ F .15 Each objective fi is multiplied with a weight wi representing its
importance. Using signed weights also allows us to minimize one objective and to maximize
another. We can, for instance, apply a weight wa = 1 to an objective function fa and the
weight wb = −1 to the criterion fb. By minimizing g(x), we then actually minimize the
first and maximize the second objective function. If we instead maximize g(x), the effect
would be converse and fb would be minimized and fa would be maximized. Either way,
multi-objective problems are reduced to single-objective ones by this method.

g(x) =
n∑

i=1

wifi(x) =
∑

∀fi∈F

wifi(x) (1.4)

x⋆ ∈ X⋆ ⇔ g(x⋆) ≥ g(x) ∀x ∈ X (1.5)

Graphical Example 1

Figure 1.5 demonstrates optimization with the weighted sum approach for the example given
in Section 1.2.2. The weights are both set to 1 = w1 = w2. If we maximize g1(2), we will
thus also maximize the functions f1 and f2. This leads to a single optimum x⋆ = x̂.

y
y =f (x)11

y =f (x)2 2

y=g (x)=f (x)+f (x)1 1 2

x̂ x X1Î

Figure 1.5: Optimization using the weighted sum approach (first example).

Graphical Example 2

The sum of the two-dimensional functions f3 and f4 from the second graphical example
given in Section 1.2.2 is sketched in Figure 1.6. Again we set the weights w3 and w4 to 1.
The sum g2 however is subject to minimization. The graph of g2 has two especially deep
valleys. At the bottoms of these valleys, the two global minima x̌5 and x̌6 can be found.

Problems with Weighted Sums

The drawback of this approach is that it cannot handle functions that rise or fall with
different speed16 properly. In Figure 1.7, we have sketched the sum g(x) of the two objective
functions f1(x) = −x2 and f2(x) = ex−2. When minimizing or maximizing this sum, we

15 This approach applies a linear aggregation function for fitness assignment and is therefore also
often referred to as linear aggregating.

16 See Section 30.1.3 on page 550
or http://en.wikipedia.org/wiki/Asymptotic_notation [accessed 2007-07-03] for related informa-
tion.

http://en.wikipedia.org/wiki/Asymptotic_notation
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Figure 1.6: Optimization using the weighted sum approach (second example).
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Figure 1.7: A problematic constellation for the weighted sum approach.

will always disregard one of the two functions, depending on the interval chosen. For small
x, f2 is negligible compared to f1. For x > 5 it begins to outpace f1 which, in turn, will
now become negligible. Such functions cannot be added up properly using constant weights.
Even if we would set w1 to the really large number 1010, f1 will become insignificant for

all x > 40, because

∣∣∣∣
−(402)∗1010

e40−2

∣∣∣∣ ≈ 0.0005. Therefore, weighted sums are only suitable

to optimize functions that at least share the same big-O notation (see Section 30.1.3 on
page 550). Often, it is not obvious how the objective functions will fall or rise. How can we,
for instance, determine whether the objective maximizing the food piled by an Artificial Ant
rises in comparison to the objective minimizing the distance walked by the simulated insect?
And even if the shape of the objective functions and their complexity class were clear, the
question about how to set the weights w properly still remains open in most cases [487]. In
the same paper, Das and Dennis [487] also show that with weighted sum approaches, not
necessarily all elements considered optimal in terms of Pareto domination will be found.
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Pareto Optimization

The mathematical foundations for multi-objective optimization which considers conflicting
criteria in a fair way has been laid by Vilfredo Pareto [1615] 110 years ago [1225]. Pareto
optimality17 became an important notion in economics, game theory, engineering, and social
sciences [390, 2219, 1587, 752]. It defines the frontier of solutions that can be reached by
trading-off conflicting objectives in an optimal manner. From this front, a decision maker
(be it a human or an algorithm) can finally choose the configurations that, in his opinion,
suit best [715, 716, 375, 1961, 877, 760, 177]. The notation of optimal in the Pareto sense is
strongly based on the definition of domination:

Definition 1.13 (Domination). An element x1 dominates (is preferred to) an element
x2 (x1 ⊢ x2) if x1 is better than x2 in at least one objective function and not worse with
respect to all other objectives. Based on the set F of objective functions f , we can write:

x1 ⊢ x2 ⇔ ∀i : 0 < i ≤ n⇒ ωifi(x1) ≤ ωifi(x2) ∧
∃j : 0 < j ≤ n : ωjfj(x1) < ωjfj(x2)

(1.6)

ωi =

{
1 if fi should be minimized
−1 if fi should be maximized

(1.7)

Different from the weights in the weighted sum approach, the factors ωi only carry
sign information which allows us to maximize some objectives and to minimize some other
criteria.

The Pareto domination relation defines a strict partial order (see Definition 27.31 on
page 463) on the space of possible objective values. In contrast, the weighted sum approach
imposes a total order by projecting it into the real numbers R.

Definition 1.14 (Pareto Optimal). An element x⋆ ∈ X is Pareto optimal (and hence,
part of the optimal set X⋆) if it is not dominated by any other element in the problem space
X. In terms of Pareto optimization, X⋆ is called the Pareto set or the Pareto Frontier.

x⋆ ∈ X⋆ ⇔6 ∃x ∈ X : x ⊢ x⋆ (1.8)

Graphical Example 1

In Figure 1.8, we illustrate the impact of the definition of Pareto optimality on our first
example (outlined in Section 1.2.2). We assume again that f1 and f2 should both be maxi-
mized and hence, ω1 = ω2 = −1. The areas shaded with dark gray are Pareto optimal and
thus, represent the optimal set X⋆ = [x2, x3] ∪ [x5, x6] which here contains infinite many
elements18. All other points are dominated, i. e., not optimal.

The points in the area between x1 and x2 (shaded in light gray) are dominated by other
points in the same region or in [x2, x3], since both functions f1 and f2 can be improved by
increasing x. If we start at the leftmost point in X (which is position x1), for instance, we
can go one small step ∆ to the right and will find a point x1 + ∆ dominating x1 because
f1(x1 +∆) > f1(x1) and f2(x1 +∆) > f2(x1). We can repeat this procedure and will always
find a new dominating point until we reach x2. x2 demarks the global maximum of f2, the
point with the highest possible f2 value, which cannot be dominated by any other point in
X by definition (see Equation 1.6).

From here on, f2 will decrease for a while, but f1 keeps rising. If we now go a small step
∆ to the right, we will find a point x2 +∆ with f2(x2 +∆) < f2(x2) but also f1(x2 +∆) >
f1(x2). One objective can only get better if another one degenerates. In order to increase f1,
f2 would be decreased and vice versa and so the new point is not dominated by x2. Although

17 http://en.wikipedia.org/wiki/Pareto_efficiency [accessed 2007-07-03]

18 In practice, of course, our computers can only handle finitely many elements

http://en.wikipedia.org/wiki/Pareto_efficiency
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Figure 1.8: Optimization using the Pareto Frontier approach.

some of the f2(x) values of the other points x ∈ [x1, x2) may be larger than f2(x2 +∆),
f1(x2 +∆) > f1(x) holds for all of them. This means that no point in [x1, x2) can dominate
any point in [x2, x4] because f1 keeps rising until x4 is reached.

At x3 however, f2 steeply falls to a very low level. A level lower than f2(x5). Since the f1
values of the points in [x5, x6] are also higher than those of the points in (x3, x4], all points
in the set [x5, x6] (which also contains the global maximum of f1) dominate those in (x3, x4].
For all the points in the white area between x4 and x5 and after x6, we can derive similar
relations. All of them are also dominated by the non-dominated regions that we have just
discussed.

Graphical Example 2

Another method to visualize the Pareto relationship is outlined in Figure 1.9 for our second
graphical example. For a certain resolution of the problem space X2, we have counted the
number of elements that dominate each element x ∈ X2. The higher this number, the
worst is the element x in terms of Pareto optimization. Hence, those solution candidates
residing in the valleys of Figure 1.9 are better than those which are part of the hills. This
Pareto ranking approach is also used in many optimization algorithms as part of the fitness
assignment scheme (see Section 2.3.3 on page 112, for instance). A non-dominated element
is, as the name says, not dominated by any other solution candidate. These elements are
Pareto optimal and have a domination-count of zero. In Figure 1.9, there are four such areas
X⋆

1, X⋆
2, X⋆

3, and X⋆
4.

x 2x
1

#dom
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«
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«
X3

«
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«

Figure 1.9: Optimization using the Pareto Frontier approach (second example).
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If we compare Figure 1.9 with the plots of the two functions f3 and f4 in Figure 1.4, we
can see that hills in the domination space occur at positions where both, f3 and f4 have high
values. Conversely, regions of the problem space where both functions have small values are
dominated by very few elements.

Besides these examples here, another illustration of the domination relation which may
help understanding Pareto optimization can be found in Section 2.3.3 on page 112 (Figure 2.4
and Table 2.1).

Problems of Pure Pareto Optimization

The complete Pareto optimal set is often not the wanted result of an optimization algorithm.
Usually, we are rather interested in some special areas of the Pareto front only.

Artificial Ant Example We can again take the Artificial Ant example to visualize this prob-
lem. In Section 1.2.2 on page 27 we have introduced multiple conflicting criteria in this
problem.

1. Maximize the amount of food piled.
2. Minimize the distance covered or the time needed to find the food.
3. Minimize the size of the program driving the ant.

Pareto optimization may now yield for example:

1. A program consisting of 100 instructions, allowing the ant to gather 50 food items when
walking a distance of 500 length units.

2. A program consisting of 100 instructions, allowing the ant to gather 60 food items when
walking a distance of 5000 length units.

3. A program consisting of 10 instructions, allowing the ant to gather 1 food item when
walking a distance of 5 length units.

4. A program consisting of 0 instructions, allowing the ant to gather 0 food item when
walking a distance of 0 length units.

The result of the optimization process obviously contains two useless but non-dominated
individuals which occupy space in the population and the non-dominated set. We also invest
processing time in evaluating them, and even worse, they may dominate solutions that are
not optimal but fall into the space behind the interesting part of the Pareto front. Further-
more, memory restrictions usually force us to limit the size of the list of non-dominated
solutions found during the search. When this size limit is reached, some optimization al-
gorithms use a clustering technique to prune the optimal set while maintaining diversity.
On one hand, this is good since it will preserve a broad scan of the Pareto frontier. In this
case on the other hand, a short but dumb program is of course very different from a longer,
intelligent one. Therefore, it will be kept in the list and other solutions which differ less from
each other but are more interesting for us will be discarded.

Furthermore, non-dominated elements have a higher probability of being explored fur-
ther. This then leads inevitably to the creation of a great proportion of useless offspring. In
the next generation, these useless offspring will need a good share of the processing time to
be evaluated.

Thus, there are several reasons to force the optimization process into a wanted direction.
In Section 22.2.2 on page 390 you can find an illustrative discussion on the drawbacks of
strict Pareto optimization in a practical example (evolving web service compositions).

1.2.3 Constraint Handling

Such a region of interest is one of the reasons for one further extension of the definition of op-
timization problems: In many scenarios, p inequality constraints g and q equality constraints
h may be imposed additional to the objective functions. Then, a solution candidate x is fea-
sible, if and only if gi(x) ≥ 0 ∀i = 1, 2, .., p and hi(x) = 0 ∀i = 1, 2, .., q holds. Obviously, only
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a feasible individual can be a solution, i. e., an optimum, for a given optimization problem.
Comprehensive reviews on techniques for such problems have been provided by Michalewicz
[1406], Michalewicz and Schoenauer [1410], Ceollo Coello [358], and Ceollo Coello et al. [361]
in the context of Evolutionary Computation.

Death Penalty

Probably the easiest way of dealing with constraints is to simply reject all infeasible solution
candidates right away and not considering them any further in the optimization process.
This death penalty [1406, 1408] can only work in problems where the feasible regions are
very large and will lead the search to stagnate in cases where this is not the case. Also, the
information which could be gained from the infeasible individuals is discarded with them
and not used during the optimization.

Penalty Functions

Maybe one of the most popular approach for dealing with constraints, especially in the
area of single-objective optimization, goes back to Courant [458] who introduced the idea
of penalty functions in 1943. Here, the constraints are combined with the objective function
f , resulting in a new function f ′ which is then actually optimized. The basic idea is that
this combination is done in a way which ensures that an infeasible solution candidate has
always a worse f ′-value than a feasible one with the same objective values. In [458], this is

achieved by defining f ′ as f ′(x) = f(x) + v [h(x)]
2
. Various similar approaches exist. Carroll

[345, 346], for instance, chose a penalty function of the form f ′(x) = f(x) +v
∑p

i=1 [gi(x)]
−1

which ensures that the function g does not become zero or negative.
There are practically no limits for the ways in which a penalty for infeasibility can be

integrated into the objective functions. Several researchers suggest dynamic penalties which
incorporate the index of the current iteration of the optimizer [1063, 1560] or adaptive
penalties which additionally utilize population statistics [1876, 1877, 875, 159]. Rigorous
discussions on penalty functions have been contributed by Fiacco and McCormick [665] and
Smith and Coit [1901].

Constraints as Additional Objectives

Another idea for handling constraints would be to consider them as new objective functions.
If g(x) ≥ 0 must hold, for instance, we can transform this to a new objective function
f∗(x) = min {−g(x) , 0} subject to minimization. The minimum is needed since there is no
use in maximizing g further than 0 and hence, after it reached 0, the optimization pressure
must be removed. An approach similar to this is Deb’s Goal Programming method [536, 533].

The Method of Inequalities

General inequality constraints can also be processed according to the Method of Inequalities
(MOI) introduced by Zakian [2304, 2305, 2306, 2307, 2308] in his seminal work on computer-
aided control systems design (CACSD) [1814, 2200, 2315]. In the MOI, an area of interest
is specified in form of a goal range [ři, r̂i] for each objective function fi.

Pohlheim [1651] outlines how this approach can be combined with Pareto optimization:
Based on the inequalities, three categories of solution candidates can be defined and each
element x ∈ X belongs to one of them:

1. It fulfills all of the goals, i. e.,

ři ≤ fi(x) ≤ r̂i ∀i ∈ [1, |F |] (1.9)
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2. It fulfills some (but not all) of the goals, i. e.,

(∃i ∈ [1, |F |] : ři ≤ fi(x) ≤ r̂i) ∧ (∃j ∈ [1, |F |] : (fj(x) < řj) ∨ (fj(x) > r̂j)) (1.10)

3. It fulfills none of the goals, i. e.,

(fi(x) < ři) ∨ (fi(x) > r̂i) ∀i ∈ [1, |F |] (1.11)

Using these groups, a new comparison mechanism is created:

1. The solution candidates that fulfill all goals are preferred instead of all other individuals
that either fulfill some or no goals.

2. The solution candidates that are not able to fulfill any of the goals succumb to those
which fulfill at least some goals.

3. Only the solutions that are in the same group are compared on basis on the Pareto
domination relation.

By doing so, the optimization process will be driven into the direction of the interesting
part of the Pareto frontier. Less effort will be spent in creating and evaluating individuals
in parts of the problem space that most probably do not contain any valid solution.

Graphical Example 1

In Figure 1.10, we apply the Pareto-based Method of Inequalities to our first graphical
example. We impose the same goal ranges on both objectives r̂1 = r̂2 and ř1 = ř2. By
doing so, the second non-dominated region from the Pareto example Figure 1.8 suddenly
becomes infeasible, since f1 rises over r̂1 there. Also, the greater part of the first optimal
area from this example is infeasible because f2 drops under ř2. In the whole domain X of
the optimization problem, only the regions [x1, x2] and [x3, x4] fulfill all the target criteria.
To these elements, Pareto comparisons are applied. It turns out that the elements in [x3, x4]
dominate all the elements [x1, x2] since they provide higher values in f1 for same values in
f2. If we scan through [x3, x4] from left to right, we can see the f1 rises while f2 degenerates,
which is why the elements in this area cannot dominated each other and, hence, are all
optimal.

y

x1 x2 x3 x4

y=f (x)1

y=f (x)2

r ,r1 2

r ,r1 2

^ ^
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x X1Î

Figure 1.10: Optimization using the Pareto-based Method of Inequalities approach (first
example).

Graphical Example 2

In Figure 1.11 we apply the Pareto-based Method of Inequalities to our second graphical
example from Section 1.2.2. We apply two different ranges of interest [ř3, r̂3] and [ř4, r̂4] on
f3 and f4 as sketched in Fig. 1.11.a.
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Fig. 1.11.a: The ranges applied to f3 and f4.
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Fig. 1.11.c: The Pareto-based Method of In-
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Figure 1.11: Optimization using the Pareto-based Method of Inequalities approach (first
example).

Like we did in the second example for Pareto optimization, we want to plot the quality of
the elements in the problem space. Therefore, we first assign a number c ∈ {1, 2, 3} to each
of its elements in Fig. 1.11.b. This number corresponds to the classes to which the elements
belong, i. e., 1 means that a solution candidate fulfills all inequalities, for an element of class
2, at least some of the constraints hold, and the elements in class 3 fail all requirements.
Based on this class division, we can then perform a modified Pareto counting where each
element dominates all the elements in higher classes Fig. 1.11.c. The result is that multiple
single optima x⋆

1, x⋆
2, x⋆

3, etc., and even a set of adjacent, non-dominated elements X⋆
9 occurs.

These elements are, again, situated at the bottom of the illustrated landscape whereas the
worst solution candidates reside on hill tops.

A good overview on techniques for the Method of Inequalities is given by Whidborne
et al. [2200].

Limitations and Other Methods

Other approaches for incorporating constraints into optimization are Goal Attainment [2233,
714] and Goal Programming19 [377, 376]. Especially interesting in our context are methods

19 http://en.wikipedia.org/wiki/Goal_programming [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Goal_programming
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which have been integrated into evolutionary algorithms [2002, 536, 533, 1804, 1651], such
as the popular Goal Attainment approach by Fonseca and Fleming [714] which is similar to
the Pareto-MOI we have adopted from Pohlheim [1651]. Again, an overview on this subject
is given by Ceollo Coello et al. in [361].

1.2.4 Unifying Approaches

External Decision Maker

All approaches for defining what optima are and how constraints should be considered are
rather specific and bound to certain mathematical constructs. The more general concept of
an External Decision Maker which (or who) decides which solution candidates prevail has
been introduced by Fonseca and Fleming [715, 716]. One of the ideas behind “externalizing”
the assessment process on what is good and what is bad is that Pareto optimization imposes
only a partial order20 on the solution candidates. In a partial order, elements may exists
which neither succeed nor precede each other. As we have seen in Section 1.2.2, there can,
for instance, be two individuals x1, x2 ∈ X with neither x1 ⊢ x2 nor x2 ⊢ x1. A special
case of this situation is the non-dominated set, the so-called Pareto frontier which we try
to estimate with the optimization process.

Most fitness assignment processes, however, require some sort of total order21, where each
individual is either better or worse than each other (except for the case of identical solution
candidates which are, of course, equal to each other). The fitness assignment algorithms can
create such a total order by themselves. One example for doing this is the Pareto ranking
which we will discuss later in Section 2.3.3 on page 112, where the number of individuals
dominating a solution candidate denotes its fitness.

While this method of ordering is a good default approach able of directing the search
into the direction of the Pareto frontier and delivering a broad scan of it, it neglects the fact
that the user of the optimization most often is not interested in the whole optimal set but
has preferences, certain regions of interest [717]. This region will then exclude the infeasible
(but Pareto optimal) programs for the Artificial Ant as discussed in Section 1.2.2. What the
user wants is a detailed scan of these areas, which often cannot be delivered by pure Pareto
optimization.

utility/cost results
a priori

knowledge

objective values
(acquired knowledge)

EA
(an optimizer)

DM
(decision maker)

Figure 1.12: An external decision maker providing an evolutionary algorithm with utility
values.

Here comes the External Decision Maker as an expression of the user’s preferences [712]
into play, as illustrated in Figure 1.12. The task of this decision maker is to provide a cost
function u : Y 7→ R (or utility function, if the underlying optimizer is maximizing) which
maps the space of objective values Y (which is usually Rn) to the space of real numbers

20 A definition of partial order relations is specified in Definition 27.31 on page 463.
21 The concept of total orders is elucidated in Definition 27.32 on page 464.
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R. Since there is a total order defined on the real numbers, this process is another way
of resolving the “incomparability-situation”. The structure of the decision making process
u can freely be defined and may incorporate any of the previously mentioned methods.
u could, for example, be reduced to compute a weighted sum of the objective values, to
perform an implicit Pareto ranking, or to compare individuals based on pre-specified goal-
vectors. Furthermore, it may even incorporate forms of artificial intelligence, other forms of
multi-criterion Decision Making, and even interaction with the user. This technique allows
focusing the search onto solutions which are not only optimal in the Pareto sense, but also
feasible and interesting from the viewpoint of the user.

Fonseca and Fleming make a clear distinction between fitness and cost values. Cost values
have some meaning outside the optimization process and are based on user preferences.
Fitness values on the other hand are an internal construct of the search with no meaning
outside the optimizer (see Definition 1.35 on page 46 for more details). If External Decision
Makers are applied in evolutionary algorithms or other search paradigms that are based on
fitness measures, these will be computed using the values of the cost function instead of the
objective functions [718, 712, 713].

Prevalence Optimization

We have now discussed various approaches which define optima in terms of multi-objective
optimization and steer the search process into their direction. Let us subsume all of them in
general approach. From the concept of Pareto optimization to the Method of Inequalities,
the need to compare elements of the problem space in terms of their quality as solution
for a given problem winds like a read thread through this matter. Even the weighted sum
approach and the External Decision Maker do nothing else than mapping multi-dimensional
vectors to the real numbers in order to make them comparable.

If we compare two solution candidates x1 und x2, either x1 is better than x2, vice versa,
or both are of equal quality. Hence, there are three possible relations between two elements
of the problem space. These two results can be expressed with a comparator function cmpF .

Definition 1.15 (Comparator Function). A comparator function cmp : A2 7→ R maps
all pairs of elements (a1, a2) ∈ A2 to the real numbers Raccording to two complementing
partial orders22 R1 and R2:

R1(a1, a2)⇔ cmp(a1, a2) < 0 ∀a1, a2 ∈ A (1.12)

R2(a1, a2)⇔ cmp(a1, a2) > 0 ∀a1, a2 ∈ A (1.13)

R1(a1, a2) ∧R2(a1, a2)⇔ cmp(a1, a2) = 0 ∀a1, a2 ∈ A (1.14)

cmp(a, a) = 0 ∀a ∈ A (1.15)

R1 (and hence, cmp(a1, a2) < 0) is equivalent to the precedence relation and R2 denotes
succession.

From the three defining equations, many features of cmp can be deduced. It is, for
instance, transitive, i. e., cmp(a1, a2) < 0 ∧ cmp(a2, a3) < 0 ⇒ cmp(a1, a3)) < 0. Provided
with the knowledge of the objective functions f ∈ F , such a comparator function cmpF can
be imposed on the problem spaces of our optimization problems:

Definition 1.16 (Prevalence Comparator Function). A prevalence comparator func-
tion cmpF : X2 7→ R maps all pairs (x1, x2) ∈ X2 of solution candidates to the real numbers
R according to Definition 1.15.

The subscript F in cmpF illustrates that the comparator has access to all the values of
the objective functions in addition to the problem space elements which are its parameters.
As shortcut for this comparator function, we introduce the prevalence notation as follows:

22 Partial orders are introduced in Definition 27.30 on page 463.
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Definition 1.17 (Prevalence). An element x1 prevails over an element x2 (x1 ≻ x2) if
the application-dependent prevalence comparator function cmpF (x1, x2) ∈ R returns a value
less than 0.

(x1 ≻ x2)⇔ cmpF (x1, x2) < 0 ∀x1, x2,∈ X (1.16)

(x1 ≻ x2) ∧ (x2 ≻ x3)⇒ x1 ≻ x3 ∀x1, x2, x3 ∈ X (1.17)

It is easy to see that we can define Pareto domination relations and Method of
Inequalities-based comparisons, as well as the weighted sum combination of objective val-
ues based on this notation. Together with the fitness assignment strategies which will be
introduced later in this book (see Section 2.3 on page 111), it covers many of the most so-
phisticated multi-objective techniques that are proposed, for instance, in [715, 1128, 2002].
By replacing the Pareto approach with prevalence comparisons, all the optimization algo-
rithms(especially many of the evolutionary techniques) relying on domination relations can
be used in their original form while offering the new ability of scanning special regions of
interests of the optimal frontier.

Since the comparator function cmpF and the prevalence relation impose a partial order
on the problem space X like the domination relation does, we can construct the optimal set
in a way very similar to Equation 1.8:

x⋆ ∈ X⋆ ⇔6 ∃x ∈ X : x 6= x⋆ ∧ x ≻ x⋆ (1.18)

For illustration purposes, we will exercise the prevalence approach on the examples of the
weighted sum cmpF,F,weightedS method23 with the weights wi as well as on the domination-
based Pareto optimization24 cmpF,Pareto with the objective directions ωi:

cmpF,weightedS(x1, x2) =

|F |∑

i=1

(wifi(x2)− wifi(x1)) ≡ g(x2)− g(x1) (1.19)

cmpF,Pareto(x1, x2) =




−1 if x1 ⊢ x2

1 if x2 ⊢ x1

0 otherwise
(1.20)

Artificial Ant Example

With the prevalence comparator, we can also easily solve the problem stated in Section 1.2.2
by no longer encouraging the evolution of useless programs for Artificial Ants while retaining
the benefits of Pareto optimization. The comparator function simple can be defined in a
way that they will always be prevailed by useful programs. It therefore may incorporate the
knowledge on the importance of the objective functions. Let f1 be the objective function
with an output proportional to the food piled, f2 would denote the distance covered in
order to find the food, and f3 would be the program length. Equation 1.21 demonstrates
one possible comparator function for the Artificial Ant problem.

cmpF,ant(x1, x2) =





−1 if (f1(x1) > 0 ∧ f1(x2) = 0)∨
(f2(x1) > 0 ∧ f2(x2) = 0)∨
(f3(x1) > 0 ∧ f1(x2) = 0)

1 if (f1(x2) > 0 ∧ f1(x1) = 0)∨
(f2(x2) > 0 ∧ f2(x1) = 0)∨
(f3(x2) > 0 ∧ f1(x1) = 0)

cmpF,Pareto(x1, x2) otherwise

(1.21)

23 See Equation 1.4 on page 29 for more information on weighted sum optimization.
24 Pareto optimization was defined in Equation 1.6 on page 31.
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Later in this book, we will discuss some of the most popular optimization strategies. Al-
though they are usually implemented based on Pareto optimization, we will always introduce
them using prevalence.

1.3 The Structure of Optimization

After we have discussed what optima are and have seen a crude classification of global
optimization algorithms, let us now take a look on the general structure common to all
optimization processes. This structure consists of a number of well-defined spaces and sets
as well as the mappings between them. Based on this structure of optimization, we will
introduce the abstractions fitness landscapes, problem landscape, and optimization problem
which will lead us to a more thorough definition of what optimization is.

1.3.1 Spaces, Sets, and Elements

In this section, we elaborate on the relation between the (possibly different) representations
of solution candidates for search and for evaluation. We will show how these representations
are connected and introduce fitness as a relative utility measures defined on sets of solution
candidates. You will find that the general model introduced here applies to all the global
optimization methods mentioned in this book, often in a simplified manner. One example for
this structure of optimization processes is given in Figure 1.13 by using a genetic algorithm
which encodes the coordinates of points in a plane into bit strings as an illustration.

The Problem Space and the Solutions therein

Whenever we tackle an optimization problem, we first have to define the type of the pos-
sible solutions. For deriving a controller for the Artificial Ant problem, we could choose
programs or artificial neural networks as solution representation. If we are to find the root
of a mathematical function, we would go for real numbers R as solution candidates and when
configuring or customizing a car for a sales offer, all possible solutions are elements of the
power set of all optional features. With this initial restriction to a certain type of results,
we have specified the problem space X.

Definition 1.18 (Problem Space). The problem space X (phenome) of an optimization
problem is the set containing all elements x which could be its solution.

Usually, more than one problem space can be defined for a given optimization problem.
A few lines before, we said that as problem space for finding the root of a mathematical
function, the real number R would be fine. On the other hand, we could as well restrict
ourselves to the natural numbers N or widen the search to the whole complex plane C. This
choice has major impact: On one hand, it determines which solutions we can possible find.
On the other hand, it also has subtle influence on the search operations. Between each two
different points in R, for instance, there are infinitely many other numbers, while in N, there
are not.

In dependence on genetic algorithms, we often refer to the problem space synonymously
phenome. The problem space X is often restricted by

1. logical constraints that rule out elements which cannot be solutions, like programs of
zero length when trying to solve the Artificial Ant problem and

2. practical constraints that prevent us, for instance, from taking all real numbers into
consideration in the minimization process of a real function. On our off-the-shelf CPUs
or with the Java programming language, we can only use 64 bit floating point numbers.
With these 64 bit, it is only possible to express numbers up to a certain precision and
we cannot have more than 15 or so decimals.
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Definition 1.19 (Solution Candidate). A solution candidate x is an element of the
problem space X of a certain optimization problem.

In the context of evolutionary algorithms, solution candidates are usually called pheno-
types. In this book, we will use both terms synonymously. Somewhere inside the problem
space, the solutions of the optimization problem will be located (if the problem can actually
be solved, that is).

Definition 1.20 (Solution Space). We call the union of all solutions of an optimization
problem its solution space S.

X⋆ ⊆ S ⊆ X (1.22)

This solution space contains (and can be equal to) the global optimal set X⋆. There may
exist valid solutions x ∈ S which are not elements of the X⋆, especially in the context of
constraint optimization (see Section 1.2.3).

The Search Space

Definition 1.21 (Search Space). The search space G of an optimization problem is the
set of all elements g which can be processed by the search operations.

As previously mentioned, the type of the solution candidates depends on the problem
to be solved. Since there are many different applications for optimization, there are many
different forms of problem spaces. It would be cumbersome to develop search operations
time and again for each new problem space we encounter. Such an approach would not only
be error-prone, it would also make it very hard to formulate general laws and to consolidate
findings. Instead, we often reuse well-known search spaces for many different problems. Then,
only a mapping between search and problem space has to be defined (see page 44). Although
this is not always possible, it allows us to use more out-of-the-box software in many cases.

In dependence on genetic algorithms, we often refer to the search space synonymously as
genome25, a term coined by the German biologist Winkler [2241] as a portmanteau of the
words gene26 and chromosome [1267]. The genome is the whole hereditary information of
organisms. This includes both, the genes and the non-coding sequences of the Deoxyribonu-
cleic acid (DNA27), which is illustrated in Figure 1.14. Simply put, the DNA is a string of

Thymine

Adenine Guanine

Cytosine Hydrogen
Bond

Deoxyribose (sugar)Phosphate

Figure 1.14: A sketch of a part of a DNA molecule.

base pairs that encodes the phenotypical characteristics of the creature it belongs to.

25 http://en.wikipedia.org/wiki/Genome [accessed 2007-07-15]

26 The words gene, genotype, and phenotype have, in turn, been introduced by the Danish biologist
Johannsen [1056]. [2240]

27 http://en.wikipedia.org/wiki/Dna [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Dna


1.3 The Structure of Optimization 43

Definition 1.22 (Genotype). The elements g ∈ G of the search space G of a given
optimization problem are called the genotypes.

The elements of the search space rarely are unstructured aggregations. Instead, they often
consist of distinguishable parts, hierarchical units, or well-typed data structures. The same
goes for the DNA in biology. It consists of genes, segments of nucleic acid, that contain
the information necessary to produce RNA strings in a controlled manner28. A fish, for
instance, may have a gene for the color of its scales. This gene, in turn, could have two
possible “values” called alleles29, determining whether the scales will be brown or gray.
The genetic algorithm community has adopted this notation long ago and we can use it for
arbitrary search spaces.

Definition 1.23 (Gene). The distinguishable units of information in a genotype that
encode the phenotypical properties are called genes.

Definition 1.24 (Allele). An allele is a value of specific gene.

Definition 1.25 (Locus). The locus30 is the position where a specific gene can be found
in a genotype.

Figure 1.15 on page 45 refines the relations of genotypes and phenotypes from the
initial example for the spaces in Figure 1.13 by also marking genes, alleles, and loci. In the
car customizing problem also mentioned earlier, the first gene could identify the color of
the automobile. Its locus would then be 0 and it could have the alleles 00, 01, 10, and 11,
encoding for red, white, green, and blue, for instance. The second gene (at locus 1) with the
alleles 0 or 1 may define whether or not the car comes with climate control, and so on.

The Search Operations

In some problems, the search space G may be identical to the problem space X. If we go back
to our previous examples, for instance, we will find that there exist a lot of optimization
strategies that work directly on vectors of real numbers. When minimizing a real function, we
could use such an approach (Evolution Strategies, for instance, see Chapter 5 on page 227)
and set G = X = R. Also, the configurations of cars may be represented as bit strings:
Assume that such a configuration consists of k features, which can either be included or
excluded from an offer to the customer. We can then search in the space of binary strings of
this length G = Bk = {true, false}k, which is exactly what genetic algorithms (discussed
in Section 3.1 on page 141) do. By using their optimization capabilities, we do not need
to mess with the search and selection techniques but can rely on well-researched standard
operations.

Definition 1.26 (Search Operations). The search operations searchOp are used by op-
timization algorithms in order to explore the search space G.

We subsume all search operations which are applied by an optimization algorithm in
order to solve a given problem in the set Op. Search operations can be defined with different
arities31. Equation 1.23, for instance, denotes an n-ary operator, i. e., one with n arguments.
The result of a search operation is one element of the search space.

searchOp : Gn 7→ G (1.23)

28 http://en.wikipedia.org/wiki/Gene [accessed 2007-07-03]

29 http://en.wikipedia.org/wiki/Allele [accessed 2007-07-03]

30 http://en.wikipedia.org/wiki/Locus_%28genetics%29 [accessed 2007-07-03]

31 http://en.wikipedia.org/wiki/Arity [accessed 2008-02-15]

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Locus_%28genetics%29
http://en.wikipedia.org/wiki/Arity
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Mutation and crossover in genetic algorithms (see Chapter 3) are examples for unary
and binary search operations, whereas Differential Evolution utilizes a ternary operator (see
Section 5.5). Optimization processes are often initialized by creating random genotypes –
usually the results of a search operation with zero arity (no parameters).

Search operations often involve randomized numbers. In such cases, it makes no sense to
reason about their results like ∃g1, g2 ∈ G : g2 = searchOp(g1)∧ . . . Instead, we need to work
with probabilities like ∃g1, g2 ∈ G : g2 = P (searchOp(g1)) > 0∧. . . Based on Definition 1.26,
we will use the notation Op(x) for the application of any of the operations searchOp ∈ Op
to the genotype x. With Opk(x) we denote k successive applications of (possibly different)
search operators. If the parameter x is left away, i. e., just Opk is written, this chain has to
start with a search operation with zero arity. In the style of Badea and Stanciu [111] and
Skubch [1897, 1898], we now can define:

Definition 1.27 (Completeness). A set Op of search operations searchOp is complete
if and only if every point g1 in the search space G can be reached from every other point
g2 ∈ G by applying only operations searchOp ∈ Op.

∀g1, g2 ∈ G⇒ ∃k ∈ N : P
(
g1 = Opk(g2)

)
> 0 (1.24)

Definition 1.28 (Weak Completeness). A set Op of search operations searchOp is weakly
complete if and only if every point g in the search space G can be reached by applying only
operations searchOp ∈ Op. A weakly complete set of search operations hence includes at
least one parameterless function.

∀g ∈ G⇒ ∃k ∈ N : P
(
g = Opk

)
> 0 (1.25)

If the set of search operations is not complete, there are points in the search space which
cannot be reached. Then, we are probably not able to explore the problem space adequately
and possibly will not find satisfyingly good solution.

Definition 1.29 (Adjacency (Search Space)). A point g2 is adjacent to a point g1 in
the search space G if it can be reached by applying a single search operation searchOp to
g1. Notice that the adjacency relation is not necessarily symmetric.

adjacent(g2, g1) =

{
true if ∃searchOp ∈ Op : P (searchOp(g1) = g2) > 0
false otherwise

(1.26)

The Connection between Search and Problem Space

If the search space differs from the problem space, a translation between them is furthermore
required. In our car example, we would need to transform the binary strings processed by
the genetic algorithm to objects which represent the corresponding car configurations and
can be processed by the objective functions.

Definition 1.30 (Genotype-Phenotype Mapping). The genotype-phenotype mapping
(GPM, or ontogenic mapping [1619]) gpm : G 7→ X is a left-total32 binary relation which
maps the elements of the search space G to elements in the problem space X.

∀g ∈ G ∃x ∈ X : gpm(g) = x (1.27)

The only hard criterion we impose on genotype-phenotype mappings in this book is
left-totality, i. e., that they map each element of the search space to at least one solution
candidate. They may be functional relations if they are deterministic. Although it is possible
to create mappings which involve random numbers and, hence, cannot be considered to be

32 See Equation 27.51 on page 461 to 5 on page 462 for an outline of the properties of binary
relations.
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Figure 1.15: The relation of genome, genes, and the problem space.

functions in the mathematical sense of Section 27.7.1 on page 462. Then, Equation 1.27
would need to be rewritten to Equation 1.28.

∀g ∈ G ∃x ∈ X : P (gpm(g) = x) > 0 (1.28)

Genotype-phenotype mappings should further be surjective [1694], i. e., relate at least
one genotype to each element of the problem space. Otherwise, some solution candidates
can never be found and evaluated by the optimization algorithm and there is no guarantee
whether the solution of a given problem can be discovered or not. If a genotype-phenotype
mapping is injective, which means that it assigns distinct phenotypes to distinct elements
of the search space, we say that it is free from redundancy . There are different forms of
redundancy, some are considered to be harmful for the optimization process, others have
positive influence33. Most often, GPMs are not bijective (since they are neither necessarily
injective nor surjective). Nevertheless, if a genotype-phenotype mapping is bijective, we can
construct an inverse mapping gpm−1 : X 7→ G.

gpm−1(x) = g ⇔ gpm(g) = x ∀x ∈ X, g ∈ G (1.29)

Based on the genotype-phenotype mapping, we can also define an adjacency relation for
the problem space, which, of course, is also not necessarily symmetric.

Definition 1.31 (Adjacency (Problem Space)). A point x2 is adjacent to a point x1

in the problem space X if it can be reached by applying a single search operation searchOp
to their corresponding elements in the problem space.

adjacent(x2, x1) =

{
true if ∃g1, g2 : x1 = gpm(g1) ∧ x2 = gpm(g2) ∧ adjacent(g2, g1)
false otherwise

(1.30)

By the way, we now have the means to define the term local optimum clearer. The original
Definition 1.8 only applies to single objective functions, but with the use of the adjacency
relation adjacent, the prevalence criterion ≻, and the connection between the search space
and the problem space gpm, we clarify it for multiple objectives.

Definition 1.32 (Local Optimum). A (local) optimum x⋆
l ∈ X of a set of objective

functions F function is not worse than all points adjacent to it.

∀x⋆
l ∈ G⇒

(
∀x ∈ X : adjacent(x, x⋆

l )⇒ x≻x⋆
l

)
(1.31)

33 See Section 1.4.5 on page 67 for more information.
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The Objective Space and Optimization Problems

After the appropriate problem space has been defined, the search space has been selected and
a translation between them (if needed) was created, we are almost ready to feed the problem
to a global optimization algorithm. The main purpose of such an algorithm obviously is to
find as many elements as possible from the solution space – We are interested in the solution
candidates with the best possible evaluation results. This evaluation is performed by the
set F of n objective functions f ∈ F , each contributing one numerical value describing the
characteristics of a solution candidate x.34

Definition 1.33 (Objective Space). The objective space Y is the space spanned by the
codomains of the objective functions.

F = {fi : X 7→ Yi : 0 < i ≤ n, Yi ⊆ R} ⇒ Y = Y1 × Y2 × ..× Yn (1.32)

The set F maps the elements x of the problem space X to the objective space Y and,
by doing so, gives the optimizer information about their qualities as solutions for a given
problem.

Definition 1.34 (Optimization Problem). An optimization problem is defined by a five-
tuple (X, F,G,Op, gpm) specifying the problem space X, the objective functions F , the
search space G, the set of search operations Op, and the genotype-phenotype mapping gpm.
In theory, such an optimization problem can always be solved if Op is complete and the
gpmis surjective.

Generic search and optimization algorithms find optimal elements if provided with an
optimization problem defined in this way. Evolutionary algorithms, which we will discuss
later in this book, are generic in this sense. Other optimization methods, like genetic algo-
rithmsfor example, may be more specialized and work with predefined search spaces and
search operations.

Fitness as a Relative Measure of Utility

When performing a multi-objective optimization, i. e., n = |F | > 1, the elements of Y are
vectors in Rn. In Section 1.2.2 on page 27, we have seen that such vectors cannot always
be compared directly in a consistent way and that we need some (comparative) measure for
what is “good”. In many optimization techniques, especially in evolutionary algorithms, this
measure is used to map the objective space to a subset V of the positive real numbers R+.
For each solution candidate, this single real number represents its fitness as solution for the
given optimization problem. The process of computing such a fitness value is often not solely
depending on the absolute objective values of the solution candidates but also on those of
the other phenotypes known. It could, for instance, be position of a solution candidate in the
list of investigated elements sorted according to the Pareto relation. Hence, fitness values
often only have a meaning inside the optimization process [712] and may change by time,
even if the objective values stay constant. In deterministic optimization methods, the value
of a heuristic function which approximates how many modifications we will have to apply
to the element in order to reach a feasible solution can be considered as the fitness.

Definition 1.35 (Fitness). The fitness35 value v(x) ∈ V of an element x of the problem
space X corresponds to its utility as solution or its priority in the subsequent steps of the
optimization process. The space spanned by all possible fitness values V is normally a subset
of the positive real numbers V ⊆ R+.

34 See also Equation 1.3 on page 27.
35 http://en.wikipedia.org/wiki/Fitness_(genetic_algorithm) [accessed 2008-08-10]

http://en.wikipedia.org/wiki/Fitness_(genetic_algorithm)


1.3 The Structure of Optimization 47

The origin of the term fitness has been borrowed biology36 [1915, 1624] by the evolution-
ary algorithms community. When the first applications of genetic algorithms were developed,
the focus was mainly on single-objective optimization. Back then, they called this single
function fitness function and thus, set objective value ≡ fitness value. This point of view is
obsolete in principle, yet you will find many contemporary publications that use this notion.
This is partly due the fact that in simple problems with only one objective function, the
old approach of using the objective values directly as fitness, i. e., v(x) = f(x) ∀x ∈ X, can
sometimes actually be applied. In multi-objective optimization processes, this is not possible
and fitness assignment processes like those which we are going to elaborate on in Section 2.3
on page 111 are applied instead.

In the context of this book, fitness is subject to minimization, i. e., elements with smaller
fitness are “better” than those with higher fitness. Although this definition differs from the
biological perception of fitness, it complies with the idea that optimization algorithms are
to find the minima of mathematical functions (if nothing else has been stated).

Futher Definitions

In order to ease the discussions of different global optimization algorithms, we furthermore
define the data structure individual. Especially evolutionary algorithms, but also many other
techniques, work on sets of such individuals. Their fitness assignment processes determine
fitness values for the individuals relative to all elements of these populations.

Definition 1.36 (Individual). An individual p is a tuple (p.g, p.x) of an element p.g in
the search space G and the corresponding element p.x = gpmp.g in the problem space X.

Besides this basic individual structure, many practical realizations of optimization al-
gorithms use such a data structure to store additional information like the objective and
fitness values. Then, we will consider individuals as tuples in G × X × Z, where Z is the
space of the additional information stored – Z = Y×V, for instance. In the algorithm defini-
tions later in this book, we will often access the phenotypes p.x without explicitly using the
genotype-phenotype mapping, since the relation of p.x and p.g complies to Definition 1.36.

Definition 1.37 (Population). A population Pop is a list of individuals used during an
optimization process.

Pop ⊆ G× X : ∀p = (p.g, p.x) ∈ Pop⇒ p.x = gpm(p.g) (1.33)

As already mentioned, the fitness v(x) of an element x in the problem space X often not
solely depends on the element itself. Normally, it is rather a relative measure putting the
features of x into the context of a set of solution candidates x. We denote this by writing
v(x,X). It is also possible that the fitness involves the whole individual data, including the
genotypic and phenotypic structures. We can denote this by writing v(p,Pop).

1.3.2 Fitness Landscapes and Global Optimization

A very powerful metaphor in global optimization is the fitness landscape37. Like many other
abstractions in optimization, fitness landscapes have been developed and extensively been
researched by evolutionary biologists [2261, 1099, 775, 502]. Basically, they are visualiza-
tions of the relationship between the genotypes or phenotypes in a given population and
their corresponding reproduction probability. The idea of such visualizations goes back to
Wright [2261], who used level contours diagrams in order to outline the effects of selection,

36 http://en.wikipedia.org/wiki/Fitness_%28biology%29 [accessed 2008-02-22]

37 http://en.wikipedia.org/wiki/Fitness_landscape [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Fitness_%28biology%29
http://en.wikipedia.org/wiki/Fitness_landscape
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mutation, and crossover on the capabilities of populations to escape local optimal configu-
rations. Similar abstractions arise in many other areas [1954], like in physics of disordered
systems like spin-glasses [208, 1402], for instance.

In Chapter 2, we will discuss evolutionary algorithms, which are optimization methods
inspired by natural evolution. The evolutionary algorithm research community has widely
adopted the fitness landscapes as relation between individuals and their objective values
[1431, 623]. Langdon and Poli [1242]38 explain that fitness landscapes can be imagined as
a view on a countryside from far above. The height of each point is then analogous to its
objective value. An optimizer can then be considered as a short-sighted hiker who tries to
find the lowest valley or the highest hilltop. Starting from a random point on the map, she
wants to reach this goal by walking the minimum distance.

As already mentioned, evolutionary algorithms were first developed as single-objective
optimization methods. Then, the objective values were directly used as fitness and the
“reproduction probability”, i. e., the chance of a solution candidate for being subject of
further investigation, was proportional to them. In multi-objective optimization applications
with more sophisticated fitness assignment and selection processes, this simple approach does
not reflect the biological metaphor correctly anymore.

In the context of this book we will book, we therefore deviate from this view. Since
it would possibly be confusing for the reader if we used a different definition for fitness
landscapes than the rest of the world, we introduce the new term problem landscape and
keep using the term fitness landscape in the traditional manner. In Figure 1.19 on page 57,
you can find some examples for fitness landscapes.

Definition 1.38 (Problem Landscape).
The problem landscape Φ : X×N 7→ [0, 1] ⊂ R+ maps all the points x in a problem space

X to the cumulative probability of reaching them until (inclusively) the τ th evaluation of a
solution candidate. The problem landscape thus depends on the optimization problem and
on the algorithm applied in order to solve the problem.

Φ(x, τ) = P
(
x has been visited until the τ th individual evaluation

)
∀x ∈ X, τ ∈ N (1.34)

This definition of problem landscape is very similar to the performance measure defini-
tion used by Wolpert and Macready [2244, 2245] in their No Free Lunch Theorem which
will be discussed in Section 1.4.10 on page 76. In our understanding, problem landscapes
are not only closer to the original meaning of fitness landscapes in biology, they also have
another advantage. According to this definition, all entities involved in an optimization pro-
cess directly influence the problem landscape. The choice of the search operations in the
search space G, the way the initial elements are picked, the genotype-phenotype mapping,
the objective functions, the fitness assignment process, and the way individuals are selected
for further exploration all have impact on Φ. We can furthermore make the following as-
sumptions about Φxτ , since it is basically a some form of cumulative distribution function
(see Definition 28.18 on page 470).

Φ(x, τ1) ≥ Φ(x, τ2) ∀τ1 < τ2 ∧ x ∈ X, τ1, τ2 ∈ N (1.35)

0 ≤ Φ(x, τ) ≤ 1 ∀x ∈ X, τ ∈ N (1.36)

Referring back to Definition 1.34, we can now also define what optimization algorithms
are.

Definition 1.39 (Optimization Algorithm). An optimization algorithm is a transfor-
mation (X, F,G,Op, gpm) 7→ Φ of an optimization problem (X, F,G,Op, gpm) to a problem
landscape Φ that will find at least one local optimum x⋆

l for each optimization problem

38 This part of [1242] is also online available at http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
intro_pic/landscape.html [accessed 2008-02-15].

http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/intro_pic/landscape.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/intro_pic/landscape.html
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(X, F,G,Op, gpm) with a weakly complete set of search operations Op and a surjective
genotype-phenotype mapping gpm if granted infinite processing time and if such an opti-
mum exists (see Equation 1.37).

∃x⋆
l ∈ X : lim

τ→∞
Φ(x⋆

l , τ) = 1 (1.37)

An optimization algorithm is characterized by

1. the way it assigns fitness to the individuals,
2. the ways it selects them for further investigation,
3. the way it applies the search operations, and
4. the way it builds and treats its state information.

The first condition in Definition 1.40, the completeness of Op, is mandatory because the
search space G cannot be explored fully otherwise. If the genotype-phenotype mapping gpm
is not surjective, there exist points in the problem space X which can never be evaluated.
Only if both conditions hold, it is guaranteed that an optimization algorithm can find at
least one local optimum.

The best optimization algorithm for a given problem (X, F,G,Op, gpm) is the one with
the highest values of Φ(x⋆, τ) for the optimal elements x⋆ in the problem space and for the
lowest values of τ . It may be interesting that this train of thought indicates that finding
the best optimization algorithm for a given optimization problem is, itself, a multi-objective
optimization problem.

Definition 1.40 (Global Optimization Algorithm). Global optimization algorithms
are optimization algorithms that employs measures that prevent convergence to local optima
and increase the probability of finding a global optimum.

For a perfect global optimization algorithm (given an optimization problem with weakly
complete search operations and a surjective genotype-phenotype mapping), Equation 1.38
would hold. In reality, it can be considered questionable whether such an algorithm can
actually be built.

∀x1, x2 ∈ X : x1≻x2 ⇒ lim
τ→∞

Φ(x1, τ) > lim
τ→∞

Φ(x2, τ) (1.38)

f(
x
)

X

xl
« x«

Figure 1.16: An example optimization problem.

Let us now give a simple example for problem landscapes and how they are influenced by
the optimization algorithm applied to them. Figure 1.16 illustrates one objective function,
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defined over a finite subset X of the two-dimensional real plane, which we are going to
optimize. We use the problem space X also as search space G, so we can do not need
a genotype-phenotype mapping. For optimization, we will use a very simple hill climbing
algorithm39, which initially randomly creates one solution candidate uniformly distributed
in X. In each iteration, it creates a new solution candidate from the known one using an
unary search operation. The old and the new candidate are compared, and the better one
is kept. Hence, we do not need to differentiate between fitness and objective values. In the
example, better means has lower fitness. In Figure 1.16, we can spot one local optimum
x⋆

l and one global optimum x⋆. Between them, there is a hill, an area of very bad fitness.
The rest of the problem space exhibits a small gradient into the direction its center. The
optimization algorithm will likely follow this gradient and sooner or later discover x⋆

l or x⋆.
The chances of x⋆

l are higher, since it is closer to the center of X.
With this setting, we have recorded the traces of two experiments with 1.3 million runs

of the optimizer (8000 iterations each). From these records, we can approximate the problem
landscapes very good.

In the first experiment, depicted in Figure 1.17, we used a search operation searchOp1 :
X 7→ X which created a new solution candidate normally distributed around the old one.
In all experiments, we had divided X in a regular lattice. searchOp2 : X 7→ X, used in the
second experiment, the new solution candidates are direct neighbors of the old ones in this
lattice. The problem landscape Φ produced by this operator is shown in Figure 1.18. Both
operators are complete, since each point in the search space can be reached from each other
point by applying them.

searchOp1(x) ≡ (x1 + randomn(), x2 + randomn()) (1.39)

searchOp1(x) ≡ (x1 + randomu(−1, 1) , x2 + randomu(−1, 1)) (1.40)

In both experiments, the first probabilities of the elements of the search space of being
discovered are very low, near to zero in the first few iterations. To put it precise, since our
problem space is a 36×36 lattice, this probability is 1/362 in the first iteration. Starting with
the tenth or so iteration, small peaks begin to form around the places where the optima are
located. These peaks grow

Well, as already mentioned, this idea of problem landscapes and optimization reflects
solely the author’s views. Notice also that it is not always possible to define problem land-
scapes for problem spaces which are uncountable infinitely large. Since the local optimum
x⋆

l at the center of the large basin and the gradient points straighter into its direction, it has
a higher probability of being found than the global optimum x⋆. The difference between the
two search operators tested becomes obvious starting with approximately the 2000th itera-
tion. In the hill climber with the operator utilizing the normal distribution, the Φ value of
the global optimum begins to rise farther and farther, finally surpassing the one of the local
optimum. Even if the optimizer gets trapped in the local optimum, it will still eventually
discover the global optimum and if we had run this experiment longer, the according proba-
bility would have converge to 1. The reason for this is that with the normal distribution, all
points in the search space have a non-zero probability of being found from all other points
in the search space. In other words, all elements of the search space are adjacent.

The operator based on the uniform distribution is only able to create points in the direct
neighborhood of the known points. Hence, if an optimizer gets trapped in the local optimum,
it can never escape. If it arrives at the global optimum, it will never discover the local one.
In Fig. 1.18.l, we can see that Φ(x⋆

l , 8000) ≈ 0.7 and Φ(x⋆, 8000) ≈ 0.3. One of the two
points will be the result of the optimization process.

From the example we can draw four conclusions:

1. Optimization algorithms discover good elements with higher probability than elements
with bad characteristics. Well, this is what they should do.

39 Hill climbing algorithms are discussed thoroughly in Chapter 10.
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Figure 1.17: The problem landscape of the example problem derived with searchOp1.
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Figure 1.18: The problem landscape of the example problem derived with searchOp2.
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2. The success of optimization depends very much on the way the search is conducted.
3. It also depends on the time (or the number of iterations) the optimizer allowed to use.
4. Hill climbing algorithms are no global optimization algorithms since they have no means

of preventing getting stuck at local optima.

1.3.3 Gradient Descend

Definition 1.41 (Gradient). A gradient40 of a scalar field f : Rn 7→ R is a vector field
which points into the direction of the greatest increase of the scalar field. It is denoted by
∇f or grad(f).

Optimization algorithms depend on some form of gradient in objective or fitness space in
order to find good individuals. In most cases, the problem space X is not a vector space over
the real numbers R, so we cannot directly differentiate the objective functions with Nabla
operator41 ∇F . Generally, samples of the search space are used to approximate the gradient.
If we compare to elements x1 and x2 of problem space and find x1 ≻ x2, we can assume
that there is some sort of gradient facing downwards from x2 to x1. When descending this
gradient, we can hope to find an x3 with x3 ≻ x1 and finally the global minimum.

1.3.4 Other General Features

There are some further common semantics and operations that are shared by most op-
timization algorithms. Many of them, for instance, start out by randomly creating some
initial individuals which are then refined iteratively. Optimization processes which are not
allowed to run infinitely have to find out when to terminate. In this section we define and
discuss general abstractions for such commonalities.

Iterations

Global optimization algorithms often iteratively evaluate solution candidates in order to
approach the optima. We distinguish between evaluations τ and iterations t.

Definition 1.42 (Evaluation). The value τ ∈ N0 denotes the number of solution candi-
dates for which the set of objective functions F has been evaluated.

Definition 1.43 (Iteration). An iteration42 refers to one round in a loop of an algorithm.
It is one repetition of a specific sequence of instruction inside an algorithm.

Algorithms are referred to as iterative if most of their work is done by cyclic repetition
of one main loop. In the context of this book, an iterative optimization algorithm starts
with the first step t = 0. The value t ∈ N0 is the index of the iteration currently performed
by the algorithm and t+ 1 refers to the following step. One example for iterative algorithm
is Algorithm 1.1. In some optimization algorithms like genetic algorithms, for instance,
iterations are referred to as generations.

There often exists a well-defined relation between the number of performed solution
candidate evaluations τ and the index of the current iteration t in an optimization process:
Many global optimization algorithms generate and evaluate a certain number of individuals
per generation.

40 http://en.wikipedia.org/wiki/Gradient [accessed 2007-11-06]

41 http://en.wikipedia.org/wiki/Del [accessed 2008-02-15]

42 http://en.wikipedia.org/wiki/Iteration [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Del
http://en.wikipedia.org/wiki/Iteration
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Termination Criterion

The termination criterion terminationCriterion() is a function with access to all the infor-
mation accumulated by an optimization process, including the number of performed steps
t, the objective values of the best individuals, and the time elapsed since the start of the
process. With terminationCriterion(), the optimizers determine when they have to halt.

Definition 1.44 (Termination Criterion). When the termination criterion function
terminationCriterion() ∈ {true, false} evaluates to true, the optimization process will
stop and return its results.

Some possible criteria that can be used to decide whether an optimizer should terminate
or not are [1975, 1634, 2325, 2326]:

1. The user may grant the optimization algorithm a maximum computation time. If this
time has been exceeded, the optimizer should stop. Here we should note that the time
needed for single individuals may vary, and so will the times needed for iterations. Hence,
this time threshold can sometimes not be abided exactly.

2. Instead of specifying a time limit, a total number of iterations t̂ or individual evaluations
τ̂ may be specified. Such criteria are most interesting for the researcher, since she often
wants to know whether a qualitatively interesting solution can be found for a given
problem using at most a predefined number of samples from the problem space.

3. An optimization process may be stopped when no improvement in the solution quality
could be detected for a specified number of iterations. Then, the process most probably
has converged to a (hopefully good) solution and will most likely not be able to make
further progress.

4. If we optimize something like a decision maker or classifier based on a sample data set,
we will normally divide this data into a training and a test set. The training set is used
to guide the optimization process whereas the test set is used to verify its results. We can
compare the performance of our solution when fed with the training set to its properties
if fed with the test set. This comparison helps us detect when most probably no further
generalization can be achieved by the optimizer and we should terminate the process.

5. Obviously, we can terminate an optimization process if it has already yielded a suffi-
ciently good solution.

In practical applications, we can apply any combination of the criteria above in order to
determine when to halt. How the termination criterion is tested in an iterative algorithm is
illustrated in Algorithm 1.1.

Algorithm 1.1: Example Iterative Algorithm

Input: [implicit] terminationCriterion(): the termination criterion
Data: t: the iteration counter

begin1

t←− 02

// initialize the data of the algorithm

while terminationCriterion() do3

// perform one iteration - here happens the magic

t←− t+ 14

end5
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Minimization

Many optimization algorithms have been developed for single-objective optimization in their
original form. Such algorithms may be used for both, minimization or maximization. Without
loss of generality we will present them as minimization processes since this is the most
commonly used notation. An algorithm that maximizes the function f may be transformed
to a minimization using −f instead.

Note that using the prevalence comparisons as introduced in Section 1.2.4 on page 38,
multi-objective optimization processes can be transformed into single-objective minimization
processes. Therefore x1 ≻ x2 ⇔ cmpF (x1, x2) < 0.

Modeling and Simulating

While there are a lot of problems where the objective functions are mathematical expressions
that can directly be computed, there exist problem classes far away from such simple function
optimization that require complex models and simulations.

Definition 1.45 (Model). A model43 is an abstraction or approximation of a system that
allows us to reason and to deduce properties of the system.

Models are often simplifications or idealization of real-world issues. They are defined by
leaving away facts that probably have only minor impact on the conclusions drawn from
them. In the area of global optimization, we often need two types of abstractions:

1. The models of the potential solutions shape the problem space X. Examples are
a) programs in Genetic Programming, for example for the Artificial Ant problem,
b) construction plans of a skyscraper,
c) distributed algorithms represented as programs for Genetic Programming,
d) construction plans of a turbine,
e) circuit diagrams for logical circuits, and so on.

2. Models of the environment in which we can test and explore the properties of the po-
tential solutions, like
a) a map on which the Artificial Ant will move which is driven by the evolved program,
b) an abstraction from the environment in which the skyscraper will be built, with wind

blowing from several directions,
c) a model of the network in which the evolved distributed algorithms can run,
d) a physical model of air which blows through the turbine,
e) the model of an energy source the other pins which will be attached to the circuit

together with the possible voltages on these pins.

Models themselves are rather static structures of descriptions and formulas. Deriving
concrete results (objective values) from them is often complicated. It often makes more
sense to bring the construction plan of a skyscraper to life in a simulation. Then we can test
the influence of various wind strengths and directions on building structure and approximate
the properties which define the objective values.

Definition 1.46 (Simulation). A simulation44 is the computational realization of a model.
Whereas a model describes abstract connections between the properties of a system, a sim-
ulation realizes these connections.

Simulations are executable, live representations of models that can be as meaningful as
real experiments. They allow us to reason if a model makes sense or not and how certain
objects behave in the context of a model.

43 http://en.wikipedia.org/wiki/Model_%28abstract%29 [accessed 2007-07-03]

44 http://en.wikipedia.org/wiki/Simulation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Simulation
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1.4 Problems in Optimization

1.4.1 Introduction

The classification of optimization algorithms in Section 1.1.1 and the table of contents of this
book enumerate a wide variety of optimization algorithms. Yet, the approaches introduced
here resemble only a small fraction of the actual number of available methods. It is a justified
question to ask why there are so many different approaches, why is this variety needed? One
possible answer is simply because there are so many different kinds of optimization tasks.
Each of them puts different obstacles into the way of the optimizers and comes with own,
characteristic difficulties.

In this chapter we want to discuss the most important of these complications, the major
problems that may be encountered during optimization. Some of subjects in the following
text concern global optimization in general (multi-modality and overfitting, for instance),
others apply especially to nature-inspired approaches like genetic algorithms (epistasis and
neutrality, for example). Neglecting even a single one them during the design or process of
optimization can render the whole efforts invested useless, even if highly efficient optimiza-
tion techniques are applied. By giving clear definitions and comprehensive introductions to
these topics, we want to raise the awareness of scientists and practitioners in the industry
and hope to help them to use optimization algorithms more efficiently.

In Figure 1.19, we have sketched a set of different types of fitness landscapes (see Sec-
tion 1.3.2) which we are going to discuss. The objective values in the figure are subject to
minimization and the small bubbles represent solution candidates under investigation. An
arrow from one bubble to another means that the second individual is found by applying
one search operation to the first one.

The Term “Difficult”

Before we go more into detail about what makes these landscapes difficult, we should es-
tablish the term in the context of optimization. The degree of difficulty of solving a certain
problem with a dedicated algorithm is closely related to its computational complexity45, i. e.,
the amount of resources such as time and memory required to do so. The computational com-
plexity depends on the number of input elements needed for applying the algorithm. This
dependency is often expressed in form of approximate boundaries with the Big-O-family
notations introduced by Bachmann [96] and made popular by Landau [1236]. Problems can
further be divided into complexity classes. One of the most difficult complexity classes own-
ing to its resource requirements is NP, the set of all decision problems which are solvable
in polynomial time by non-deterministic Turing machines [773]. Although many attempts
have been made, no algorithm has been found which is able to solve an NP-complete
[773] problem in polynomial time on a deterministic computer. One approach to obtaining
near-optimal solutions for problems in NP in reasonable time is to apply metaheuristic,
randomized optimization procedures.

As already stated, optimization algorithms are guided by objective functions. A function
is difficult from a mathematical perspective in this context if it is not continuous, not
differentiable, or if it has multiple maxima and minima. This understanding of difficulty
comes very close to the intuitive sketches in Figure 1.19.

In many real world applications of metaheuristic optimization, the characteristics of
the objective functions are not known in advance. The problems are usually NP or have

45 see Section 30.1.3 on page 550
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Figure 1.19: Different possible properties of fitness landscapes (minimization).
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unknown complexity. It is therefore only rarely possible to derive boundaries for the perfor-
mance or the runtime of optimizers in advance, let alone exact estimates with mathematical
precision.

Most often, experience, rules of thumb, and empirical results based on models obtained
from related research areas such as biology are the only guides available. In this chapter,
we discuss many such models and rules, providing a better understanding of when the
application of a metaheuristic is feasible and when not, as well as with indicators on how to
avoid defining problems in a way that makes them difficult.

1.4.2 Premature Convergence

Introduction

An optimization algorithm has converged if it cannot reach new solution candidates anymore
or if it keeps on producing solution candidates from a “small”46 subset of the problem space.
Meta-heuristc global optimization algorithms will usually converge at some point in time.
In nature, a similar phenomenon can be observed according to [1196]: The niche preemption
principle states that a niche in a natural environment tends to become dominated by a single
species [1347]. One of the problems in global optimization (and basically, also in nature) is
that it is often not possible to determine whether the best solution currently known is a
situated on local or a global optimum and thus, if convergence is acceptable. In other words,
it is usually not clear whether the optimization process can be stopped, whether it should
concentrate on refining the current optimum, or whether it should examine other parts of
the search space instead. This can, of course, only become cumbersome if there are multiple
(local) optima, i. e., the problem is multimodal as depicted in Fig. 1.19.c.

A mathematical function is multimodal if it has multiple maxima or minima [1863, 2327,
512]. A set of objective functions (or a vector function) F is multimodal if it has multiple
(local or global) optima – depending on the definition of “optimum” in the context of the
corresponding optimization problem.

The Problem

An optimization process has prematurely converged to a local optimum if it is no longer able
to explore other parts of the search space than the area currently being examined and there
exists another region that contains a superior solution [2075, 1824]. Figure 1.20 illustrates
examples for premature convergence.

The existence of multiple global optima itself is not problematic and the discovery of
only a subset of them can still be considered as successful in many cases. The occurrence of
numerous local optima, however, is more complicated.

Domino Convergence

The phenomenon of domino convergence has been brought to attention by Rudnick [1773]
who studied it in the context of his BinInt problem [1773, 2036] which is discussed in Sec-
tion 21.2.5. In principle, domino convergence occurs when the solution candidates have fea-
tures which contribute to significantly different degrees to the total fitness. If these features
are encoded in separate genes (or building blocks) in the genotypes, they are likely to be
treated with different priorities, at least in randomized or heuristic optimization methods.

Building blocks with a very strong positive influence on the objective values, for instance,
will quickly be adopted by the optimization process (i. e., “converge”). During this time, the
alleles of genes with a smaller contribution are ignored. They do not come into play until

46 according to a suitable metric like numbers of modifications or mutations which need to be
applied to a given solution in order to leave this subset
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Figure 1.20: Premature convergence in the objective space.

the optimal alleles of the more “important” blocks have been accumulated. Rudnick [1773]
called this sequential convergence phenomenon domino convergence due to its resemblance
to a row of falling domino stones [2036].

Let us consider the application of a genetic algorithm in such a scenario. Mutation
operators from time to time destroy building blocks with strong positive influence which
are then reconstructed by the search. If this happens with a high enough frequency, the
optimization process will never get to optimize the lower salient blocks because repairing
and rediscovering those with higher importance takes precedence. Thus, the mutation rate
of the EA limits the probability of finding the global optima in such a situation.

In the worst case, the contributions of the less salient genes may almost look like noise and
they are not optimized at all. Such a situation is also an instance of premature convergence,
since the global optimum which would involve optimal configurations of all building blocks
will not be discovered. In this situation, restarting the optimization process will not help
because it will always turn out the same way. Example problems which are often likely to
exhibit domino convergence are the Royal Road and the aforementioned BinInt problem,
which you can find discussed in Section 21.2.4 and Section 21.2.5, respectively.

One Cause: Loss of Diversity

In biology, diversity is the variety and abundance of organisms at a given place and time
[1598, 1348]. Much of the beauty and efficiency of natural ecosystems is based on a dazzling
array of species interacting in manifold ways. Diversification is also a good strategy utilized
by investors in the economy in order to increase their wealth.

In population-based global optimization algorithms, maintaining a set of diverse solution
candidates is very important as well. Losing diversity means approaching a state where all
the solution candidates under investigation are similar to each other. Another term for this
state is convergence. Discussions about how diversity can be measured have been provided
by Routledge [1771], Cousins [459], Magurran [1348], Morrison and De Jong [1462], Paenke
et al. [1598], and Burke et al. [309, 311].

Preserving diversity is directly linked with maintaining a good balance between exploita-
tion and exploration [1598] and has been studied by researchers from many domains, such
as

1. Genetic Algorithms [1558, 1750, 1751],
2. Evolutionary Algorithms [253, 254, 1262, 1471, 1943, 1892],
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3. Genetic Programming [510, 871, 872, 310, 311, 273],
4. Tabu Search [812, 816], and
5. Particle Swarm Optimization [2226].

Exploration vs. Exploitation

The operations which create new solutions from existing ones have a very large impact on
the speed of convergence and the diversity of the populations [637, 1910]. The step size in
Evolution Strategy is a good example of this issue: setting it properly is very important and
leads over to the “exploration versus exploitation” problem [940] which can be observed in
other areas of global optimization as well.47

In the context of optimization, exploration means finding new points in areas of the
search space which have not been investigated before. Since computers have only limited
memory, already evaluated solution candidates usually have to be discarded in order to
accommodate the new ones. Exploration is a metaphor for the procedure which allows search
operations to find novel and maybe better solution structures. Such operators (like mutation
in evolutionary algorithms) have a high chance of creating inferior solutions by destroying
good building blocks but also a small chance of finding totally new, superior traits (which,
however, is not guaranteed at all).

Exploitation, on the other hand, is the process of improving and combining the traits of
the currently known solutions, as done by the crossover operator in evolutionary algorithms,
for instance. Exploitation operations often incorporate small changes into already tested
individuals leading to new, very similar solution candidates or try to merge building blocks
of different, promising individuals. They usually have the disadvantage that other, possibly
better, solutions located in distant areas of the problem space will not be discovered.

Almost all components of optimization strategies can either be used for increasing ex-
ploitation or in favor of exploration. Unary search operations that improve an existing so-
lution in small steps can often be built, hence being exploitation operators. They can also
be implemented in a way that introduces much randomness into the individuals, effectively
making them exploration operators. Selection operations48 in Evolutionary Computation
choose a set of the most promising solution candidates which will be investigated in the
next iteration of the optimizers. They can either return a small group of best individuals
(exploitation) or a wide range of existing solution candidates (exploration).

Optimization algorithms that favor exploitation over exploration have higher convergence
speed but run the risk of not finding the optimal solution and may get stuck at a local
optimum. Then again, algorithms which perform excessive exploration may never improve
their solution candidates well enough to find the global optimum or it may take them
very long to discover it “by accident”. A good example for this dilemma is the Simulated
Annealing algorithm discussed in Chapter 12 on page 263. It is often modified to a form called
simulated quenching which focuses on exploitation but loses the guaranteed convergence to
the optimum. Generally, optimization algorithms should employ at least one search operation
of explorative character and at least one which is able to exploit good solutions further. There
exists a vast body of research on the trade-off between exploration and exploitation that
optimization algorithms have to face [638, 945, 622, 1494, 49, 538].

Countermeasures

There is no general approach which can prevent premature convergence. The probability
that an optimization process gets caught in a local optimum depends on the characteristics
of the problem to be solved and the parameter settings and features of the optimization
algorithms applied [2051, 1775].

47 More or less synonymously to exploitation and exploration, the terms intensifications and diver-
sification have been introduced by Glover [812, 816] in the context of Tabu Search.

48 Selection will be discussed in Section 2.4 on page 121.
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A very crude and yet, sometimes effective measure is restarting the optimization pro-
cess at randomly chosen points in time. One example for this method is GRASPs, Greedy
Randomized Adaptive Search Procedures [663, 652] (see Section 10.6 on page 256), which con-
tinuously restart the process of creating an initial solution and refining it with local search.
Still, such approaches are likely to fail in domino convergence situations. Increasing the
proportion of exploration operations may also reduce the chance of premature convergence.

In order to extend the duration of the evolution in evolutionary algorithms, many meth-
ods have been devised for steering the search away from areas which have already been
frequently sampled. This can be achieved by integrating density metrics into the fitness
assignment process. The most popular of such approaches are sharing and niching (see Sec-
tion 2.3.4). The Strength Pareto Algorithms, which are widely accepted to be highly efficient,
use another idea: they adapt the number of individuals that one solution candidate dom-
inates as density measure [2329, 2332]. One very simple method aiming for convergence
prevention is introduced in Section 2.4.8. Using low selection pressure furthermore decreases
the chance of premature convergence but also decreases the speed with which good solutions
are exploited.

Another approach against premature convergence is to introduce the capability of self-
adaptation, allowing the optimization algorithm to change its strategies or to modify its
parameters depending on its current state. Such behaviors, however, are often implemented
not in order to prevent premature convergence but to speed up the optimization process
(which may lead to premature convergence to local optima) [1776, 1777, 1778].

1.4.3 Ruggedness and Weak Causality

The Problem: Ruggedness

Optimization algorithms generally depend on some form of gradient in the objective or
fitness space. The objective functions should be continuous and exhibit low total variation49,
so the optimizer can descend the gradient easily. If the objective functions are unsteady
or fluctuating, i. e., going up and down, it becomes more complicated for the optimization
process to find the right directions to proceed to. The more rugged a function gets, the harder
it becomes to optimize it. For short, one could say ruggedness is multi-modality plus steep
ascends and descends in the fitness landscape. Examples of rugged landscapes are Kauffman’s
NK fitness landscape (see Section 21.2.1), the p-Spin model discussed in Section 21.2.2,
Bergman and Feldman’s jagged fitness landscape [182], and the sketch in Fig. 1.19.d on
page 57.

One Cause: Weak Causality

During an optimization process, new points in the search space are created by the search
operations. Generally we can assume that the genotypes which are the input of the search
operations correspond to phenotypes which have previously been selected. Usually, the better
or the more promising an individual is, the higher are its chances of being selected for further
investigation. Reversing this statement suggests that individuals which are passed to the
search operations are likely to have a good fitness. Since the fitness of a solution candidate
depends on its properties, it can be assumed that the features of these individuals are not so
bad either. It should thus be possible for the optimizer to introduce slight changes to their

49 http://en.wikipedia.org/wiki/Total_variation [accessed 2008-04-23]

http://en.wikipedia.org/wiki/Total_variation
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properties in order to find out whether they can be improved any further50. Normally, such
exploitive modifications should also lead to small changes in the objective values and hence,
in the fitness of the solution candidate.

Definition 1.47 (Strong Causality). Strong causality (locality) means that small
changes in the properties of an object also lead to small changes in its behavior [1713,
1714, 1759].

This principle (proposed by Rechenberg [1713, 1714]) should not only hold for the search
spaces and operations designed for optimization, but applies to natural genomes as well. The
offspring resulting from sexual reproduction of two fish, for instance, has a different genotype
than its parents. Yet, it is far more probable that these variations manifest in a unique color
pattern of the scales, for example, instead of leading to a totally different creature.

Apart from this straightforward, informal explanation here, causality has been investi-
gated thoroughly in different fields of optimization, such as Evolution Strategy [1713, 597],
structure evolution [1303, 1302], Genetic Programming [1758, 1759, 1007, 597], genotype-
phenotype mappings [1854], search operators [597], and evolutionary algorithms in general
[1955, 1765, 597].

In fitness landscapes with weak (low) causality, small changes in the solution candidates
often lead to large changes in the objective values, i. e., ruggedness. It then becomes harder
to decide which region of the problem space to explore and the optimizer cannot find reliable
gradient information to follow. A small modification of a very bad solution candidate may
then lead to a new local optimum and the best solution candidate currently known may be
surrounded by points that are inferior to all other tested individuals.

The lower the causality of an optimization problem, the more rugged its fitness landscape
is, which leads to a degeneration of the performance of the optimizer [1168]. This does not
necessarily mean that it is impossible to find good solutions, but it may take very long to
do so.

Fitness Landscape Measures

As measures for the ruggedness of a fitness landscape (or their general difficulty), many
different metrics have been proposed. Wedge and Kell [2164] and Altenberg [45] provide
nice lists of them in their work51, which we summarize here:

• Weinberger [2169] introduced the autocorrelation function and the correlation length of
random walks.

• The correlation of the search operators was used by Manderick et al. [1354] in conjunction
with the autocorrelation.

• Jones and Forrest [1070, 1069] proposed the fitness distance correlation (FDC), the corre-
lation of the fitness of an individual and its distance to the global optimum. This measure
has been extended by researchers such as Clergue et al. [416, 2103].

• The probability that search operations create offspring fitter than their parents, as defined
by Rechenberg [1713] and Beyer [196] (and called evolvability by Altenberg [42]), will be
discussed in Section 1.4.5 on page 65 in depth.

• Simulation dynamics have been researched by Altenberg [42] and Grefenstette [855].
• Another interesting metric is the fitness variance of formae (Radcliffe and Surry [1695])

and schemas (Reeves and Wright [1717]).
• The error threshold method from theoretical biology [625, 1552] has been adopted Ochoa

et al. [1557] for evolutionary algorithms. It is the “critical mutation rate beyond which
structures obtained by the evolutionary process are destroyed by mutation more fre-
quently than selection can reproduce them” [1557].

50 We have already mentioned this under the subject of exploitation.
51 Especially the one of Wedge and Kell [2164] is beautiful and far more detailed than this summary

here.
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• The negative slope coefficient (NSC) by Vanneschi et al. [2104, 2105] may be considered
as an extension of Altenberg’s evolvability measure.

• Davidor [489] uses the epistatic variance as a measure of utility of a certain representation
in genetic algorithms. We discuss the issue of epistasis in Section 1.4.6.

• The genotype-fitness correlation (GFC) of Wedge and Kell [2164] is a new measure for
ruggedness in fitness landscape and has been shown to be a good guide for determining
optimal population sizes in Genetic Programming.

Autocorrelation and Correlation Length

As example, let us take a look at the autocorrelation function as well as the correlation
length of random walks [2169]. Here we borrow its definition from Verel et al. [2114]:

Definition 1.48 (Autocorrelation Function). Given a random walk (xi, xi+1, . . . ), the
autocorrelation function ρ of an objective function f is the autocorrelation function of the
time series (f(xi) , f(xi+1) , . . . ).

ρ(k, f) =
E[f(xi) f(xi+k)]− E[f(xi)]E[f(xi+k)]

D2[f(xi)]
(1.41)

where E[f(xi)] and D2[f(xi)] are the expected value and the variance of f(xi).

The correlation length τ = − 1
log ρ(1,f) measures how the autocorrelation function de-

creases and summarizes the ruggedness of the fitness landscape: the larger the correlation
length, the lower the total variation of the landscape. From the works of Kinnear, Jr. [1141]
and Lipsitch [1293] from 18, however, we also know that correlation measures do not always
represent the hardness of a problem landscape full.

Countermeasures

To the knowledge of the author, no viable method which can directly mitigate the effects of
rugged fitness landscapes exists. In population-based approaches, using large population sizes
and applying methods to increase the diversity can reduce the influence of ruggedness, but
only up to a certain degree. Utilizing Lamarckian evolution [522, 2215] or the Baldwin effect
[123, 929, 930, 2215], i. e., incorporating a local search into the optimization process, may
further help to smoothen out the fitness landscape [864] (see Section 15.2 and Section 15.3,
respectively).

Weak causality is often a home-made problem because it results to some extent from
the choice of the solution representation and search operations. We pointed out that explo-
ration operations are important for lowering the risk of premature convergence. Exploitation
operators are as same as important for refining solutions to a certain degree. In order to
apply optimization algorithms in an efficient manner, it is necessary to find representations
which allow for iterative modifications with bounded influence on the objective values, i. e.,
exploitation. In Section 1.5.2, we present some further rules-of-thumb for search space and
operation design.

1.4.4 Deceptiveness
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Introduction

Especially annoying fitness landscapes show deceptiveness (or deceptivity). The gradient of
deceptive objective functions leads the optimizer away from the optima, as illustrated in
Fig. 1.19.e.

The term deceptiveness is mainly used in the genetic algorithm52 community in the
context of the Schema Theorem. Schemas describe certain areas (hyperplanes) in the search
space. If an optimization algorithm has discovered an area with a better average fitness
compared to other regions, it will focus on exploring this region based on the assumption
that highly fit areas are likely to contain the true optimum. Objective functions where this
is not the case are called deceptive [190, 821, 1285]. Examples for deceptiveness are the ND
fitness landscapes outlined in Section 21.2.3, trap functions (see Section 21.2.3), and the
fully deceptive problems given by Goldberg et al. [825, 541].

The Problem

If the information accumulated by an optimizer actually guides it away from the optimum,
search algorithms will perform worse than a random walk or an exhaustive enumeration
method. This issue has been known for a long time [2159, 1433, 1434, 2034] and has been
subsumed under the No Free Lunch Theorem which wewill discuss in Section 1.4.10.

Countermeasures

Solving deceptive optimization tasks perfectly involves sampling many individuals with very
bad features and low fitness. This contradicts the basic ideas of metaheuristics and thus,
there are no efficient countermeasures against deceptivity. Using large population sizes, main-
taining a very high diversity, and utilizing linkage learning (see Section 1.4.6) are, maybe,
the only approaches which can provide at least a small chance of finding good solutions.

1.4.5 Neutrality and Redundancy

The Problem: Neutrality

Definition 1.49 (Neutrality). We consider the outcome of the application of a search
operation to an element of the search space as neutral if it yields no change in the objective
values [1718, 149].

It is challenging for optimization algorithms if the best solution candidate currently
known is situated on a plane of the fitness landscape, i. e., all adjacent solution candidates
have the same objective values. As illustrated in Fig. 1.19.f, an optimizer then cannot find
any gradient information and thus, no direction in which to proceed in a systematic manner.
From its point of view, each search operation will yield identical individuals. Furthermore,
optimization algorithms usually maintain a list of the best individuals found, which will then
overflow eventually or require pruning.

The degree of neutrality ν is defined as the fraction of neutral results among all possible
products of the search operations applied to a specific genotype [149]. We can generalize
this measure to areas G in the search space G by averaging over all their elements. Regions
where ν is close to one are considered as neutral.

∀g1 ∈ G⇒ ν(g1) =
|{g2 : P (g2 = Op(g1)) > 0 ∧ F (gpm(g2)) = F (gpm(g1))}|

|{g2 : P (g2 = Op(g1)) > 0}| (1.42)

∀G ⊆ G⇒ ν(G) =
1

|G|
∑

g∈G

ν(g) (1.43)

52 We are going to discuss genetic algorithms in Chapter 3 on page 141 and the Schema Theorem
in Section 3.6 on page 150.
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Evolvability

Another metaphor in global optimization borrowed from biological systems is evolvability53

[500]. Wagner [2132, 2133] points out that this word has two uses in biology: According
to Kirschner and Gerhart [1144], a biological system is evolvable if it is able to generate
heritable, selectable phenotypic variations. Such properties can then be spread by natural
selection and changed during the course of evolution. In its second sense, a system is evolvable
if it can acquire new characteristics via genetic change that help the organism(s) to survive
and to reproduce. Theories about how the ability of generating adaptive variants has evolved
have been proposed by Riedl [1732], Altenberg [43], Wagner and Altenberg [2134], Bonner
[247], and Conrad [439], amongst others. The idea of evolvability can be adopted for global
optimization as follows:

Definition 1.50 (Evolvability). The evolvability of an optimization process in its current
state defines how likely the search operations will lead to solution candidates with new (and
eventually, better) objectives values.

The direct probability of success [1713, 196], i.e., the chance that search operators produce
offspring fitter than their parents, is also sometimes referred to as evolvability in the context
of evolutionary algorithms [45, 42].

Neutrality: Problematic and Beneficial

The link between evolvability and neutrality has been discussed by many researchers [2300,
2133]. The evolvability of neutral parts of a fitness landscape depends on the optimization
algorithm used. It is especially low for hill climbing and similar approaches, since the search
operations cannot directly provide improvements or even changes. The optimization process
then degenerates to a random walk, as illustrated in Fig. 1.19.f on page 57. The work of
Beaudoin et al. [161] on the ND fitness landscapes54 shows that neutrality may “destroy”
useful information such as correlation.

Researchers in molecular evolution, on the other hand, found indications that the major-
ity of mutations in biology have no selective influence [732, 980] and that the transformation
from genotypes to phenotypes is a many-to-one mapping. Wagner [2133] states that neutral-
ity in natural genomes is beneficial if it concerns only a subset of the properties peculiar to
the offspring of a solution candidate while allowing meaningful modifications of the others.
Toussaint and Igel [2050] even go as far as declaring it a necessity for self-adaptation.

The theory of punctuated equilibria55, in biology introduced by Eldredge and Gould
[630, 629], states that species experience long periods of evolutionary inactivity which are
interrupted by sudden, localized, and rapid phenotypic evolutions [118].56 It is assumed that
the populations explore neutral layers57 during the time of stasis until, suddenly, a relevant
change in a genotype leads to a better adapted phenotype [2098] which then reproduces
quickly. Similar phenomena can be observed/are utilized in EAs [426, 1365].

“Uh?”, you may think, “How does this fit together?” The key to differentiating between
“good” and “bad” neutrality is its degree ν in relation to the number of possible solutions
maintained by the optimization algorithms. Smith et al. [1913] have used illustrative ex-
amples similar to Figure 1.21 showing that a certain amount of neutral reproductions can
foster the progress of optimization. In Fig. 1.21.a, basically the same scenario of premature
convergence as in Fig. 1.20.a on page 59 is depicted. The optimizer is drawn to a local opti-
mum from which it cannot escape anymore. Fig. 1.21.b shows that a little shot of neutrality

53 http://en.wikipedia.org/wiki/Evolvability [accessed 2007-07-03]

54 See Section 21.2.3 on page 333 for a detailed elaboration on the ND fitness landscape.
55 http://en.wikipedia.org/wiki/Punctuated_equilibrium [accessed 2008-07-01]

56 A very similar idea is utilized in the Extremal Optimization method discussed in Chapter 13.
57 Or neutral networks, as discussed in Section 1.4.5.

http://en.wikipedia.org/wiki/Evolvability
http://en.wikipedia.org/wiki/Punctuated_equilibrium
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could form a bridge to the global optimum. The optimizer now has a chance to escape the
smaller peak if it is able to find and follow that bridge, i. e., the evolvability of the system
has increased. If this bridge gets wider, as sketched in Fig. 1.21.c, the chance of finding the
global optimum increases as well. Of course, if the bridge gets too wide, the optimization
process may end up in a scenario like in Fig. 1.19.f on page 57 where it cannot find any
direction. Furthermore, in this scenario we expect the neutral bridge to lead to somewhere
useful, which is not necessarily the case in reality.

global optimum

local optimum

Fig. 1.21.a: Premature Conver-
gence

Fig. 1.21.b: Small Neutral
Bridge

Fig. 1.21.c: Wide Neutral
Bridge

Figure 1.21: Possible positive influence of neutrality.

Recently, the idea of utilizing the processes of molecular58 and evolutionary59 biology as
complement to Darwinian evolution for optimization gains interest [144]. Scientists like Hu
and Banzhaf [967, 968] have begun to study the application of metrics such as the evolution
rate of gene sequences [2281, 2257] to evolutionary algorithms. Here, the degree of neutrality
(synonymous vs. non-synonymous changes) seems to play an important role.

Examples for neutrality in fitness landscapes are the ND family (see Section 21.2.3), the
NKp and NKq models (discussed in Section 21.2.1), and the Royal Road (see Section 21.2.4).
Another common instance of neutrality is bloat in Genetic Programming, which is outlined
in Section 4.10.3 on page 224.

Neutral Networks

From the idea of neutral bridges between different parts of the search space as sketched by
Smith et al. [1913], we can derive the concept of neutral networks.

Definition 1.51 (Neutral Network). Neutral networks are equivalence classes K of el-
ements of the search space G which map to elements of the problem space X with the same
objective values and are connected by chains of applications of the search operators Op [149].

∀g1, g2 ∈ G : g1 ∈ K(g2) ⊆ G⇔ ∃k ∈ N0 : P
(
g2 = Opk(g1)

)
> 0 ∧

F (gpm(g1)) = F (gpm(g2)) (1.44)

Barnett [149] states that a neutral network has the constant innovation property if

58 http://en.wikipedia.org/wiki/Molecular_biology [accessed 2008-07-20]

59 http://en.wikipedia.org/wiki/Evolutionary_biology [accessed 2008-07-20]

http://en.wikipedia.org/wiki/Molecular_biology
http://en.wikipedia.org/wiki/Evolutionary_biology
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1. the rate of discovery of innovations keeps constant for a reasonably large amount of
applications of the search operations [981], and

2. if this rate is comparable with that of an unconstrained random walk.

Networks with this property may prove very helpful if they connect the optima in the fitness
landscape. Stewart [1962] utilizes neutral networks and the idea of punctuated equilibria
in his extrema selection, a genetic algorithm variant that focuses on exploring individuals
which are far away from the centroid of the set of currently investigated solution candidates
(but have still good objective values). Then again, Barnett [148] showed that populations
in genetic algorithm tend to dwell in neutral networks of high dimensions of neutrality
regardless of their objective values, which (obviously) cannot be considered advantageous.

The convergence on neutral networks has furthermore been studied by Bornberg-Bauer
and Chan [251], van Nimwegen et al. [2097, 2096], and Wilke [2225]. Their results show that
the topology of neutral networks strongly determines the distribution of genotypes on them.
Generally, the genotypes are “drawn” to the solutions with the highest degree of neutrality
ν on the neutral network Beaudoin et al. [161].

Redundancy: Problematic and Beneficial

Definition 1.52 (Redundancy). Redundancy in the context of global optimization is a
feature of the genotype-phenotype mapping and means that multiple genotypes map to the
same phenotype, i. e., the genotype-phenotype mapping is not injective.

∃g1, g2 : g1 6= g2 ∧ gpm(g1) = gpm(g2) (1.45)

The role of redundancy in the genome is as controversial as that of neutrality [2168].
There exist many accounts of its positive influence on the optimization process. Shipman
et al. [1871, 1856], for instance, tried to mimic desirable evolutionary properties of RNA
folding [980]. They developed redundant genotype-phenotype mappings using voting (both,
via uniform redundancy and via a non-trivial approach), Turing machine-like binary instruc-
tions, Cellular automata, and random Boolean networks [1099]. Except for the trivial voting
mechanism based on uniform redundancy, the mappings induced neutral networks which
proved beneficial for exploring the problem space. Especially the last approach provided par-
ticularly good results [1871, 1856]. Possibly converse effects like epistasis (see Section 1.4.6)
arising from the new genotype-phenotype mappings have not been considered in this study.

Redundancy can have a strong impact on the explorability of the problem space. When
utilizing a one-to-one mapping, the translation of a slightly modified genotype will always
result in a different phenotype. If there exists a many-to-one mapping between genotypes
and phenotypes, the search operations can create offspring genotypes different from the
parent which still translate to the same phenotype. The optimizer may now walk along a
path through this neutral network. If many genotypes along this path can be modified to
different offspring, many new solution candidates can be reached [1871]. One example for
beneficial redundancy is the extradimensional bypass idea discussed in Section 1.5.2.

The experiments of Shipman et al. [1872, 1870] additionally indicate that neutrality
in the genotype-phenotype mapping can have positive effects. In the Cartesian Genetic
Programming method, neutrality is explicitly introduced in order to increase the evolvability
(see Section 4.7.4 on page 201) [2110, 2297].

Yet, Rothlauf [1765] and Shackleton et al. [1856] show that simple uniform redundancy
is not necessarily beneficial for the optimization process and may even slow it down. There
is no use in introducing encodings which, for instance, represent each phenotypic bit with
two bits in the genotype where 00 and 01 map to 0 and 10 and 11 map to 1. Another example
for this issue is given in Fig. 1.31.b on page 86.
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Summary

Different from ruggedness which is always bad for optimization algorithms, neutrality has
aspects that may further as well as hinder the process of finding good solutions. Generally
we can state that degrees of neutrality ν very close to 1 degenerate optimization processes
to random walks. Some forms of neutral networks accompanied by low (nonzero) values of
ν can improve the evolvability and hence, increase the chance of finding good solutions.

Adverse forms of neutrality are often caused by bad design of the search space or
genotype-phenotype mapping. Uniform redundancy in the genome should be avoided where
possible and the amount of neutrality in the search space should generally be limited.

Needle-In-A-Haystack

One of the worst cases of fitness landscapes is the needle-in-a-haystack (NIAH) problem
sketched in Fig. 1.19.g on page 57, where the optimum occurs as isolated spike in a plane. In
other words, small instances of extreme ruggedness combine with a general lack of informa-
tion in the fitness landscape. Such problems are extremely hard to solve and the optimization
processes often will converge prematurely or take very long to find the global optimum. An
example for such fitness landscapes is the all-or-nothing property often inherent to Genetic
Programming of algorithms [2058], as discussed in Section 4.10.2 on page 223.

1.4.6 Epistasis

Introduction

In biology, epistasis60 is defined as a form of interaction between different genes [1640].
The term was coined by Bateson [157] and originally meant that one gene suppresses the
phenotypical expression of another gene. In the context of statistical genetics, epistasis was
initially called “epistacy” by Fisher [677]. According to Lush [1335], the interaction between
genes is epistatic if the effect on the fitness of altering one gene depends on the allelic state of
other genes. This understanding of epistasis comes very close to another biological expression:
Pleiotropy61, which means that a single gene influences multiple phenotypic traits [2227]. In
the area of global optimization, such fine-grained distinctions are usually not made and the
two terms are often used more or less synonymously.

Definition 1.53 (Epistasis). In optimization, epistasis is the dependency of the contribu-
tion of one gene to the value of the objective functions on the allelic state of other genes.
[491, 44, 1503]

We speak of minimal epistasis when every gene is independent of every other gene. Then,
the optimization process equals finding the best value for each gene and can most efficiently
be carried out by a simple greedy search (see Section 17.4.1) [491]. A problem is maximally
epistatic when no proper subset of genes is independent of any other gene [1924, 1503].
Examples of problems with a high degree of epistasis are Kauffman’s NK fitness landscape
[1098, 1100] (Section 21.2.1), the p-Spin model [48] (Section 21.2.2), and the tunable model
of Weise et al. [2185] (Section 21.2.7).

The Problem

As sketched in Figure 1.22, epistasis has a strong influence on many of the previously dis-
cussed problematic features. If one gene can “turn off” or affect the expression of other

60 http://en.wikipedia.org/wiki/Epistasis [accessed 2008-05-31]

61 http://en.wikipedia.org/wiki/Pleiotropy [accessed 2008-03-02]
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http://en.wikipedia.org/wiki/Pleiotropy
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genes, a modification of this gene will lead to a large change in the features of the pheno-
type. Hence, the causality will be weakened and ruggedness ensues in the fitness landscape.
It also becomes harder to define search operations with exploitive character. Moreover, sub-
sequent changes to the “deactivated” genes may have no influence on the phenotype at all,
which would then increase the degree of neutrality in the search space. Epistasis is mainly an
aspect of the way in which the genome G and the genotype-phenotype mapping are defined.
It should be avoided where possible.

ruggedness multi-
modality

weak causality

high
epistasis

º causes

neutrality

Needle in a
Haystack

Figure 1.22: The influence of epistasis on the fitness landscape.

Generally, epistasis and conflicting objectives in multi-objective optimization should be
distinguished from each other. Epistasis as well as pleiotropy is a property of the influence
of the editable elements (the genes) of the genotypes on the phenotypes. Objective functions
can conflict without the involvement of any of these phenomena. We can, for example,
define two objective functions f1(x) = x and f2(x) = −x which are clearly contradicting
regardless of whether they both are subject to maximization or minimization. Nevertheless,
if the solution candidates x and the genotypes are simple real numbers and the genotype-
phenotype mapping is an identity mapping, neither epistatic nor pleiotropic effects can
occur.

Naudts and Verschoren [1504] have shown for the special case of length-two binary string
genomes that deceptiveness does not occur in situations with low epistasis and also that
objective functions with high epistasis are not necessarily deceptive. Another discussion
about different shapes of fitness landscapes under the influence of epistasis is given by
Beerenwinkel et al. [167].

Countermeasures

General

We have shown that epistasis is a root cause for multiple problematic features of optimiza-
tion tasks. General countermeasures against epistasis can be divided into two groups. The
symptoms of epistasis can be mitigated with the same methods which increase the chance of
finding good solutions in the presence of ruggedness or neutrality – using larger populations
and favoring explorative search operations. Epistasis itself is a feature which results from
the choice of the search space structure, the search operations, and the genotype-phenotype
mapping. Avoiding epistatic effects should be a major concern during their design. This can
lead to a great improvement in the quality of the solutions produced by the optimization
process [2181]. Some general rules for search space design are outlined in Section 1.5.2.
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Linkage Learning

According to Winter et al. [2242], linkage is “the tendency for alleles of different genes to
be passed together from one generation to the next” in genetics. This usually indicates
that these genes are closely located in the same chromosome. In the context of evolutionary
algorithms, this notation is not useful since identifying spatially close elements inside the
genotypes g ∈ G is trivial. Instead, we are interested in alleles of different genes which have
a joint effect on the fitness [1486, 1485].

Identifying these linked genes, i. e., learning their epistatic interaction, is very helpful for
the optimization process. Such knowledge can be used to protect building blocks62 from being
destroyed by the search operations (such as crossover in genetic algorithms), for instance.
Finding approaches for linkage learning has become an especially popular discipline in the
area of evolutionary algorithms with binary [896, 1486, 1647] and real [546] genomes. Two
important methods from this area are the messy GA (mGA, see Section 3.7) by Goldberg
et al. [825] and the Bayesian Optimization Algorithm (BOA) [1633, 333]. Module acquisition
[66] may be considered as such an effort.

1.4.7 Noise and Robustness

Introduction – Noise

In the context of optimization, three types of noise can be distinguished. The first form is
noise in the training data used as basis for learning (i). In many applications of machine
learning or optimization where a model for a given system is to be learned, data samples
including the input of the system and its measured response are used for training. Some
typical examples of situations where training data is the basis for the objective function
evaluation are

1. the usage of global optimization for building classifiers (for example for predicting buying
behavior using data gathered in a customer survey for training),

2. the usage of simulations for determining the objective values in Genetic Programming
(here, the simulated scenarios correspond to training cases), and

3. the fitting of mathematical functions to (x, y)-data samples (with artificial neural net-
works or symbolic regression, for instance).

Since no measurement device is 100% accurate and there are always random errors, noise is
present in such optimization problems.

Besides inexactnesses and fluctuations in the input data of the optimization process,
perturbations are also likely to occur during the application of its results. This category
subsumes the other two types of noise: perturbations that may arise from (ii) inaccuracies
in the process of realizing the solutions and (iii) environmentally induced perturbations
during the applications of the products.

This issue can be illustrated by using the process of developing the perfect tire for a car
as an example. As input for the optimizer, all sorts of material coefficients and geometric
constants measured from all known types of wheels and rubber could be available. Since
these constants have been measured or calculated from measurements, they include a certain
degree of noise and imprecision (i).

The result of the optimization process will be the best tire construction plan discovered
during its course and it will likely incorporate different materials and structures. We would
hope that the tires created according to the plan will not fall apart if, accidently, an extra
0.0001% of a specific rubber component is used (ii). During the optimization process, the
behavior of many construction plans will be simulated in order to find out about their
utility. When actually manufactured, the tires should not behave unexpectedly when used

62 See Section 3.6.5 for information on the Building Block Hypothesis.
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in scenarios different from those simulated (iii) and should instead be applicable in all driving
situations likely to occur.

The effects of noise in optimization have been studied by various researchers; Miller
and Goldberg [1416, 1415], Lee and Wong [1268], and Gurin and Rastrigin [870] are some
of them. Many global optimization algorithms and theoretical results have been proposed
which can deal with noise. Some of them are, for instance, specialized

1. genetic algorithms [685, 2062, 2060, 1799, 1800, 1146],
2. Evolution Strategies [195, 100, 881], and
3. Particle Swarm Optimization [1606, 884] approaches.

The Problem: Need for Robustness

The goal of global optimization is to find the global optima of the objective functions. While
this is fully true from a theoretical point of view, it may not suffice in practice. Optimization
problems are normally used to find good parameters or designs for components or plans to
be put into action by human beings or machines. As we have already pointed out, there will
always be noise and perturbations in practical realizations of the results of optimization.
There is no process in the world that is 100% accurate and the optimized parameters,
designs, and plans have to tolerate a certain degree of imprecision.

Definition 1.54 (Robustness). A system in engineering or biology isrobust if it is able to
function properly in the face of genetic or environmental perturbations [2132].

Therefore, a local optimum (or even a non-optimal element) for which slight disturbances
only lead to gentle performance degenerations is usually favored over a global optimum lo-
cated in a highly rugged area of the fitness landscape [276]. In other words, local optima in
regions of the fitness landscape with strong causality are sometimes better than global op-
tima with weak causality. Of course, the level of this acceptability is application-dependent.
Figure 1.23 illustrates the issue of local optima which are robust vs. global optima which
are not. More examples from the real world are:

1. When optimizing the control parameters of an airplane or a nuclear power plant, the
global optimum is certainly not used if a slight perturbation can have hazardous effects
on the system [2062].

2. Wiesmann et al. [2218, 2217] bring up the topic of manufacturing tolerances in multilayer
optical coatings. It is no use to find optimal configurations if they only perform optimal
when manufactured to a precision which is either impossible or too hard to achieve on
a constant basis.

3. The optimization of the decision process on which roads should be precautionary salted
for areas with marginal winter climate is an example of the need for dynamic robustness.
The global optimum of this problem is likely to depend on the daily (or even current)
weather forecast and may therefore be constantly changing. Handa et al. [886] point
out that it is practically infeasible to let road workers follow a constantly changing plan
and circumvent this problem by incorporating multiple road temperature settings in the
objective function evaluation.

4. Tsutsui et al. [2062, 2060] found a nice analogy in nature: The phenotypic characteristics
of an individual are described by its genetic code. During the interpretation of this code,
perturbations like abnormal temperature, nutritional imbalances, injuries, illnesses and
so on may occur. If the phenotypic features emerging under these influences have low fit-
ness, the organism cannot survive and procreate. Thus, even a species with good genetic
material will die out if its phenotypic features become too sensitive to perturbations.
Species robust against them, on the other hand, will survive and evolve.
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global optimum
robust local optimum

f(x)

X

Figure 1.23: A robust local optimum vs. a “unstable” global optimum.

Countermeasures

For the special case where the phenome is a real vector space (X ⊆ Rn), several approaches
for dealing with the need for robustness have been developed. Inspired by Taguchi meth-
ods63 [1995], possible disturbances are represented by a vector δ = (δ1, δ2, .., δn)

T
, δi ∈ R

in the method suggested by Greiner [859, 860]. If the distributions and influences of
the δi are known, the objective function f(x) : x ∈ X can be rewritten as f̃(x, δ)
[2218]. In the special case where δ is normally distributed, this can be simplified to

f̃
(

(x1 + δ1, x2 + δ2, .., xn + δn)
T
)

. It would then make sense to sample the probability distri-

bution of δ a number of t times and to use the mean values of f̃(x, δ) for each objective func-
tion evaluation during the optimization process. In cases where the optimal value y⋆ of the
objective function f is known, Equation 1.46 can be minimized. This approach is also used
in the work of Wiesmann et al. [2217, 2218] and basically turns the optimization algorithm
into something like a maximum likelihood estimator (see Section 28.7.2 and Equation 28.252
on page 502).

f ′(x) =
1

t

t∑

i=1

(
y⋆ − f̃(x, δi)

)2

(1.46)

This method corresponds to using multiple, different training scenarios during the objec-
tive function evaluation in situations where X 6⊆ Rn. By adding random noise and artificial
perturbations to the training cases, the chance of obtaining robust solutions which are stable
when applied or realized under noisy conditions can be increased.

1.4.8 Overfitting and Oversimplification

In all scenarios where optimizers evaluate some of the objective values of the solution can-
didates by using training data, two additional phenomena with negative influence can be
observed: overfitting and oversimplification.

Overfitting

The Problem

Definition 1.55 (Overfitting). Overfitting64 is the emergence of an overly complicated
model (solution candidate) in an optimization process resulting from the effort to provide
the best results for as much of the available training data as possible [1805, 1905, 785, 564].

63 http://en.wikipedia.org/wiki/Taguchi_methods [accessed 2008-07-19]

64 http://en.wikipedia.org/wiki/Overfitting [accessed 2007-07-03]
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A model (solution candidate) m ∈ X optimized based on a finite set of training data
is considered to be overfitted if a less complicated, alternative model m′ ∈ X exists which
has a smaller error for the set of all possible (maybe even infinitely many), available, or
(theoretically) producible data samples. This model m′ may, however, have a larger error in
the training data.

The phenomenon of overfitting is best known and can often be encountered in the field
of artificial neural networks or in curve fitting65 [2019, 1291, 1265, 1806, 1761]. The latter
means that we have a set A of n training data samples (xi, yi) and want to find a function
f that represents these samples as well as possible, i. e., f(xi) = yi ∀ (xi, yi) ∈ A.

There exists exactly one polynomial66 of the degree n− 1 that fits to each such training
data and goes through all its points.67 Hence, when only polynomial regression is performed,
there is exactly one perfectly fitting function of minimal degree. Nevertheless, there will also
be an infinite number of polynomials with a higher degree than n − 1 that also match the
sample data perfectly. Such results would be considered as overfitted.

In Figure 1.24, we have sketched this problem. The function f1(x) = x shown in
Fig. 1.24.b has been sampled three times, as sketched in Fig. 1.24.a. There exists no other
polynomial of a degree of two or less that fits to these samples than f1. Optimizers, however,
could also find overfitted polynomials of a higher degree such as f2 which also match the
data, as shown in Fig. 1.24.c. Here, f2 plays the role of the overly complicated model m
which will perform as good as the simpler model m′ when tested with the training sets only,
but will fail to deliver good results for all other input data.

x

y

Fig. 1.24.a: Three sample
points of f1.

x

y

m`

Fig. 1.24.b: m′ ≡ f1(x) = x.

x

y

m

Fig. 1.24.c: m ≡ f2(x).

Figure 1.24: Overfitting due to complexity.

A very common cause for overfitting is noise in the sample data. As we have already
pointed out, there exists no measurement device for physical processes which delivers per-
fect results without error. Surveys that represent the opinions of people on a certain topic
or randomized simulations will exhibit variations from the true interdependencies of the ob-
served entities, too. Hence, data samples based on measurements will always contain some
noise.

In Figure 1.25 we have sketched how such noise may lead to overfitted results. Fig. 1.25.a
illustrates a simple physical process obeying some quadratic equation. This process has been
measured using some technical equipment and the 100 noisy samples depicted in Fig. 1.25.b
has been obtained. Fig. 1.25.c shows a function resulting from an optimization that fits
the data perfectly. It could, for instance, be a polynomial of degree 99 that goes right
through all the points and thus, has an error of zero. Although being a perfect match to the

65 We will discuss overfitting in conjunction with Genetic Programming-based symbolic regression
in Section 23.1 on page 397.

66 http://en.wikipedia.org/wiki/Polynomial [accessed 2007-07-03]

67 http://en.wikipedia.org/wiki/Polynomial_interpolation [accessed 2008-03-01]
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measurements, this complicated model does not accurately represent the physical law that
produced the sample data and will not deliver precise results for new, different inputs.

m`

x

y

Fig. 1.25.a: The original phys-
ical process.

x

y

Fig. 1.25.b: The measuremen-
t/training data.

x

y

m

Fig. 1.25.c: The overfitted re-
sult.

Figure 1.25: Fitting noise.

From the examples we can see that the major problem that results from overfitted solu-
tions is the loss of generality.

Definition 1.56 (Generality). A solution of an optimization process is general if it is
not only valid for the sample inputs a1, a2, . . . , an which were used for training during the
optimization process, but also for different inputs a 6= ai ∀i : 0 < i ≤ n if such inputs a
exist.

Countermeasures

There exist multiple techniques that can be utilized in order to prevent overfitting to a
certain degree. It is most efficient to apply multiple such techniques together in order to
achieve best results.

A very simple approach is to restrict the problem space X in a way that only solutions up
to a given maximum complexity can be found. In terms of function fitting, this could mean
limiting the maximum degree of the polynomials to be tested. Furthermore, the functional
objective functions which solely concentrate on the error of the solution candidates should
be augmented by penalty terms and non-functional objective functions putting pressure in
the direction of small and simple models [564, 1108].

Large sets of sample data, although slowing down the optimization process, may improve
the generalization capabilities of the derived solutions. If arbitrarily many training datasets
or training scenarios can be generated, there are two approaches which work against over-
fitting:

1. The first method is to use a new set of (randomized) scenarios for each evaluation of
each solution candidate. The resulting objective values then may differ largely even if
the same individual is evaluated twice in a row, introducing incoherence and ruggedness
into the fitness landscape.

2. At the beginning of each iteration of the optimizer, a new set of (randomized) scenarios
is generated which is used for all individual evaluations during that iteration. This
method leads to objective values which can be compared without bias. They can be
made even more comparable if the objective functions are always normalized into some
fixed interval, say [0, 1].

In both cases it is helpful to use more than one training sample or scenario per evaluation
and to set the resulting objective value to the average (or better median) of the outcomes.
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Otherwise, the fluctuations of the objective values between the iterations will be very large,
making it hard for the optimizers to follow a stable gradient for multiple steps.

Another simple method to prevent overfitting is to limit the runtime of the optimizers
[1805]. It is commonly assumed that learning processes normally first find relatively general
solutions which subsequently begin to overfit because the noise “is learned”, too.

For the same reason, some algorithms allow to decrease the rate at which the solution
candidates are modified by time. Such a decay of the learning rate makes overfitting less
likely.

Dividing Data into Training and Test Sets If only one finite set of data samples is available
for training/optimization, it is common practice to separate it into a set of training data
At and a set of test cases Ac. During the optimization process, only the training data is
used. The resulting solutions are tested with the test cases afterwards. If their behavior is
significantly worse when applied to Ac than when applied to At, they are probably overfitted.

The same approach can be used to detect when the optimization process should be
stopped. The best known solution candidates can be checked with the test cases in each
iteration without influencing their objective values which solely depend on the training data.
If their performance on the test cases begins to decrease, there are no benefits in letting the
optimization process continue any further.

Oversimplification

The Problem

Oversimplification (also called overgeneralization) is the opposite of overfitting. Whereas
overfitting denotes the emergence of overly complicated solution candidates, oversimplified
solutions are not complicated enough. Although they represent the training samples used
during the optimization process seemingly well, they are rough overgeneralizations which
fail to provide good results for cases not part of the training.

A common cause for oversimplification is sketched in Figure 1.26: The training sets
only represent a fraction of the set of possible inputs. As this is normally the case, one
should always be aware that such an incomplete coverage may fail to represent some of the
dependencies and characteristics of the data, which then may lead to oversimplified solutions.
Another possible reason for oversimplification is that ruggedness, deceptiveness, too much
neutrality, or high epistasis in the fitness landscape may lead to premature convergence and
prevent the optimizer from surpassing a certain quality of the solution candidates. It then
cannot adapt them completely even if the training data perfectly represents the sampled
process. A third possible cause is that a problem space could have been chosen which does
not include the correct solution.

Fig. 1.26.a shows a cubic function. Since it is a polynomial of degree three, four sample
points are needed for its unique identification. Maybe not knowing this, only three samples
have been provided in Fig. 1.26.b. By doing so, some vital characteristics of the function
are lost. Fig. 1.26.c depicts a square function – the polynomial of the lowest degree that fits
exactly to these samples. Although it is a perfect match, this function does not touch any
other point on the original cubic curve and behaves totally differently at the lower parameter
area.

However, even if we had included point P in our training data, it would still be possible
that the optimization process would yield Fig. 1.26.c as a result. Having training data that
correctly represents the sampled system does not mean that the optimizer is able to find a
correct solution with perfect fitness – the other, previously discussed problematic phenomena
can prevent it from doing so. Furthermore, if it was not known that the system which was
to be modeled by the optimization process can best be represented by a polynomial of the
third degree, one could have limited the problem space X to polynomials of degree two and
less. Then, the result would likely again be something like Fig. 1.26.c, regardless of how
many training samples are used.
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Figure 1.26: Oversimplification.

Countermeasures

In order to counter oversimplification, its causes have to be mitigated. Generally, it is not
possible to have training scenarios which cover the complete input space of the evolved
programs. By using multiple scenarios for each individual evaluation, the chance of missing
important aspects is decreased. These scenarios can be replaced with new, randomly created
ones in each generation, in order to decrease this chance even more. The problem space, i. e.,
the representation of the solution candidates, should further be chosen in a way which
allows constructing a correct solution to the problem defined. Then again, releasing too
many constraints on the solution structure increases the risk of overfitting and thus, careful
proceeding is recommended.

1.4.9 Dynamically Changing Fitness Landscape

It should also be mentioned that there exist problems with dynamically changing fitness
landscapes [282, 1465, 1729, 277, 278]. The task of an optimization algorithm is then to
provide solution candidates with momentarily optimal objective values for each point in
time. Here we have the problem that an optimum in iteration t will possibly not be an
optimum in iteration t+ 1 anymore.

Problems with dynamic characteristics can, for example, be tackled with special forms
[2280] of

1. evolutionary algorithms [2053, 2224, 279, 280, 1463, 1464, 82],
2. genetic algorithms [817, 1457, 1458, 1459, 1146],
3. Particle Swarm Optimization [343, 344, 1280, 1605, 211],
4. Differential Evolution [1391, 2266], and
5. Ant Colony Optimization [868, 869]

The moving peaks benchmarks by Branke [277, 278] and Morrison and De Jong [1465]
are good examples for dynamically changing fitness landscapes. You can find them discussed
in Section 21.1.3 on page 328.

1.4.10 The No Free Lunch Theorem

By now, we know the most important problems that can be encountered when applying
an optimization algorithm to a given problem. Furthermore, we have seen that it is arguable
what actually an optimum is if multiple criteria are optimized at once. The fact that there
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is most likely no optimization method that can outperform all others on all problems can,
thus, easily be accepted. Instead, there exist a variety of optimization methods specialized
in solving different types of problems. There are also algorithms which deliver good results
for many different problem classes, but may be outperformed by highly specialized methods
in each of them. These facts have been formalized by Wolpert and Macready [2244, 2245]
in their No Free Lunch Theorems68 (NFL) for search and optimization algorithms.

Initial Definitions

Wolpert and Macready [2245] consider single-objective optimization and define an optimiza-
tion problem φ(g) ≡ f(gpm(g)) as a mapping of a search space G to the objective space Y.69

Since this definition subsumes the problem space and the genotype-phenotype mapping, only
skipping the possible search operations, it is very similar to our Definition 1.34 on page 46.
They further call a time-ordered set dm of m distinct visited points in G×Y a “sample” of
size m and write dm ≡ {(dg

m(1), dy
m(1)) , (dg

m(2), dy
m(2)) , . . . , (dg

m(m), dy
m(m))}. dg

m(i) is the
genotype and dy

m(i) the corresponding objective value visited at time step i. Then, the set
Dm = (G× Y)

m
is the space of all possible samples of length m and D = ∪m≥0Dm is the

set of all samples of arbitrary size.
An optimization algorithm a can now be considered to be a mapping of the previously

visited points in the search space (i. e., a sample) to the next point to be visited. Formally,
this means a : D 7→ G. Without loss of generality, Wolpert and Macready [2245] only regard
unique visits and thus define a : d ∈ D 7→ g : g 6∈ d.

Performance measures Ψ can be defined independently from the optimization algorithms
only based on the values of the objective function visited in the samples dm. If the objective
function is subject to minimization, Ψ(dy

m) = min {dy
m : i = 1..m} would be the appropriate

measure.
Often, only parts of the optimization problem φ are known. If the minima of the objective

function f were already identified beforehand, for instance, its optimization would be useless.
Since the behavior in wide areas of φ is not obvious, it makes sense to define a probability
P (φ) that we are actually dealing with φ and no other problem. Wolpert and Macready
[2245] use the handy example of the travelling salesman problem in order to illustrate this
issue. Each distinct TSP produces a different structure of φ. Yet, we would use the same
optimization algorithm a for all problems of this class without knowing the exact shape of φ.
This corresponds to the assumption that there is a set of very similar optimization problems
which we may encounter here although their exact structure is not known. We act as if there
was a probability distribution over all possible problems which is non-zero for the TSP-alike
ones and zero for all others.

The Theorem

The performance of an algorithm a iterated m times on an optimization problem φ can
then be defined as P (dy

m |φ,m, a ), i. e., the conditional probability of finding a particular
sample dy

m. Notice that this measure is very similar to the value of the problem landscape
Φ(x, τ) introduced in Definition 1.38 on page 48 which is the cumulative probability that
the optimizer has visited the element x ∈ X until (inclusively) the τ th evaluation of the
objective function(s).

Wolpert and Macready [2245] prove that the sum of such probabilities over all possi-
ble optimization problems φ is always identical for all optimization algorithms. For two
optimizers a1 and a2, this means that

68 http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization [accessed 2008-03-

28]

69 Notice that we have partly utilized our own notations here in order to be consistent throughout
the book.

http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
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∑

∀φ

P (dy
m |φ,m, a1 ) =

∑

∀φ

P (dy
m |φ,m, a2 ) (1.47)

Hence, the average over all φ of P (dy
m |φ,m, a ) is independent of a.

Implications

From this theorem, we can immediately follow that, in order to outperform a1 in one opti-
mization problem, a2 will necessarily perform worse in another. Figure 1.27 visualizes this
issue. It shows that general optimization approaches like evolutionary algorithms can solve
a variety of problem classes with reasonable performance. In this figure, we have chosen
a performance measure Φ subject to maximization, i. e., the higher its values, the faster
will the problem be solved. Hill climbing approaches, for instance, will be much faster than
evolutionary algorithms if the objective functions are steady and monotonous, that is, in a
smaller set of optimization tasks. Greedy search methods will perform fast on all problems
with matroid70 structure. Evolutionary algorithms will most often still be able to solve these
problems, it just takes them longer to do so. The performance of hill climbing and greedy
approaches degenerates in other classes of optimization tasks as a trade-off for their high
utility in their “area of expertise”.

all possible optimization problems

p
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rm
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random walk or exhaustive enumeration or ...

general optimization algorithm - an EA, for instance

specialized optimization algorithm 1; a hill climber, for instance

specialized optimization algorithm 2; a depth-first search, for instance

very crude sketch

Figure 1.27: A visualization of the No Free Lunch Theorem.

One interpretation of the No Free Lunch Theorem is that it is impossible for any opti-
mization algorithm to outperform random walks or exhaustive enumerations on all possible
problems. For every problem where a given method leads to good results, we can construct
a problem where the same method has exactly the opposite effect (see Section 1.4.4). As
a matter of fact, doing so is even a common practice to find weaknesses of optimization
algorithms and to compare them with each other, see Section 21.2.6, for example.

70 http://en.wikipedia.org/wiki/Matroid [accessed 2008-03-28]

http://en.wikipedia.org/wiki/Matroid
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Another interpretation is that every useful optimization algorithm utilizes some form
of problem-specific knowledge. Radcliffe [1696] states that without such knowledge, search
algorithms cannot exceed the performance of simple enumerations. Incorporating knowledge
starts with relying on simple assumptions like “if x is a good solution candidate, than we
can expect other good solution candidates in its vicinity”, i. e., strong causality. The more
(correct) problem specific knowledge is integrated (correctly) into the algorithm structure,
the better will the algorithm perform. On the other hand, knowledge correct for one class
of problems is, quite possibly, misleading for another class. In reality, we use optimizers to
solve a given set of problems and are not interested in their performance when (wrongly)
applied to other classes.

The rough meaning of the NLF is that all black-box optimization methods perform
equally well over the complete set of all optimization problems [1563]. In practice, we do not
want to apply an optimizer to all possible problems but to only some, restricted classes. In
terms of these classes, we can make statements about which optimizer performs better.

Today, there exists a wide range of work on No Free Lunch Theorems for many different
aspects of machine learning. The website http://www.no-free-lunch.org/71 gives a good
overview about them. Further summaries, extensions, and criticisms have been provided by
Köppen et al. [1173], Droste et al. [602, 601, 599, 600], Oltean [1563], and Igel and Toussaint
[1008, 1009]. Radcliffe and Surry [1694] discuss the NFL in the context of evolutionary
algorithms and the representations used as search spaces. The No Free Lunch Theorem is
furthermore closely related to the Ugly Duckling Theorem72 proposed by Watanabe [2159]
for classification and pattern recognition.

1.4.11 Conclusions

The subject of this introductory chapter was the question about what makes optimization
problems hard, especially for metaheuristic approaches. We have discussed numerous differ-
ent phenomena which can affect the optimization process and lead to disappointing results.

If an optimization process has converged prematurely, it has been trapped in a non-
optimal region of the search space from which it cannot “escape” anymore (Section 1.4.2).
Ruggedness (Section 1.4.3) and deceptiveness (Section 1.4.4) in the fitness landscape, of-
ten caused by epistatic effects (Section 1.4.6), can misguide the search into such a region.
Neutrality and redundancy (Section 1.4.5) can either slow down optimization because the
application of the search operations does not lead to a gain in information or may also con-
tribute positively by creating neutral networks from which the search space can be explored
and local optima can be escaped from. Noise is present in virtually all practical optimization
problems. The solutions that are derived for them should be robust (Section 1.4.7). Also,
they should neither be too general (oversimplification, Section 1.4.8) nor too specifically
aligned only to the training data (overfitting, Section 1.4.8). Furthermore, many practical
problems are multi-objective, i. e., involve the optimization of more than one criterion at
once (partially discussed in Section 1.2.2), or concern objectives which may change over time
(Section 1.4.9).

In the previous section, we discussed the No Free Lunch Theorem and argued that it is
not possible to develop the one optimization algorithm, the problem-solving machine which
can provide us with near-optimal solutions in short time for every possible optimization
task. This must sound very depressing for everybody new to this subject.

Actually, quite the opposite is the case, at least from the point of view of a researcher.
The No Free Lunch Theorem means that there will always be new ideas, new approaches
which will lead to better optimization algorithms to solve a given problem. Instead of being
doomed to obsolescence, it is far more likely that most of the currently known optimization
methods have at least one niche, one area where they are excellent. It also means that it

71 accessed: 2008-03-28
72 http://en.wikipedia.org/wiki/Ugly_duckling_theorem [accessed 2008-08-22]

http://www.no-free-lunch.org/
http://en.wikipedia.org/wiki/Ugly_duckling_theorem
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Figure 1.28: The puzzle of optimization algorithms.

is very likely that the “puzzle of optimization alorithms” will never be completed. There
will always be a chance that an inspiring moment, an observation in nature, for instance,
may lead to the invention of a new optimization algorithm which performs better in some
problem areas than all currently known ones.

1.5 Formae and Search Space/Operator Design

Most global optimization algorithms share the premise that solutions to problems are either
elements of a somewhat continuous space that can be approximated stepwise or that they can
be composed of smaller modules which have good attributes even when occurring separately.

The design of the search space (or genome) G and the genotype-phenotype mapping
gpm is vital for the success of the optimization process. It determines to what degree these
expected features can be exploited by defining how the properties and the behavior of
the solution candidates are encoded and how the search operations influence them. In this
chapter, we will first discuss a general theory about how properties of individuals can be
defined, classified, and how they are related. We will then outline some general rules for
the design of the genome which are inspired by our previous discussion of the possible
problematic aspects of fitness landscapes.

1.5.1 Forma Analysis

The Schema Theorem has been stated for genetic algorithms by Holland [940] in its seminal
work [940, 512, 945]. In this section, we are going to discuss it in the more general version
from Weicker [2167] as introduced by Radcliffe and Surry [1695] and Surry [1983] in [1692,
1696, 1691, 1691, 1695].

The different individuals p in the population Pop of the search and optimization algo-
rithms are characterized by their properties φ. Whereas the optimizers themselves focus
mainly on the phenotypical properties since these are evaluated by the objective functions,
the properties of the genotypes may be of interest in an analysis of the optimization perfor-
mance.

A rather structural property φ1 of formulas f : R 7→ R in symbolic regression73 would be
whether it contains the mathematical expression x+1 or not. We can also declare a behavioral
property φ2 which is true if |f(0)− 1| ≤ 0.1 holds, i. e., if the result of f is close to a value

73 More information on symbolic regression can be found in Section 23.1 on page 397.
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1 for the input 0, and false otherwise. Assume that the formulas were decoded from a
binary search space G = Bn to the space of trees that represent mathematical expression by
a genotype-phenotype mapping. A genotypical property then would be if a certain sequence
of bits occurs in the genotype p.g and a phenotypical property is the number of nodes in
the phenotype p.x, for instance. If we try to solve a graph-coloring problem, for example, a
property φ3 ∈ {black,white, gray} could denote the color of a specific vertex q as illustrated
in Figure 1.29.

Af3=

Af3=black

q
G1

q
G3

q
G2

q
G4

q
G6

q
G7

q
G8

q
G5

Af3=gray

ÍPop X

Figure 1.29: An graph coloring-based example for properties and formae.

In general, we can imagine the properties φi to be some sort of functions that map the
individuals to property values. φ1 and φ2 would then both map the space of mathematical
functions to the set B = {true, false} whereas φ3 maps the space of all possible colorings
for the given graph to the set {white, gray, black}. On the basis of the properties φi we can
define equivalence relations74 ∼φi

:

p1 ∼φi
p2 ⇒ φi(p1) = φi(p2) ∀p1, p2 ∈ G× X (1.48)

Obviously, for each two solution candidates and x1 and x2, either x1 ∼φi
x2 or x1 6∼φi

x2

holds. These relations divide the search space into equivalence classes Aφi=v.

Definition 1.57 (Forma). An equivalence class Aφi=v that contains all the individuals
sharing the same characteristic v in terms of the property φi is called a forma [1691] or
predicate [2122].

Aφi=v = {∀p ∈ G× X : φi(p) = v} (1.49)

∀p1, p2 ∈ Aφi=v ⇒ p1 ∼φi
p2 (1.50)

The number of formae induced by a property, i. e., the number of its different character-
istics, is called its precision [1691]. The precision of φ1 and φ2 is 2, for φ3 it is 3. We can
define another property φ4 ≡ f(0) denoting the value a mathematical function has for the
input 0. This property would have an uncountable infinite large precision.

Two formae Aφi=v and Aφj=w are said to be compatible, written as Aφi=v ⊲⊳ Aφj=w, if
there can exist at least one individual which is an instance of both.
74 See the definition of equivalence classes in Section 27.7.3 on page 464.
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Figure 1.30: Example for formae in symbolic regression.

Aφi=v ⊲⊳ Aφj=w ⇔ Aφi=v ∩Aφj=w 6= ∅ (1.51)

Aφi=v ⊲⊳ Aφj=w ⇔ ∃ p ∈ G× X : p ∈ Aφi=v ∧ p ∈ Aφj=w (1.52)

Aφi=v ⊲⊳ Aφi=w ⇒ w = v (1.53)

Of course, two different formae of the same property φi, i. e., two different charac-
teristics of φi, are always incompatible. In our initial symbolic regression example hence
Aφ1=true 6⊲⊳ Aφ1=false since it is not possible that a function f contains a term x+ 1 and at
the same time does not contain it. All formae of the properties φ1 and φ2 on the other hand
are compatible: Aφ1=false ⊲⊳ Aφ2=false, Aφ1=false ⊲⊳ Aφ2=true, Aφ1=true ⊲⊳ Aφ2=false, and
Aφ1=true ⊲⊳ Aφ2=true all hold. If we take φ4 into consideration, we will find that there exist
some formae compatible with some of φ2 and some that are not, like Aφ2=true ⊲⊳ Aφ4=1 and
Aφ2=false ⊲⊳ Aφ4=2, but Aφ2=true 6⊲⊳ Aφ4=0 and Aφ2=false 6⊲⊳ Aφ4=0.95.

The discussion of forma and their dependencies stems from the evolutionary algorithm
community and there especially from the supporters of the Building Block Hypothesis. The
idea is that the algorithm first discovers formae which have a good influence on the overall
fitness of the solution candidates. The hope is that there are many compatible ones under
these formae that are then gradually combined in the search process.

In this text we have defined formae and the corresponding terms on the basis of individ-
uals p which are records that assign an element of the problem spaces p.x ∈ X to an element
of the search space p.g ∈ G. Generally, we will relax this notation and also discuss forma
directly in the context of the search space G or problem space X, when appropriate.

1.5.2 Genome Design

In software engineering, there are some design patterns75 that describe good practice and
experience values. Utilizing these patterns will help the software engineer to create well-
organized, extensible, and maintainable applications.

Whenever we want to solve a problem with global optimization algorithms, we need to
define the structure of a genome. The individual representation along with the genotype-

75 http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29 [accessed 2007-08-12]

http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
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phenotype mapping is a vital part of genetic algorithms and has major impact on the chance
of finding good solutions.

We have already discussed the basic problems that we may encounter during optimiza-
tion. The choice of the search space, the search operations, and the genotype-phenotype
mapping have major impact on the chance of finding good solutions. After formalizing the
ideas of properties and formae, we will now outline some general best practices for the genome
design from different perspectives. These principles can lead to finding better solutions or
higher optimization speed if considered in the design phase [1765, 1525].

In Goldberg [821] defines two general design patterns for genotypes in genetic algorithm
which we will state here in the context of the forma analysis [1525]:

1. The representations of the formae in the search space should be as short as possible and
the representations of different, compatible phenotypic formae should not influence each
other.

2. The alphabet of the encoding and the lengths of the different genes should be as small
as possible.

Both rules target for minimal redundancy in the genomes. We have already mentioned
in Section 1.4.5 on page 67 that uniform redundancy slows down the optimization process.
Especially the second rule focuses on this cause of neutrality by discouraging the use of
unnecessary large alphabets for encoding in a genetic algorithm. Palmer and Kershenbaum
[1602, 1603] define additional rules for tree-representations in [1602, 1601], which have been
generalized by Nguyen [1525]:

3. A good search space and genotype-phenotype mapping should be able to represent all
phenotypes, i. e., be surjective (see Section 27.7 on page 461).

∀x ∈ X⇒ ∃g ∈ G : x = gpm(g) (1.54)

4. The search space G should be unbiased in the sense that all phenotypes are represented
by the same number of genotypes. This property allows to efficiently select an unbiased
start population, giving the optimizer the chance of reaching all parts of the problem
space.

∀x1, x2 ∈ X⇒ |{g ∈ G : x1 = gpm(g)}| ≈ |{g ∈ G : x2 = gpm(g)}| (1.55)

5. The genotype-phenotype mapping should always yield valid phenotypes. The meaning
of valid in this context is that if the problem space X is the set of all possible trees,
only trees should be encoded in the genome. If we use the R3 as problem space, no
vectors with fewer or more elements than three should be produced by the genotype-
phenotype mapping. This form of validity does not imply that the individuals are also
correct solutions in terms of the objective functions.

6. The genotype-phenotype mapping should be simple and bijective.
7. The representations in the search space should possess strong causality (locality), i. e.,

small changes in the genotype lead to small changes in the phenotype (see Section 1.4.3).
Optimally, this would mean that:

∀x1, x2 ∈ X, g ∈ G : x1 = gpm(g) ∧ x2 = gpm(searchOp(g))⇒ x2 ≈ x1 (1.56)

Ronald [1752] summarizes some further rules [1752, 1525]:

8. The genotypic representation should be aligned to a set of reproduction operators in a
way that good configurations of formae are preserved by the search operations and do
not easily get lost during the exploration of the search space.

9. The representations should minimize epistasis (see Section 1.4.6 on page 68 and the 1st

rule).
10. The problem should be represented at an appropriate level of abstraction.
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11. If a direct mapping between genotypes and phenotypes is not possible, a suitable artificial
embryogeny approach should be applied.

Let us now summarize some more conclusions for search spaces based on forma analysis
as stated by Radcliffe [1692] and Weicker [2167].

12. Formae in Genotypic and Phenotypic Space

The optimization algorithms find new elements in the search space G by applying the search
operations searchOp ∈ Op. These operations can only create, modify, or combine genotypical
formae since they usually have no information about the problem space. Most mathematical
models dealing with the propagation of formae like the Building Block Hypothesis and the
Schema Theorem76 thus focus on the search space and show that highly fit genotypical for-
mae will more probably be investigated further than those of low utility. Our goal, however,
is to find highly fit formae in the problem space X. Such properties can only be created,
modified, and combined by the search operations if they correspond to genotypical formae.
A good genotype-phenotype mapping should provide this feature.

It furthermore becomes clear that useful separate properties in phenotypic space can only
be combined by the search operations properly if they are represented by separate formae
in genotypic space too.

13. Compatibility of Formae

Formae of different properties should be compatible. Compatible Formae in phenotypic space
should also be compatible in genotypic space. This leads to a low level of epistasis and hence
will increase the chance of success of the reproduction operations.

14. Inheritance of Formae

The 8th rule mentioned Formae should not get lost during the exploration of the search space.
From a good binary search operation like recombination (crossover) in genetic algorithms,
we can expect that if its two parameters g1 and g2 are members of a forma A, the resulting
element will also be an instance of A.

∀g1, g2 ∈ A ⊆ G⇒ searchOp(g1, g2) ∈ A (1.57)

If we furthermore can assume that all instances of all formae A with minimal precision
(A ∈ mini) of an individual are inherited by at least one parent, the binary reproduction
operation is considered as pure.

∀g3 = searchOp(g1, g2) ∈ G, ∀A ∈ mini : g3 ∈ A⇒ g1 ∈ A ∨ g2 ∈ A (1.58)

If this is the case, all properties of a genotype g3 which is a combination of two others
g1, g2 can be traced back to at least one of its parents. Otherwise, searchOp also performs an
implicit unary search step, a mutation in genetic algorithm, for instance. Such properties,
although discussed here for binary search operations only, can be extended to arbitrary n-ary
operators.

76 See Section 3.6 for more information on the Schema Theorem.
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15. Combinations of Formae

If genotypes g1, g2, . . . which are instances of different but compatible formae A1 ⊲⊳ A2 ⊲⊳ . . .
are combined by a binary (or n-ary) search operation, the resulting genotype g should be an
instance of both properties, i. e., the combination of compatible formae should be a forma
itself.

∀g1 ∈ A1, g2 ∈ A2, · · · ⇒ searchOp(g1, g2, . . . ) ∈ A1 ∩A2 ∩ . . . (6= ∅) (1.59)

If this principle holds for many individuals and formae, useful properties can be com-
bined by the optimization step by step, narrowing down the precision of the arising, most
interesting formae more and more. This should lead the search to the most promising regions
of the search space.

16. Reachability of Formae

The set of available search operations Op should include at least one unary search operation
which is able to reach all possible formae. If the binary search operations in Op all are pure,
this unary operator is the only one (apart from creation operations) able to introduce new
formae which are not yet present in the population. Hence, it should be able to find any
given forma.

17. Influence of Formae

One rule which, in my opinion, was missing in the lists given by Radcliffe [1692] and Weicker
[2167] is that the absolute contributions of the single formae to the overall objective values of
a solution candidate should to be too different. Let us divide the phenotypic formae into those
with positive and those with negative or neutral contribution and let us, for simplification
purposes, assume that those with positive contribution can be arbitrarily combined. If one
of the positive formae has a contribution with an absolute value much lower than those of
the other positive formae, we will trip into the problem of domino convergence discussed
in Section 1.4.2 on page 58.

Then, the search will first discover the building blocks of higher value. This, itself, is
not a problem. However, as we have already pointed out in Section 1.4.2, if the search is
stochastic and performs exploration steps, chances are that alleles of higher importance get
destroyed during this process and have to be rediscovered. The values of the less salient
formae would then play no role. Thus, the chance of finding them strongly depends on how
frequent the destruction of important formae takes place.

Ideally, we would therefore design the genome and phenome in a way that the different
characteristics of the solution candidate all influence the objective values to a similar degree.
Then, the chance of finding good formae increases.

(18.) Extradimensional Bypass

Minimal-sized genomes are not always the best approach. An interesting aspect of genome
design supporting this claim is inspired by the works of the theoretical biologist Conrad
[436, 438, 440, 437]. According to his extradimensional bypass principle, it is possible to
transform a rugged fitness landscape with isolated peeks into one with connected saddle
points by increasing the dimensionality of the search space [387, 342]. In [440] he states that
the chance of isolated peeks in randomly created fitness landscapes decreases when their
dimensionality grows.

This partly contradicts rule 1 and 2 which state that genomes should be as compact as
possible. Conrad [440] does not suggest that nature includes useless sequences in the genome
but either genes which allow for
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1. new phenotypical characteristics or
2. redundancy providing new degrees of freedom for the evolution of a species.

In some cases, such an increase in freedom makes more than up for the additional “costs”
arising from the enlargement of the search space. The extradimensional bypass can be con-
sidered as an example of positive neutrality (see Section 1.4.5).

G

G’

f(x)

local
optimum

global
optimum

Fig. 1.31.a: Useful increase of dimensional-
ity.

G

G’

f(x)

local
optimum

global
optimum

Fig. 1.31.b: Useless increase of dimension-
ality.

Figure 1.31: Examples for an increase of the dimensionality of a search space G (1d) to G′

(2d).

In Fig. 1.31.a, an example for the extradimensional bypass (similar to Fig. 6 in [246])
is sketched. The original problem had a one-dimensional search space G corresponding to
the horizontal axis up front. As can be seen in the plane in the foreground, the objective
function had two peeks: a local optimum on the left and a global optimum on the right,
separated by a larger valley. When the optimization process began climbing up the local
optimum, it was very unlikely that it ever could escape this hill and reach the global one.

Increasing the search space to two dimensions (G′), however, opened up a path way
between them. The two isolated peeks became saddle points on a longer ridge. The global
optimum is now reachable from all points on the local optimum.

Generally, increasing the dimension of the search space makes only sense if the added
dimension has a non-trivial influence on the objective functions. Simply adding a useless new
dimension (as done in Fig. 1.31.b) would be an example for some sort of uniform redundancy
from which we already know (see Section 1.4.5) that it is not beneficial. Then again, adding
useful new dimensions may be hard or impossible to achieve in most practical applications.

A good example for this issue is given by Bongard and Paul [246] who used an EA to
evolve a neural network for the motion control of a bipedal robot. They performed runs
where the evolution had control over some morphological aspects and runs where it had
not. The ability to change the leg with of the robots, for instance, comes at the expense
of an increase of the dimensions of the search spaced. Hence, one would expect that the
optimization would perform worse. Instead, in one series of experiments, the results were
much better with the extended search space. The runs did not converge to one particular
leg shape but to a wide range of different structures. This led to the assumption that the
morphology itself was not so much target of the optimization but the ability of changing it
transformed the fitness landscape to a structure more navigable by the evolution.

In some other experimental runs of Bongard and Paul [246], this phenomenon could not
be observed, most likely because
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1. the robot configuration led to a problem of too high complexity, i. e., ruggedness in the
fitness landscape and/or

2. the increase in dimensionality this time was too large to be compensated by the gain of
evolvability.
Further examples for possible benefits of “gradually complexifying” the search space are
given by Malkin in his doctoral thesis [1351].

1.6 General Information

To all the optimization methods that are discussed in this book, you will find such a General
Information section. Here we outline some of the applications of the respective approach,
name the most important conferences, journals, and books as well as link to some online
resources.

1.6.1 Areas Of Application

Some example areas of application of global optimization algorithms are:

Application References

Chemistry, Chemical Engineering [204, 1787, 691]
Biochemistry [690]
Constraint Satisfaction Problems (CSP) [1519]
Multi-Criteria Decision Making (MCDM) [877, 375]
Biology [691]

Engineering, Structural Optimization, and Design
[209, 691, 1814, 613, 1787, 690,
691, 379]

Economics and Finance [613, 691, 1051]

Parameter Estimation [690]

Mathematical Problems [761]
Optics [132, 2057]
Operations Research [691, 878]
Networking and Communication [450]

Section 23.2 on page 401

This is just a small sample of the possible applications of global optimization algorithms. It
has neither some sort of order nor a focus on some specific areas. In the general information
sections of the following chapters, you will find many application examples for the algorithm
discussed.

1.6.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on global optimization algorithms are:

AAAI: National Conference on Artificial Intelligence
http://www.aaai.org/Conferences/conferences.php [accessed 2007-09-06]

History: 2008: Chicago, Illinois, see [738]
2007: Vancouver, British Columbia, Canada, see [954]

http://www.aaai.org/Conferences/conferences.php
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2006: Boston, Massachusetts, USA, see [805]
2005: Pittsburgh, Pennsylvania, USA, see [1359]
2004: San Jose, California, USA, see [1381]
2002: Edmonton, Alberta, Canada, see [547]
2000: Austin, Texas, USA, see [1103]
1999: Orlando, Florida, USA, see [917]
1998: Madison, Wisconsin, USA, see [1472]
1997: Providence, Rhode Island, USA, see [1219, 3]
1996: Portland, Oregon, USA, see [410, 2]
1994: Seattle, WA, USA, see [906]
1993: Washington, DC, USA, see [668]
1992: San Jose, California, USA, see [1986]
1991: Anaheim, California, USA, see [530]
1990: Boston, Massachusetts, USA, see [563]
1988: St. Paul, Minnesota, USA, see [1435]
1987: Seattle, WA, USA, see [723]
1986: Philadelphia, PA, USA, see [1110, 1111]
1984: Austin, TX, USA, see [267]
1983: Washington, DC, USA, see [788]
1982: Pittsburgh, PA, USA, see [2143]
1980: Stanford University, California, USA, see [126]

AISB: Artificial Intelligence and Simulation of Behaviour + Workshop on Evolutionary
Computing
http://www.aisb.org.uk/convention/index.shtml [accessed 2008-09-11]

History: 2008: Aberdeen, UK, see [866]
2007: Newcastle upon Tyne, UK, see [2030]
2006: Bristol, UK, see [2029]
2005: Hatfield, UK, see [2028]
2004: Leeds, UK, see [2027]
2003: Aberystwyth, UK, see [2026]
2002: Imperial College, UK, see [2025]
2001: York, UK, see [2024]
2000: Birmingham, UK, see [2023]
1997: Manchester, UK, see [447]
1996: Brighton, UK, see [695]
1995: Sheffield, UK, see [694]
1994: Leeds, UK, see [693]

HAIS: International Conference on Hybrid Artificial Intelligence Systems
http://gicap.ubu.es/hais2009/ [accessed 2009-03-02]

History: 2009: Salamanca, Spain, see [79]
2008: Burgos, Spain, see [443]
2007: Salamanca, Spain, see [442]
2006: Ribeirão Preto, SP, Brazil, see [117]

HIS: International Conference on Hybrid Intelligent Systems

http://www.aisb.org.uk/convention/index.shtml
http://gicap.ubu.es/hais2009/
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http://www.softcomputing.net/hybrid.html [accessed 2007-09-01]

History: 2008: Barcelona, Spain, see [2267]
2007: Kaiserslautern, Germany, see [1170]
2006: Auckland, New Zealand, see [993]
2005: Rio de Janeiro, Brazil, see [1510]
2004: Kitakyushu, Japan, see [991]
2003: Melbourne, Australia, see [8]
2002: Santiago, Chile, see [7]
2001: Adelaide, Australia, see [6]

ICNC: International Conference on Advances in Natural Computation
History: 2007: Haikou, China, see [995, 996, 997, 998, 999]

2006: Xi’an, China, see [1052, 1053]
2005: Changsha, China, see [2151, 2152, 2153]

IAAI: Conference on Innovative Applications of Artificial Intelligence
http://www.aaai.org/Conferences/IAAI/iaai.php [accessed 2007-09-06]

History: 2006: Boston, Massachusetts, USA, see [805]
2005: Pittsburgh, Pennsylvania, USA, see [1359]
2004: San Jose, California, USA, see [1381]
2003: Acapulco, México, see [1731]
2002: Edmonton, Alberta, Canada, see [547]
2001: Seattle, Washington, USA, see [932]
2000: Austin, Texas, USA, see [1103]
1999: Orlando, Florida, USA, see [917]
1998: Madison, Wisconsin, USA, see [1472]
1997: Providence, Rhode Island, USA, see [1219]
1996: Portland, Oregon, USA, see [410]
1995: Montreal, Quebec, Canada, see [22]
1994: Seattle, Washington, USA, see [318]
1993: Washington, DC, USA, see [1]
1992: San Jose, California, USA, see [1844]
1991: Anaheim, California, USA, see [1907]
1990: Washington, DC, USA, see [1706]
1989: Stanford University, California, USA, see [1835]

KES: Knowledge-Based Intelligent Information & Engineering Systems
History: 2007: Vietri sul Mare, Italy, see [75, 76, 77]

2006: Bournemouth, UK, see [756, 757, 758]
2005: Melbourne, Australia, see [1129, 1130, 1131, 1132]
2004: Wellington, New Zealand, see [1514, 1515, 1516]
2003: Oxford, UK, see [1599, 1600]
2002: Podere d’Ombriano, Crema, Italy, see [481]
2001: Osaka and Nara, Japan, see [1037]
2000: Brighton, UK, see [962, 963]
1999: Adelaide, South Australia, see [1032]

http://www.softcomputing.net/hybrid.html
http://www.aaai.org/Conferences/IAAI/iaai.php
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1998: Adelaide, South Australia, see [1033, 1034, 1035]
1997: Adelaide, South Australia, see [1030, 1031]

MCDM: International Conference on Multiple Criteria Decision Making
http://project.hkkk.fi/MCDM/conf.html [accessed 2007-09-10]

History: 2008: Auckland, New Zealand, see [620]
2006: Chania, Crete, Greece, see [2333]
2004: Whistler, British Columbia, Canada, see [2165]
2002: Semmering, Austria, see [1334]
2000: Ankara, Turkey, see [1167]
1998: Charlottesville, Virginia, USA, see [877]
1997: Cape Town, South Africa, see [1963]
1995: Hagen, Germany, see [645]
1994: Coimbra, Portugal, see [419]
1992: Taipei, Taiwan, see [2069]
1990: Fairfax, USA, see [1916]
1988: Manchester, UK, see [1301]
1986: Kyoto, Japan, see [1500]
1984: Cleveland, Ohio, USA, see [876]
1982: Mons, Belgium, see [893]
1980: Newark, Delaware, USA, see [1467]
1979: Königswinter, Germany, see [644]
1977: Buffalo, New York, USA, see [2328]
1975: Jouy-en-Josas, France, see [2039]

Mendel: International Conference on Soft Computing
http://mendel-conference.org/ [accessed 2007-09-09]

History: 2009: Brno, Czech Republic, see [292]
2008: Brno, Czech Republic, see [291]
2007: Prague, Czech Republic, see [1590]
2006: Brno, Czech Republic, see [293]
2005: Brno, Czech Republic, see [2084]
2004: Brno, Czech Republic, see [2083]
2003: Brno, Czech Republic, see [2082]
2002: Brno, Czech Republic, see [2081]
2001: Brno, Czech Republic, see [2086]
2000: Brno, Czech Republic, see [1591]
1999: Brno, Czech Republic, see [2080]
1998: Brno, Czech Republic, see [2079]
1997: Brno, Czech Republic, see [2078]
1996: Brno, Czech Republic, see [2077]
1995: Brno, Czech Republic, see [2076]

MIC: Metaheuristics International Conference
History: 2007: Montreal, Canada, see [1449]

2005: Vienna, Austria, see [2115]

http://project.hkkk.fi/MCDM/conf.html
http://mendel-conference.org/
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2003: Kyoto, Japan, see [988]
2001: Porto, Portugal, see [1721]
1999: Angra dos Reis, Brazil, see [1726]
1997: Sophia Antipolis, France, see [2124]
1995: Breckenridge, Colorado, USA, see [1589]

MICAI: Advances in Artificial Intelligence, The Mexican International Conference on Arti-
ficial Intelligence
http://www.micai.org/ [accessed 2008-06-29]

History: 2007: Aguascalientes, México, see [782]
2006: Apizaco, México, see [781, 493]
2005: Monterrey, México, see [783]
2004: Mexico City, México, see [1442]
2002: Mérida, Yucatán, México, see [425]
2000: Acapulco, México, see [325]

WOPPLOT: Workshop on Parallel Processing: Logic, Organization and Technology
History: 1992: Tutzing, Germany (?), see [2068]

1989: Neubiberg and Wildbad Kreuth, Germany, see [164]
1986: Neubiberg, see [163]
1983: Neubiberg, see [162]

In the general information sections of the following chapters, you will find many conferences
and workshops that deal with the respective algorithms discussed, so this is just a small
selection.

1.6.3 Journals

Some journals that deal (at least partially) with global optimization algorithms are:

Journal of Global Optimization, ISSN: 0925-5001 (Print) 1573-2916 (Online), ap-
pears monthly, publisher: Springer Netherlands, http://www.springerlink.com/content/
100288/ [accessed 2007-09-20]

The Journal of the Operational Research Society, ISSN: 0160-5682, appears monthly, ed-
itor(s): John Wilson, Terry Williams, publisher: Palgrave Macmillan, The OR Society,
http://www.palgrave-journals.com/jors/ [accessed 2007-09-16]

IEEE Transactions on Systems, Man, and Cybernetics (SMC), appears Part A/B: bi-
monthly, Part C: quaterly, editor(s): Donald E. Brown (Part A), Diane Cook (Part B),
Vladimir Marik (Part C), publisher: IEEE Press, http://www.ieeesmc.org/ [accessed 2007-09-

16]

Journal of Heuristics, ISSN: 1381-1231 (Print), 1572-9397 (Online), appears bi-monthly,
publisher: Springer Netherlands, http://www.springerlink.com/content/102935/ [accessed

2007-09-16]

European Journal of Operational Research (EJOR), ISSN: 0377-2217, appears bi-
weekly, editor(s): Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson,
Lorenzo Peccati, publisher: North-Holland, Elsevier, http://www.elsevier.com/wps/

find/journaldescription.cws_home/505543/description [accessed 2007-09-21]

Computers & Operations Research, ISSN: 0305-0548, appears monthly, editor(s):
Stefan Nickel, publisher: Pergamon, Elsevier, http://www.elsevier.com/wps/find/

journaldescription.cws_home/300/description [accessed 2007-09-21]

http://www.micai.org/
http://www.springerlink.com/content/100288/
http://www.springerlink.com/content/100288/
http://www.palgrave-journals.com/jors/
http://www.ieeesmc.org/
http://www.springerlink.com/content/102935/
http://www.elsevier.com/wps/find/journaldescription.cws_home/505543/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/505543/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/300/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/300/description
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Applied Statistics, ISSN: 0035-9254, editor(s): Gilmour, Skinner, publisher: Blackwell Pub-
lishing for the Royal Statistical Society, http://www.blackwellpublishing.com/journal.
asp?ref=0035-9254 [accessed 2007-09-16]

Applied Intelligence, ISSN: 0924-669X (Print), 1573-7497 (Online), appears bi-monthly, pub-
lisher: Springer Netherlands, http://www.springerlink.com/content/100236/ [accessed 2007-

09-16]

Artificial Intelligence Review , ISSN: 0269-2821 (Print), 1573-7462 (Online), appears until
2005, publisher: Springer Netherlands, http://www.springerlink.com/content/100240/
[accessed 2007-09-16]

Journal of Artificial Intelligence Research (JAIR), ISSN: 11076-9757, editor(s): Toby Walsh,
http://www.jair.org/ [accessed 2007-09-16]

Knowledge and Information Systems, ISSN: 0219-1377 (Print), 0219-3116 (Online), ap-
pears approx. eight times a year, publisher: Springer London, http://www.springerlink.
com/content/0219-1377 [accessed 2007-09-16] and http://www.springer.com/west/home/

computer/information+systems?SGWID=4-152-70-1136715-0 [accessed 2007-09-16]

SIAM Journal on Optimization (SIOPT), ISSN: 1052-6234 (print) / 1095-7189 (electronic),
appears quarterly, editor(s): Nicholas I. M. Gould, publisher: Society for Industrial and
Applied Mathematics, http://www.siam.org/journals/siopt.php [accessed 2008-06-14]

Applied Soft Computing , ISSN: 1568-4946, appears quarterly, editor(s): R. Roy, publisher:
Elsevier B.V., http://www.sciencedirect.com/science/journal/15684946 [accessed 2008-06-

15]

Advanced Engineering Informatics, ISSN: 1474-0346, appears quaterly, editor(s): J.C. Kunz,
I.F.C. Smith, T. Tomiyama, publisher: Elsevier B.V., http://www.elsevier.com/wps/

find/journaldescription.cws_home/622240/description [accessed 2008-08-01]

Journal of Machine Learning Research (JMLR), ISSN: 1533-7928, 1532-4435, appears 8
times/year, editor(s): Lawrence Saul and Leslie Pack Kaelbling, publisher: Microtome Pub-
lishing, http://jmlr.csail.mit.edu/ [accessed 2008-08-06]

Annals of Operations Research, ISSN: 0254-5330, 1572-9338, appears monthly, editor(s):
Endre Boros, publisher: Springer, http://www.springerlink.com/content/0254-5330 [ac-

cessed 2008-10-27]

International Journal of Applied Metaheuristic Computing (IJAMC , appears starts in
2010, editor(s): Peng-Yeng Yin, publisher: Information Resources Management Association,
http://www.igi-global.com/journals/details.asp?id=33344 [accessed 2009-01-02]

1.6.4 Online Resources

Some general, online available ressources on global optimization algorithms are:

http://www.mat.univie.ac.at/~neum/glopt.html [accessed 2007-09-20]

Last update: up-to-date

Description:
Arnold Neumaier’s global optimization website which includes links, publica-
tions, and software.

http://www.soft-computing.de/ [accessed 2008-05-18]

Last update: up-to-date
Description: Yaochu Jin’s size on soft computing including links and conference infos.

http://web.ift.uib.no/~antonych/glob.html [accessed 2007-09-20]

Last update: up-to-date
Description: Web site with many links maintained by Gennady A. Ryzhikov.

http://www.blackwellpublishing.com/journal.asp?ref=0035-9254
http://www.blackwellpublishing.com/journal.asp?ref=0035-9254
http://www.springerlink.com/content/100236/
http://www.springerlink.com/content/100240/
http://www.jair.org/
http://www.springerlink.com/content/0219-1377
http://www.springerlink.com/content/0219-1377
http://www.springer.com/west/home/computer/information+systems?SGWID=4-152-70-1136715-0
http://www.springer.com/west/home/computer/information+systems?SGWID=4-152-70-1136715-0
http://www.siam.org/journals/siopt.php
http://www.sciencedirect.com/science/journal/15684946
http://www.elsevier.com/wps/find/journaldescription.cws_home/622240/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/622240/description
http://jmlr.csail.mit.edu/
http://www.springerlink.com/content/0254-5330
http://www.igi-global.com/journals/details.asp?id=33344
http://www.mat.univie.ac.at/~neum/glopt.html
http://www.soft-computing.de/
http://web.ift.uib.no/~antonych/glob.html
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http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/

TestGO.htm [accessed 2007-11-06]

Last update: up-to-date
Description: A beautiful collection of test problems for global optimization algorithms

http://www.c2i.ntu.edu.sg/AI+CI/Resources/ [accessed 2008-20-25]

Last update: 2006-11-02
Description: A large collection of links about AI and CI.

1.6.5 Books

Some books about (or including significant information about) global optimization algo-
rithms are:

Pardalos, Thoai, and Horst [1614]: Introduction to Global Optimization
Pardalos and Resende [1613]: Handbook of Applied Optimization
Floudas and Pardalos [691]: Frontiers in Global Optimization
Dzemyda, Saltenis, and Zilinskas [613]: Stochastic and Global Optimization
Gandibleux, Sevaux, Sörensen, and T’kindt [766]: Metaheuristics for Multiobjective Optimi-
sation
Glover and Kochenberger [813]: Handbook of Metaheuristics
Törn and Žilinskas [2047]: Global Optimization
Chiong [391]: Nature-Inspired Algorithms for Optimisation
Floudas [690]: Deterministic Global Optimization: Theory, Methods and Applications
Chankong and Haimes [375]: Multiobjective Decision Making Theory and Methodology
Steuer [1961]: Multiple Criteria Optimization: Theory, Computation and Application
Haimes, Hall, and Freedman [878]: Multiobjective Optimization in Water Resource Systems
Charnes and Cooper [376]: Management Models and Industrial Applications of Linear Pro-
gramming
Corne, Dorigo, Glover, Dasgupta, Moscato, Poli, and Price [448]: New Ideas in Optimisation
Gonzalez [832]: Handbook of Approximation Algorithms and Metaheuristics
Jain and Kacprzyk [1036]: New Learning Paradigms in Soft Computing
Tiwari, Knowles, Avineri, Dahal, and Roy [2044]: Applications of Soft Computing – Recent
Trends
Chawdry, Roy, and Pant [379]: Soft Computing in Engineering Design and Manufacturing
Siarry and Michalewicz [1875]: Advances in Metaheuristics for Hard Optimization
Onwubolu and Babu [1580]: New Optimization Techniques in Engineering
Pardalos and Du [1612]: Handbook of Combinatorial Optimization
Reeves [1716]: Modern Heuristic Techniques for Combinatorial Problems
Corne, Oates, and Smith [450]: Telecommunications Optimization: Heuristic and Adaptive
Techniques
Kontoghiorghes [1171]: Handbook of Parallel Computing and Statistics
Bui and Alam [299]: Multi-Objective Optimization in Computational Intelligence: Theory
and Practice

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www.c2i.ntu.edu.sg/AI+CI/Resources/
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Evolutionary Algorithms

2.1 Introduction

Definition 2.1 (Evolutionary Algorithm). Evolutionary algorithms1 (EAs) are
population-based metaheuristic optimization algorithms that use biology-inspired mecha-
nisms like mutation, crossover, natural selection, and survival of the fittest in order to refine
a set of solution candidates iteratively. [99, 104, 105]

The advantage of evolutionary algorithms compared to other optimization methods is
their “black box” character that makes only few assumptions about the underlying objective
functions. Furthermore, the definition of objective functions usually requires lesser insight to
the structure of the problem space than the manual construction of an admissible heuristic.
EAs therefore perform consistently well in many different problem categories.

2.1.1 The Basic Principles from Nature

In 1859, Darwin [485] published his book “On the Origin of Species”2 in which he identified
the principles of natural selection and survival of the fittest as driving forces behind the
biological evolution. His theory can be condensed into ten observations and deductions
[485, 1375, 2219]:

1. The individuals of a species posses great fertility and produce more offspring than can
grow into adulthood.

2. Under the absence of external influences (like natural disasters, human beings, etc.), the
population size of a species roughly remains constant.

3. Again, if no external influences occur, the food resources are limited but stable over
time.

4. Since the individuals compete for these limited resources, a struggle for survival ensues.
5. Especially in sexual reproducing species, no two individuals are equal.
6. Some of the variations between the individuals will affect their fitness and hence, their

ability to survive.
7. A good fraction of these variations are inheritable.
8. Individuals less fit are less likely to reproduce, whereas the fittest individuals will survive

and produce offspring more probably.
9. Individuals that survive and reproduce will likely pass on their traits to their offspring.

1 http://en.wikipedia.org/wiki/Artificial_evolution [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/The_Origin_of_Species [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Artificial_evolution
http://en.wikipedia.org/wiki/The_Origin_of_Species
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10. A species will slowly change and adapt more and more to a given environment during
this process which may finally even result in new species.

Evolutionary algorithms abstract from this biological process and also introduce a change
in semantics by being goal-driven [2091]. The search space G in evolutionary algorithms is
then an abstraction of the set of all possible DNA strings in nature and its elements g ∈ G
play the role of the natural genotypes. Therefore, we also often refer to G as the genome and
to the elements g ∈ G as genotypes. Like any creature is an instance of its genotype formed
by embryogenesis3, the solution candidates (or phenotypes) x ∈ X in the problem space X
are instances of genotypes formed by the genotype-phenotype mapping: x = gpm(g). Their
fitness is rated according to objective functions which are subject to optimization and drive
the evolution into specific directions.

2.1.2 The Basic Cycle of Evolutionary Algorithms

We can distinguish between single-objective and multi-objective evolutionary algorithms,
where the latter means that we try to optimize multiple, possible conflicting criteria. Our
following elaborations will be based on these MOEAs. The general area of Evolutionary
Computation that deals with multi-objective optimization is called EMOO, evolutionary
multi-objective optimization.

Definition 2.2 (MOEA). A multi-objective evolutionary algorithm (MOEA) is able to
perform an optimization of multiple criteria on the basis of artificial evolution [359, 360,
2101, 534, 537, 716, 1471].

Reproduction

create new individuals
from the mating pool by
crossover and mutation

Selection

select the fittest indi-
viduals for reproduction

Evaluation

compute the objective
values of the solution
candidates

Fitness Assignment

use the objective values
to determine fitness
values

Initial Population

create an initial
population of random
individuals

Figure 2.1: The basic cycle of evolutionary algorithms.

All evolutionary algorithms proceed in principle according to the scheme illustrated in
Figure 2.1:

1. Initially, a population Pop of individuals p with a random genome p.g is created.
2. The values of the objective functions f ∈ F are computed for each solution candidate
p.x in Pop. This evaluation may incorporate complicated simulations and calculations.

3. With the objective functions, the utility of the different features of the solution candi-
dates have been determined and a fitness value v(p.x) can now be assigned to each of
them. This fitness assignment process can, for instance, incorporate a prevalence com-
parator function cmpF which uses the objective values to create an order amongst the
individuals.

3 http://en.wikipedia.org/wiki/Embryogenesis [accessed 2008-03-10]

http://en.wikipedia.org/wiki/Embryogenesis
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4. A subsequent selection process filters out the solution candidates with bad fitness and
allows those with good fitness to enter the mating pool with a higher probability. Since
fitness is subject to minimization in the context of this book, the lower the v(p.x)-values
are, the higher is the (relative) utility of the individual to whom they belong.

5. In the reproduction phase, offspring is created by varying or combining the genotypes p.g
of the selected individuals p ∈ Mate by applying the search operations searchOp ∈ Op
(which are called reproduction operations in the context of EAs). These offspring are
then subsequently integrated into the population.

6. If the terminationCriterion() is met, the evolution stops here. Otherwise, the algorithm
continues at step 2.

In the following few paragraphs, we will discuss how the natural evolution of a species
could proceed and put the artificial evolution of solution candidates in an EA into this
context. When an evolutionary algorithm starts, there exists no information about what is
good or what is bad. Basically, only some random genes p.x = create() are coupled together
as individuals in the initial population Pop(t = 0). I think, back in the Eoarchean4, the
earth age 3.8 billion years ago where most probably the first single-celled life occurred, it
was probably the same.

For simplification purposes, we will assume that the evolution does proceed stepwise
in distinct generations. At the beginning of every generation, nature “instantiates” each
genotype p.g (given as DNA sequence) as a new phenotype p.x = gpm(p.g) – a living
organism – for example a fish. The survival of the genes of the fish depends on how good
it performs in the ocean (F (p.x) =?), in other words, on how fit it is v(p.x). Its fitness,
however, is not only determined by one single feature of the phenotype like its size (= f1).
Although a bigger fish will have better chances to survive, size alone does not help if it is
too slow to catch any prey (= f2). Also its energy consumption f3 should be low so it does
not need to eat all the time. Other factors influencing the fitness positively are formae like
sharp teeth f4 and colors that blend into the environment f5 so it cannot be seen too easily
by sharks. If its camouflage is too good on the other hand, how will it find potential mating
partners (f6 ≁ f5)? And if it is big, it will also have a higher energy consumption f1 ≁ f3.
So there may be conflicts between the desired properties.

To sum it up, we could consider the life of the fish as the evaluation process of its genotype
in an environment where good qualities in one aspect can turn out as drawbacks in other
perspectives. In multi-objective evolutionary algorithms, this is exactly the same and I tried
to demonstrate this by annotating the fish-story with the symbols previously defined in
the global optimization theory sections. For each problem that we want to solve, we can
specify multiple so-called objective functions f ∈ F . An objective function f represents one
feature that we are interested in. Let us assume that we want to evolve a car (a pretty weird
assumption, but let’s stick with it). The genotype p.g ∈ G would be the construction plan
and the phenotype p.x ∈ X the real car, or at least a simulation of it. One objective function
fa would definitely be safety. For the sake of our children and their children, the car should
also be environment-friendly, so that’s our second objective function fb. Furthermore, a
cheap price fc, fast speed fd, and a cool design fe would be good. That makes five objective
functions from which for example the second and the fourth are contradictory (fb ≁ fd).

After the fish genome is instantiated, nature “knows” about its phenotypic properties.
Fitness, however, is always relative; it depends on your environment. I, for example, may
be considered as a fit man in my department (computer science). If took a stroll to the
department of sports science, that statement will probably not hold anymore. The same
goes for the fish, its fitness depends on the other fish in the population (and its prey and
predators). If one fish p1.x can beat another one p2.x in all categories, i.e., is bigger, stronger,
smarter, and so on, we can clearly consider it as fitter (p1.x≻p2.x⇒ cmpF (p1.x, p2.x) < 0)
since it will have a better chance to survive. This relation is transitive but only forms a partial
order since a fish that is strong but not very clever and a fish that is clever but not strong

4 http://en.wikipedia.org/wiki/Eoarchean [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Eoarchean
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maybe have the same probability to reproduce and hence, are not directly comparable5.
Well, Ok, we cannot decide if a weak fish p3.x with a clever behavioral pattern is worse or
better than a really strong but less cunning one p4.x (cmpF (p3.x, p4.x) = 0). Both traits are
furthered in the evolutionary process and maybe, one fish of the first kind will sometimes
mate with one of the latter and produce an offspring which is both, intelligent and sporty6.

Multi-objective evolutionary algorithms basically apply the same principles in their fit-
ness assignment process “assignFitness”. One of the most popular methods for computing
the fitness is called Pareto ranking7. It does exactly what we’ve just discussed: It first chooses
the individuals that are beaten by no one (we call this non-dominated set) and assigns a
good (scalar) fitness value v(p1.x) to them. Then it looks at the rest of the population and
picks those (P ⊂ Pop) which are not beaten by the remaining individuals and gives them a
slightly worse fitness value v(p.x) > v(p1.x) ∀p ∈ P – and so on, until all solution candidates
have received one scalar fitness.

Now, how fit a fish is does not necessarily determine directly if it can produce offspring.
An intelligent fish may be eaten by a shark and a strong one can die from disease. The
fitness8 is only some sort of probability of reproduction. The process of selection is always
stochastic, without guarantees – even a fish that is small, slow, and lacks any sophisticated
behavior might survive and could produce even more offspring than a highly fit one.

The evolutionary algorithms work in exactly the same way – they use a selection algo-
rithm “select” in order to pick the fittest individuals and place them into the mating pool
Mate. The oldest selection scheme is called Roulette wheel9. In the original version of this
algorithm (intended for fitness maximization), the chance of an individual p to reproduce is
proportional to its fitness v(p.x).

Last but not least, there is the reproduction phase. Fish reproduce sexually. Whenever a
female fish and a male fish mate, their genes will be recombined by crossover. Furthermore,
mutations may take place which. Most often, they affect the characteristics of resulting larva
only slightly [1730]. Since fit fish produce offspring with higher probability, there is a good
chance that the next generation will contain at least some individuals that have combined
good traits from their parents and perform even better than them.

In evolutionary algorithms, we do not have such a thing as “gender”. Each individual
from the mating pool can potentially be recombined with every other one. In the car example,
this means that we would modify the construction plans by copying the engine of one car
and placing it into the car body of another one. Also, we could alter some features like the
shape of the headlights randomly. This way, we receive new construction plans for new cars.
Our chance that an environment-friendly engine inside a cool-looking car will result in a
car that is more likely to be bought by the customer is good. If we iteratively perform the
reproduction process “reproducePop” time and again, there is a high probability that the
solutions finally found will be close to optimal.

2.1.3 The Basic Evolutionary Algorithm Scheme

After this informal outline about the artificial evolution and how we can use it as an opti-
mization method, let us now specify the basic scheme common to all evolutionary algorithms.
In principle, all EAs are variations and extensions of the basic approach “simpleEA” defined
Algorithm 2.1, a cycle of evaluation, selection, and reproduction repeated in each iteration
t. Algorithm 2.1 relies on functions and prototypes that we will introduce step by step.

5 Which is a very comforting thought for all computer scientists.
6 I wonder if the girls in the sports department are open to this kind of argumentation?
7 Pareto comparisons are discussed in Section 1.2.2 on page 31 and elaborations on Pareto ranking

can be found in Section 2.3.3.
8 This definition is fitness is not fully compatible with biological one, see Section 2.1.5 for more

information on that topic.
9 The roulette wheel selection algorithm will be introduced in Section 2.4.3 on page 124.
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Algorithm 2.1: X⋆ ←− simpleEA(cmpF , ps)

Input: cmpF : the comparator function which allows us to compare the utility of two
solution candidates

Input: ps: the population size
Data: t: the generation counter
Data: Pop: the population
Data: Mate: the mating pool
Data: v: the fitness function resulting from the fitness assigning process
Output: X⋆: the set of the best elements found

begin1

t←− 02

Pop←− createPop(ps)3

while ¬terminationCriterion() do4

v ←− assignFitness(Pop, cmpF )5

Mate←− select(Pop, v, ps)6

t←− t+ 17

Pop←− reproducePop(Mate)8

return extractPhenotypes(extractOptimalSet(Pop))9

end10

1. The function “createPop(ps)”, which will be introduced as Algorithm 2.18 in Section 2.5
on page 137, produces an initial, randomized population consisting of ps individuals in
the first iteration t = 0.

2. The termination criterion “terminationCriterion()” checks whether the evolutionary al-
gorithm should terminate or continue its work, see Section 1.3.4 on page 54.

3. Most evolutionary algorithms assign a scalar fitness v(p.x) to each individual p by com-
paring its vector of objective values F (p.x) to other individuals in the population Pop.
The function v is built by a fitness assignment process “assignFitness”, which we will
discuss in Section 2.3 on page 111 in more detail. During this procedure, the genotype-
phenotype mapping is implicitly carried out as well as simulations needed to compute
the objective functions f ∈ F .

4. A selection algorithm “select” (see Section 2.4 on page 121) then chooses ps interesting
individuals from the population Pop and inserts them into the mating pool Mate.

5. With “reproducePop”, a new population is generated from the individuals inside the
mating pool using mutation and/or recombination. More information on reproduction
can be found in Section 2.5 on page 137 and in Definition 2.13.

6. The functions “extractOptimalSet” and “extractPhenotypes” which you can find in-
troduced in Definition 19.2 on page 308 and Equation 19.1 on page 307 are used to
extract all the non-prevailed individuals p⋆ from the final population and to return their
corresponding phenotypes p⋆.x only.

2.1.4 From the Viewpoint of Formae

Let us review our introductory fish example in terms of forma analysis. Fish can, for instance,
be characterized by the properties “clever” and “strong”. Crudely simplified, both properties
may be true or false for a single individual and hence define two formae each. A third
property can be the color, for which many different possible variations exist. Some of them
may be good in terms of camouflage, others maybe good in terms of finding mating partners.
Now a fish can be clever and strong at the same time, as well as weak and green. Here, a
living fish allows nature to evaluate the utility of at least three different formae.

This fact has first been stated by Holland [940] for genetic algorithms and is termed im-
plicit parallelism (or intrinsic parallelism). Since then, it has been studied by many different
researchers [858, 853, 188, 2123]. If the search space and the genotype-phenotype mapping
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are properly designed, the implicit parallelism in conjunction with the crossover/recombina-
tion operations is one of the reasons why evolutionary algorithms are such a successful class
of optimization algorithms.

2.1.5 Does the natural Paragon Fit?

At this point it should be mentioned that the direct reference to Darwinian evolution in
evolutionary algorithms is somehow controversial. Paterson [1619], for example, points out
that “neither GAs [genetic algorithms] nor GP [Genetic Programming] are concerned with
the evolution of new species, nor do they use natural selection.” On the other hand, nobody
would claim that the idea of selection has not been borrowed from nature although many ad-
ditions and modifications have been introduced in favor for better algorithmic performance.
The second argument concerning the development of different species depends on definition:
According to Wikipedia [2219], a species is a class of organisms which are very similar in
many aspects such as appearance, physiology, and genetics. In principle, there is some el-
bowroom for us and we may indeed consider even different solutions to a single problem in
evolutionary algorithms as members of a different species – especially if the binary search
operation crossover/recombination applied to their genomes cannot produce another valid
solution candidate.

Another interesting difference was pointed out by Sharpe [1859] who states that natural
evolution “only proceed[s] sufficiently fast to ensure survival” whereas evolutionary algo-
rithms used for engineering need to be fast in order to be feasible and to compete with other
problem solving techniques.

Furthermore, although the concept of fitness10 in nature is controversial [1915], it is
often considered as an a posteriori measurement. It then defines the ratio of the numbers
of occurrences of a genotype in a population after and before selection or the number of
offspring an individual has in relation to the number of offspring of another individual. In
evolutionary algorithms, fitness is an a priori quantity denoting a value that determines
the expected number of instances of a genotype that should survive the selection process.
However, one could conclude that biological fitness is just an approximation of the a priori
quantity arisen due to the hardness (if not impossibility) of directly measuring it.

My personal opinion (which may as well be wrong) is that the citation of Darwin here is
well motivated since there are close parallels between Darwinian evolution and evolutionary
algorithms. Nevertheless, natural and artificial evolution are still two different things and
phenomena observed in either of the two do not necessarily carry over to the other.

2.1.6 Classification of Evolutionary Algorithms

The Family of Evolutionary Algorithms

The family of evolutionary algorithms encompasses five members, as illustrated in Figure 2.2.
We will only enumerate them here in short. In depth discussions will follow in the next
chapters.

1. Genetic algorithms (GAs) are introduced in Chapter 3 on page 141. GAs subsume
all evolutionary algorithms which have bit strings as search space G.

2. The set of evolutionary algorithms which explore the space of real vectors X ⊆ Rn is
called Evolution Strategies (ES, see Chapter 5 on page 227).

3. For Genetic Programming (GP), which will be elaborated on in Chapter 4 on
page 157, we can provide two definitions: On one hand, GP includes all evolutionary
algorithms that grow programs, algorithms, and these alike. On the other hand, also all
EAs that evolve tree-shaped individuals are instances of Genetic Programming.

10 http://en.wikipedia.org/wiki/Fitness_(biology) [accessed 2008-08-10]

http://en.wikipedia.org/wiki/Fitness_(biology)
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4. Learning Classifier Systems (LCS), discussed in Chapter 7 on page 233, are online
learning approaches that assign output values to given input values. They internally use
a genetic algorithm to find new rules for this mapping.

5. Evolutionary programming (EP, see Chapter 6 on page 231) is an evolutionary
approach that treats the instances of the genome as different species rather than as
individuals. Over the decades, it has more or less merged into Genetic Programming
and the other evolutionary algorithms.

Evolutionary Algorithms

Evolutionary
Programming

Evolution Strategy

Differential
Evolution

Genetic Algorithms

Learning Classifier
Systems

Genetic Programming

GGGP
LGP

SGP

Figure 2.2: The family of evolutionary algorithms.

The early research [518] in genetic algorithms (see Section 3.1 on page 141), Genetic
Programming (see Section 4.1.1 on page 157), and evolutionary programming (see Section 6.1
on page 231) date back to the 1950s and 60s. Besides the pioneering work listed in these
sections, at least other important early contribution should not go unmentioned here: The
Evolutionary Operation (EVOP) approach introduced by Box [260], Box and Draper [261]
in the late 1950s. The idea of EVOP was to apply a continuous and systematic scheme of
small changes in the control variables of a process. The effects of these modifications are
evaluated and the process is slowly shifted into the direction of improvement. This idea
was never realized as a computer algorithm, but Spendley et al. [1941] used it as basis for
their simplex method which then served as progenitor of the downhill simplex algorithm11

of Nelder and Mead [1517]. [518, 1276] Satterthwaite’s REVOP [1815, 1816], a randomized
Evolutionary Operation approach, however, was rejected at this time [518].

We now have classified different evolutionary algorithms according to their semantics,
in other words, corresponding to their special search and problem spaces. All five major
approaches can be realized with the basic scheme defined in Algorithm 2.1. To this simple
structure, there exist many general improvements and extensions. Since these normally do
not concern the search or problem spaces, they also can be applied to all members of the
EA family alike. In the further text of this chapter, we will discuss the major components
of many of today’s most efficient evolutionary algorithms [357]. The distinctive features of
these EAs are:

1. The population size or the number of populations used.

11 We discuss Nelder and Mead [1517]’s downhill simplex optimization method in Chapter 16 on
page 283.
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2. The method of selecting the individuals for reproduction.
3. The way the offspring is included into the population(s).

Populations in Evolutionary Algorithms

There exist various way in which an evolutionary algorithm can process its population.
Especially interesting is how the population Pop(t+ 1) of the next iteration is formed as a
combination of the current one Pop(t) and its offspring. If it only contains this offspring,
we speak of extinctive selection [1512, 1869]. Extinctive selection can be compared with
ecosystems of small protozoa12 which reproduce in a fissiparous13 manner. In this case, of
course, the elders will not be present in the next generation. Other comparisons can partly
be drawn to the sexual reproducing to octopi, where the female dies after protecting the
eggs until the larvae hatch, or to the black widow spider where the female devours the male
after the insemination. Especially in the area of genetic algorithms, extinctive strategies are
also known as generational algorithms.

Definition 2.3 (Generational). In evolutionary algorithms that are generational [1677],
the next generation will only contain the offspring of the current one and no parent individ-
uals will be preserved.

Extinctive evolutionary algorithms can further be divided into left and right selection
[2264]. In left extinctive selections, the best individuals are not allowed to reproduce in
order to prevent premature convergence of the optimization process. Conversely, the worst
individuals are not permitted to breed in right extinctive selection schemes in order to reduce
the selective pressure since they would otherwise scatter the fitness too much.

In algorithms that apply a preservative selection scheme, the population is a combination
of the next population and the offspring [102, 1064, 1762, 2091]. The biological metaphor for
such algorithms is that the lifespan of many organisms exceeds a single generation. Hence,
parent and child individuals compete with each other for survival.

For Evolution Strategywhich you can find discussed in Chapter 5 on page 227, there
exists a notation which also can be used describe the generation transition in evolutionary
algorithms in general [934, 935, 1841, 102].

1. λ denotes the number of offspring created and
2. µ is the number of parent individuals.

Extinctive selection patterns are denoted as (µ, λ)-strategies and will create λ ≥ µ child
individuals from the µ available genotypes. From these, they only keep the µ best solution
candidates and discard the µ parents as well as the λ− µ worst children.

In (µ+ λ)-strategy, again λ children are generated from µ parents, often with λ > µ.
Then, the parent and offspring populations are united (to a population of the size λ + µ)
and from this unison, only the µ best individuals will “survive”. (µ+ λ)-strategies are thus
preservative.

Steady-state evolutionary algorithms [1746, 499, 1538, 365, 1987, 2211], abbreviated by
SSEA, are preservative evolutionary algorithms with values of λ that are relatively low in
comparison with µ. Usually, λ is chosen in a way that a binary search operator crossover is
applied exactly once per generation. Although steady-state evolutionary algorithms are often
observed to produce better results than generational EAs. Chafekar et al. [365], for exam-
ple, introduce steady-state evolutionary algorithms that are able to outperform generational
NSGA-II (which you can find summarized in ?? on page ??) for some difficult problems.
In experiments of Jones and Soule [1066] (primarily focused on other issues), steady-state
algorithms showed better convergence behavior in a multi-modal landscape. Similar results

12 http://en.wikipedia.org/wiki/Protozoa [accessed 2008-03-12]

13 http://en.wikipedia.org/wiki/Binary_fission [accessed 2008-03-12]

http://en.wikipedia.org/wiki/Protozoa
http://en.wikipedia.org/wiki/Binary_fission
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have been reported by Chevreux [389] in the context of molecule design optimization. Dif-
ferent generational selection methods have been compared to the steady-state GENITOR
approach by Goldberg and Deb [822]. On the other hand, with steady-state approaches, we
run also the risk of premature convergence.

Even in preservative strategies, it is not granted that the best individuals will always
survive. In principle, a (µ+ λ) strategy can also mean that from µ + λ individuals, µ are
chosen with a certain selection algorithm. Most are randomized, and even if such methods
pick the best solution candidates with the highest probabilities, they may also select worse
individuals. At this point, it is maybe interesting to mention that the idea that larger
populations will always lead to better optimization results does not necessarily always hold,
as shown by van Nimwegen and Crutchfield [2096].

Definition 2.4 (Elitism). An elitist evolutionary algorithm [512, 1261, 359] ensures that
at least one copy of the best individual(s) of the current generation is propagated on to the
next generation.

The main advantage of elitism is that its convergence is guaranteed, meaning that once
the global optimum has been discovered, the evolutionary algorithm converges to that opti-
mum. On the other hand, the risk of converging to a local optimum is also higher. Elitism
is an additional feature of global optimization algorithms – a special type of preservative
strategy – which is often realized by using a secondary population only containing the
non-prevailed individuals. This population is updated at the end of each iteration. Such
an archive-based elitism can be combined with both, generational and preservative strate-
gies. Algorithm 2.2 specifies the basic scheme of elitist evolutionary algorithms.

Algorithm 2.2: X⋆ ←− elitistEA(cmpF , ps, a)

Input: cmpF : the comparator function which allows us to compare the utility of two
solution candidates

Input: ps: the population size
Input: as: the archive size
Data: t: the generation counter
Data: Pop: the population
Data: Mate: the mating pool
Data: Arc: the archive with the best individuals found so far
Data: v: the fitness function resulting from the fitness assigning process
Output: X⋆: the set of best solution candidates discovered

begin1

t←− 02

Arc←− ∅3

Pop←− createPop(ps)4

while ¬terminationCriterion() do5

Arc←− updateOptimalSetN(Arc,Pop)6

Arc←− pruneOptimalSet(Arc, as)7

v ←− assignFitness(Pop,Arc, cmpF )8

Mate←− select(Pop,Arc, v, ps)9

t←− t+ 110

Pop←− reproducePop(Mate)11

return extractPhenotypes(extractOptimalSet(Pop ∪Arc))12

end13

Let us now outline the new methods and changes introduced in Algorithm 2.2 in short.

1. The archive Arc is the set of best individuals found by the algorithm. Initially, it is
the empty set ∅. Subsequently, it is updated with the function “updateOptimalSetN”
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which inserts new, unprevailed elements from the population into it and also removes
individuals from the archive which are superseded by those new optima. Algorithms that
realize such updating are defined in Section 19.1 on page 307.

2. If the optimal set becomes too large – it might theoretically contain uncountable many
individuals – “pruneOptimalSet” reduces it to a proper size, employing techniques like
clustering in order to preserve the element diversity. More about pruning can be found
in Section 19.3 on page 309.

3. You should also notice that both, the fitness assignment and selection processes, of elitist
evolutionary algorithms may take the archive as additional parameter. In principle,
such archive-based algorithms can also be used in non-elitist evolutionary algorithms by
simply replacing the parameter Arc with ∅.

2.1.7 Configuration Parameters of evolutionary algorithms

Figure 2.3 illustrates the basic configuration parameters of evolutionary algorithms. The
performance and success of an evolutionary optimization approach applied to a problem
given by a set of objective functions F and a problem space X is defined by
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Figure 2.3: The configuration parameters of evolutionary algorithms.

1. its basic parameter settings like the population size ps or the crossover and mutation
rates,

2. whether it uses an archive Arc of the best individuals found and, if so, which pruning
technology is used to prevent it from overflowing,

3. the fitness assignment process “assignFitness” and the selection algorithm “select”,
4. the choice of the search space G and the search operations Op,
5. and the genotype-phenotype mapping connecting the search Space and the problem

space.

In Section 20.1, we go more into detail on how to state the configuration of an optimiza-
tion algorithm in order to fully describe experiments and to make them reproducible.
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2.2 General Information

2.2.1 Areas Of Application

Some example areas of application of evolutionary algorithms are:

Application References

Function Optimization [1562, 1673]
Multi-Objective Optimization [715, 716, 357, 1054, 1804, 537]
Combinatorial Optimization [254, 1762, 1270, 1338]
Engineering, Structural Optimization, and Design [755, 1412, 1554]
Constraint Satisfaction Problems (CSP) [2091, 1054, 716, 1804]

Economics and Finance [388, 1975, 503, 640, 409]
Biology [2075, 704]
Data Mining and Data Analysis [2178, 445, 797, 444]

Mathematical Problems [1094]
Electrical Engineering and Circuit Design [488, 2075]
Chemistry, Chemical Engineering [1061, 482, 389]
Scheduling [1360, 374, 1227, 454, 250]

Robotics [2158]
Image Processing [322, 1532]
Networking and Communication [1889, 1890, 453, 1497, 1684, 35]

see Section 23.2 on page 401

Medicine [411, 1911]
Ressource Minimization, Environment Surveillance/Pro-
tection

[886]

Military and Defense [1393]
Evolving Behaviors, e.g., for Agents or Game Players [1705]

For more information see also the application sections of the different members of the evo-
lutionary algorithm family: genetic algorithms in Section 3.2.1 on page 142, Genetic Pro-
gramming in Section 4.2.1 on page 160, Evolution Strategy in Section 5.2.1 on page 227,
evolutionary programming in Section 6.2.1 on page 231, and Learning Classifier Systems
in Section 7.2.1 on page 233.

2.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolutionary algorithms are:

BIOMA: International Conference on Bioinspired Optimization Methods and their Appli-
cations
http://bioma.ijs.si/ [accessed 2007-06-30]

History: 2008: Ljubljana, Slovenia, see [670]
2006: Ljubljana, Slovenia, see [669]
2004: Ljubljana, Slovenia, see [671]

CEC: Congress on Evolutionary Computation
http://ieeexplore.ieee.org/servlet/opac?punumber=7875 [accessed 2007-09-05]

History: 2008: Hong Kong, China, see [1409]
2007: Singapore, see [1005]

http://bioma.ijs.si/
http://ieeexplore.ieee.org/servlet/opac?punumber=7875
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2006: Vancouver, BC, Canada, see [2291]
2005: Edinburgh, Scotland, UK, see [449]
2004: Portland, Oregon, USA, see [1004]
2003: Canberra, Australia, see [1803]
2002: Honolulu, HI, USA, see [703]
2001: Seoul, Korea, see [1003]
2000: La Jolla, California, USA, see [1002]
1999: Washington D.C., USA, see [69]
1998: Anchorage, Alaska, USA, see [1001]
1997: Indianapolis, IN, USA, see [106]
1996: Nagoya, Japan, see [1006]
1995: Perth, Australia, see [1000]
1994: Orlando, Florida, USA, see [1411]

Dagstuhl Seminar: Practical Approaches to Multi-Objective Optimization
History: 2006: Dagstuhl, Germany, see [283]

2004: Dagstuhl, Germany, see [281]
EA/AE: Conference on Artificial Evolution (Evolution Artificielle)

History: 2007: Tours, France, see [1441]
2005: Lille, France, see [2000]
2003: Marseilles, France, see [1283]
2001: Le Creusot, France, see [428]
1999: Dunkerque, France, see [711]
1997: Nı̂mes, France, see [894]
1995: Brest, France, see [41]
1994: Toulouse, France, see [40]

EMO: International Conference on Evolutionary Multi-Criterion Optimization
History: 2007: Matsushima/Sendai, Japan, see [1555]

2005: Guanajuato, México, see [422]
2003: Faro, Portugal, see [719]
2001: Zurich, Switzerland, see [2331]

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

History: 2007: Jyväskylä, Finland, see [2072]
2005: Munich, Germany, see [1827]
2003: Barcelona, Spain, see [147]
2001: Athens, Greece, see [803]
1999: Jyväskylä, Finland, see [1413]
1997: Triest, Italy, see [1681]
1995: Las Palmas de Gran Canaria, Spain, see [1059]

EvoCOP: European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion
http://www.evostar.org/ [accessed 2007-09-05]

Co-located with EvoWorkshops and EuroGP.
History: 2009: Tübingen, Germany, see [455]

2008: Naples, Italy, see [2094]

http://www.evostar.org/
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2007: Valencia, Spain, see [456]
2006: Budapest, Hungary, see [843]
2005: Lausanne, Switzerland, see [1700]
2004: Coimbra, Portugal, see [842]
2003: Essex, UK, see [1701]
2002: Kinsale, Ireland, see [321]
2001: Lake Como, Milan, Italy, see [235]

EvoWorkshops: Applications of Evolutinary Computing: EvoCoMnet, EvoFIN, EvoIASP,
EvoINTERACTION, EvoMUSART, EvoPhD, EvoSTOC and EvoTransLog
http://www.evostar.org/ [accessed 2007-08-05]

Co-located with EvoCOP and EuroGP.
History: 2009: Tübingen, Germany, see [802]

2008: Naples, Italy, see [801]
2007: Valencia, Spain, see [800]
2006: Budapest, Hungary, see [1768]
2005: Lausanne, Switzerland, see [1767]
2004: Coimbra, Portugal, see [1702]
2003: Essex, UK, see [1701]
2002: Kinsale, Ireland, see [321]
2001: Lake Como, Milan, Italy, see [235]
2000: Edinburgh, Scotland, UK, see [320]
1999: Göteborg, Sweden, see [1665]
1998: Paris, France, see [976]

FEA: International Workshop on Frontiers in Evolutionary Algorithms
Was part of the Joint Conference on Information Science
History: 2005: Salt Lake City, Utah, USA, see [1794]

2003: Cary, North Carolina, USA, see [639]
2002: Research Triangle Park, North Carolina, USA, see [353]
2000: Atlantic City, NJ, USA, see [2154]
1998: Research Triangle Park, North Carolina, USA, see [2021]
1997: Research Triangle Park, North Carolina, USA, see [1865]

FOCI: IEEE Symposium on Foundations of Computational Intelligence
History: 2007: Honolulu, Hawaii, USA, see [1388]

GECCO: Genetic and Evolutionary Computation Conference
http://www.sigevo.org/ [accessed 2007-08-30]

A recombination of the Annual Genetic Programming Conference (GP, see Section 4.2.2 on
page 161) and the International Conference on Genetic Algorithms (ICGA, see Section 3.2.2
on page 143), also “contains” the International Workshop on Learning Classifier Systems
(IWLCS, see Section 7.2.2 on page 234).
History: 2008: Atlanta, Georgia, USA, see [1117, 409, 1393, 1911, 1705]

2007: London, England, see [2037, 2038]
2006: Seattle, Washington, USA, see [352]
2005: Washington, D.C., USA, see [202, 199, 1764, 1766]
2004: Seattle, Washington, USA, see [544, 545, 1113]
2003: Chicago, Illinois, USA, see [334, 335]
2002: New York, USA, see [1245, 331, 154, 1572, 1326]
2001: San Francisco, California, USA, see [1937, 833]

http://www.evostar.org/
http://www.sigevo.org/
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2000: Las Vegas, Nevada, USA, see [2216, 2210]
1999: Orlando, Florida, USA, see [142, 1584, 1889]

GEM: International Conference on Genetic and Evolutionary Methods
see Section 3.2.2 on page 143

ICANNGA: International Conference on Adaptive and Natural Computing Algorithms
before 2005: International Conference on Artificial Neural Nets and Genetic Algorithms
History: 2007: Warsaw, Poland, see [173, 174]

2005: Coimbra, Portugal, see [1725]
2003: Roanne, France, see [1628]
2001: Prague, Czech Republic, see [1224]
1999: Portoroz, Slovenia, see [576]
1997: Norwich, England, see [1902]
1995: Alès, France, see [1627]
1993: Innsbruck, Austria, see [36]

ICNC: International Conference on Advances in Natural Computation
see Section 1.6.2 on page 89

Mendel: International Conference on Soft Computing
see Section 1.6.2 on page 90

PPSN: International Conference on Parallel Problem Solving from Nature
http://ls11-www.informatik.uni-dortmund.de/PPSN/ [accessed 2007-09-05]

History: 2008: Dortmund, Germany, see [1948]
2006: Reykjavik, Iceland, see [1779]
2004: Birmingham, UK, see [2285]
2002: Granada, Spain, see [867]
2000: Paris, France, see [1830]
1998: Amsterdam, The Netherlands, see [624]
1996: Berlin, Germany, see [2118]
1994: Jerusalem, Israel, see [492]
1992: Brussels, Belgium, see [1357]
1990: Dortmund, Germany, see [1842]

2.2.3 Journals

Some journals that deal (at least partially) with evolutionary algorithms are:

Evolutionary Computation, ISSN: 1063-6560, appears quaterly, editor(s): Marc Schoenauer,
publisher: MIT Press, http://www.mitpressjournals.org/loi/evco [accessed 2007-09-16]

IEEE Transactions on Evolutionary Computation, ISSN: 1089-778X, appears bi-monthly,
editor(s): Xin Yao, publisher: IEEE Computational Intelligence Society, http://ieee-cis.
org/pubs/tec/ [accessed 2007-09-16]

Biological Cybernetics, ISSN: 0340-1200 (Print), 1432-0770 (Online), appears bi-monthly,
publisher: Springer Berlin/Heidelberg, http://www.springerlink.com/content/100465/
[accessed 2007-09-16]

Complex Systems, ISSN: 0891-2513, appears quaterly, editor(s): Stephen Wolfram, publisher:
Complex Systems Publications, Inc., http://www.complex-systems.com/ [accessed 2007-09-16]

Journal of Artificial Intelligence Research (JAIR) (see Section 1.6.3 on page 92)
New Mathematics and Natural Computation (NMNC), ISSN: 1793-0057, appears three times
a year, editor(s): Paul P. Wang, publisher: World Scientific, http://www.worldscinet.com/
nmnc/ [accessed 2007-09-19]

http://ls11-www.informatik.uni-dortmund.de/PPSN/
http://www.mitpressjournals.org/loi/evco
http://ieee-cis.org/pubs/tec/
http://ieee-cis.org/pubs/tec/
http://www.springerlink.com/content/100465/
http://www.complex-systems.com/
http://www.worldscinet.com/nmnc/
http://www.worldscinet.com/nmnc/
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The Journal of the Operational Research Society (see Section 1.6.3 on page 91)

2.2.4 Online Resources

Some general, online available ressources on evolutionary algorithms are:

http://www.lania.mx/~ccoello/EMOO/ [accessed 2007-09-20]

Last update: up-to-date

Description:
EMOO Web page – Dr. Coello Coello’s giant bibliography and paper reposi-
tory for evolutionary multi-objective optimization.

http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html [accessed 2007-10-14]

Last update: up-to-date

Description:
Computational Intelligence (CI)-related links and literature, maintained by
Jörn Mehnen

http://www.aip.de/~ast/EvolCompFAQ/ [accessed 2007-09-16]

Last update: 2001-04-01

Description:
Frequently Asked Questions of the comp.ai.genetic group by Heitkötter and
Beasley [916].

http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf [accessed 2007-09-16]

Last update: 2005-02-19

Description: Lecture Nodes on Evolutionary Computation by Wu [2264]

http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/ [accessed 2008-04-10]

Last update: 2002-02-25

Description:
Online glossary on terms and definitions in evolutionary algorithms by Beyer
et al. [201]

http://www.illigal.uiuc.edu/web/ [accessed 2008-05-17]

Last update: up-to-date

Description: The Illinois Genetic Algorithms Laboratory (IlliGAL)

http://www.peterindia.net/Algorithms.html [accessed 2008-05-17]

Last update: up-to-date

Description:
A large collection of links about evolutionary algorithms, Genetic Program-
ming, genetic algorithms, etc.

http://www.fmi.uni-stuttgart.de/fk/evolalg/ [accessed 2008-05-17]

Last update: 2003-07-08
Description: The Evolutionary Computation repository of the University of Stuttgart.

http://dis.ijs.si/filipic/ec/ [accessed 2008-05-18]

Last update: 2007-11-09

Description:
The Evolutionary Computation repository of the Jožf Stefan Institute in
Slovenia

http://www.red3d.com/cwr/evolve.html [accessed 2008-05-18]

Last update: 2002-07-27

Description:
Evolutionary Computation and its application to art and design by Craig
Reynolds

http://www.lania.mx/~ccoello/EMOO/
http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html
http://www.aip.de/~ast/EvolCompFAQ/
http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf
http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/
http://www.illigal.uiuc.edu/web/
http://www.peterindia.net/Algorithms.html
http://www.fmi.uni-stuttgart.de/fk/evolalg/
http://dis.ijs.si/filipic/ec/
http://www.red3d.com/cwr/evolve.html
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http://surf.de.uu.net/encore/ [accessed 2008-05-18]

Last update: 2004-08-26

Description:
ENCORE, the electronic appendix to The Hitch-Hiker’s Guide to Evolution-
ary Computation, see [916]

http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html [accessed 2008-05-18]

Last update: 2006-09-13

Description: A collection of links to computational intelligence / EAs

http://www.tik.ee.ethz.ch/sop/education/misc/moeaApplet/ [accessed 2008-10-25]

Last update: 2008-06-30
Description: An applet illustrating a multi-objective EA

2.2.5 Books

Some books about (or including significant information about) evolutionary algorithms are:

Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms
Bäck, Fogel, and Michalewicz [104]: Handbook of Evolutionary Computation
Ceollo Coello, Lamont, and van Veldhuizen [361]: Evolutionary Algorithms for Solving Multi-
Objective Problems
Deb [537]: Multi-Objective Optimization Using Evolutionary Algorithms
Coello Coello and Lamont [424]: Applications of Multi-Objective Evolutionary Algorithms
Eiben and Smith [623]: Introduction to Evolutionary Computing
Dumitrescu, Lazzerini, Jain, and Dumitrescu [608]: Evolutionary Computation
Fogel [696]: Evolutionary Computation: The Fossil Record
Bäck, Fogel, and Michalewicz [107]: Evolutionary Computation 1: Basic Algorithms and
Operators
Bäck, Fogel, and Michalewicz [108]: Evolutionary Computation 2: Advanced Algorithms and
Operators
Bentley [181]: Evolutionary Design by Computers
De Jong [515]: Evolutionary Computation: A Unified Approach
Weicker [2167]: Evolutionäre Algorithmen
Gerdes, Klawonn, and Kruse [789]: Evolutionäre Algorithmen
Nissen [1535]: Einführung in evolutionäre Algorithmen: Optimierung nach dem Vorbild der
Evolution
Yao [2284]: Evolutionary Computation: Theory and Applications
Yu, Davis, Baydar, and Roy [2299]: Evolutionary Computation in Practice
Yang, Ong, and Jin [2280]: Evolutionary Computation in Dynamic and Uncertain Environ-
ments
Morrison [1464]: Designing Evolutionary Algorithms for Dynamic Environments
Branke [280]: Evolutionary Optimization in Dynamic Environments
Nedjah, Alba, and Mourelle [1512]: Parallel Evolutionary Computations
Kosiński [1177]: Advances in Evolutionary Algorithms
Rothlauf [1765]: Representations for Genetic and Evolutionary Algorithms
Banzhaf and Eeckman [137]: Evolution and Biocomputation – Computational Models of Evo-
lution

http://surf.de.uu.net/encore/
http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html
http://www.tik.ee.ethz.ch/sop/education/misc/moeaApplet/
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Fogel and Corne [704]: Evolutionary Computation in Bioinformatics
Johnston [1061]: Applications of Evolutionary Computation in Chemistry
Clark [411]: Evolutionary Algorithms in Molecular Design
Chen [388]: Evolutionary Computation in Economics and Finance
Ghosh and Jain [797]: Evolutionary Computation in Data Mining
Miettinen, Mäkelä, Neittaanmäki, and Periaux [1412]: Evolutionary Algorithms in Engineer-
ing and Computer Science
Fogel [698]: Evolutionary Computation: Principles and Practice for Signal Processing
Ashlock [85]: Evolutionary Computation for Modeling and Optimization
Watanabe and Hashem [2158]: Evolutionary Computations – New Algorithms and their Ap-
plications to Evolutionary Robots
Cagnoni, Lutton, and Olague [322]: Genetic and Evolutionary Computation for Image Pro-
cessing and Analysis
Kramer [1214]: Self-Adaptive Heuristics for Evolutionary Computation
Lobo, Lima, and Michalewicz [1299]: Parameter Setting in Evolutionary Algorithms
Spears [1925]: Evolutionary Algorithms – The Role of Mutation and Recombination
Eiben and Michalewicz [621]: Evolutionary Computation
Jin [1055]: Knowledge Incorporation in Evolutionary Computation
Grosan, Abraham, and Ishibuchi [862]: Hybrid Evolutionary Algorithms
Abraham, Jain, and Goldberg [9]: Evolutionary Multiobjective Optimization
Kallel, Naudts, and Rogers [1083]: Theoretical Aspects of Evolutionary Computing
Ghosh and Tsutsui [798]: Advances in Evolutionary Computing – Theory and Applications
Yang, Shan, and Bui [2279]: Success in Evolutionary Computation
Pereira and Tavares [1635]: Bio-inspired Algorithms for the Vehicle Routing Problem

2.3 Fitness Assignment

2.3.1 Introduction

With concept of Pareto domination and prevalence comparisons introduced in Section 1.2.2
on page 27 we define a partial order on the elements in the problem space X. In multi-
objective optimization, each solution candidate p.x is characterized by a vector of objective
values F (p.x). Many selection algorithms however cannot work with such vectors and need
scalar fitness values instead. By assigning a single real number v(p.x) (the fitness) to each
solution candidate p.x, also a total order is defined on them.

The fitness assigned to an individual may not just reflect its rank in the population, but
can also incorporate density/niching information. This way, not only the quality of a solution
candidate is considered, but also the overall diversity of the population. This can improve the
chance of finding the global optima as well as the performance of the optimization algorithm
significantly. If many individuals in the population occupy the same rank or do not dominate
each other, for instance, such information will be very helpful.

The fitness v(p.x) thus may not only depend on the solution candidate p.x itself, but on
the whole population Pop of the evolutionary algorithm (and on the archive Arc of optimal
elements, if available). In practical realizations, the fitness values are often stored in a special
member variable in the individual records. Therefore, v(p.x) can be considered as a mapping
that returns the value of such a variable which has previously been stored there by a fitness
assignment process “assignFitness”.

Definition 2.5 (Fitness Assignment). A fitness assignment process “assignFitness” cre-
ates a function v : X 7→ R+ which relates a scalar fitness value to each solution candidate in
the population Pop Equation 2.1 (and archive Arc, if an archive is available Equation 2.2).

v = assignFitness(Pop, cmpF )⇒ v(p.x) ∈ V ⊆ R+ ∀p ∈ Pop (2.1)

v = assignFitness(Pop,Arc, cmpF )⇒ v(p.x) ∈ V ⊆ R+ ∀p ∈ Pop ∪Arc (2.2)
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In the context of this book, we generally minimize fitness values, i. e., the lower the
fitness of a solution candidate the better. Therefore, many of the fitness assignment processes
based on the prevalence relation will obey to Equation 2.3. This equation represents a general
relation – sometimes it is useful to violate it for some individuals in the population, especially
when crowding information is incorporated.

p1.x≻p2.x⇒ v(p1.x) < v(p2.x) ∀p1, p2 ∈ Pop ∪Arc (2.3)

2.3.2 Weighted Sum Fitness Assignment

The most primitive fitness assignment strategy would be assigning a weighted sum of the
objective values. This approach is very static and comes with the same problems as weighted
sum-based approach for defining what an optimum is introduced in Section 1.2.2 on page 29.
It makes no use of the prevalence relation. For computing the weighted sum of the different
objective values of a solution candidate, we reuse Equation 1.4 on page 29 from the weighted
sum optimum definition. The weights have to be chosen in a way that ensures that v(p.x) ∈
R+ holds for all individuals p.

v(p.x) = assignFitnessWeightedSum(Pop)⇔ ∀p ∈ Pop⇒ v(p.x) = g(p.x) (2.4)

2.3.3 Pareto Ranking

Another very simple method for computing fitness values is to let them directly reflect the
Pareto domination (or prevalence) relation. Figure 2.4 and Table 2.1 illustrate the Pareto
relations in a population of 15 individuals and their corresponding objective values f1 and
f2, both subject to minimization. There are two ways for doing this: First, to each individual,
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Figure 2.4: An example scenario for Pareto ranking.

we can assign a value inversely proportional to the number of other individuals it prevails,
like v(p1.x) ≡ 1

|∀p2∈Pop:p1.x≻p2.x|+1 . We have written such fitness values in the column “Ap.

1” of Table 2.1 for Pareto optimization, i. e., the special case where the Pareto dominance
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x prevails is prevailed by Ap. 1 Ap. 2

1 {5, 6, 8, 9, 14, 15} ∅ 1/7 0
2 {6, 7, 8, 9, 10, 11, 13, 14, 15} ∅ 1/10 0
3 {12, 13, 14, 15} ∅ 1/5 0
4 ∅ ∅ 1 0
5 {8, 15} {1} 1/3 1
6 {8, 9, 14, 15} {1, 2} 1/5 2
7 {9, 10, 11, 14, 15} {2} 1/6 1
8 {15} {1, 2, 5, 6} 1/2 4
9 {14, 15} {1, 2, 6, 7} 1/3 4

10 {14, 15} {2, 7} 1/3 2
11 {14, 15} {2, 7} 1/3 2
12 {13, 14, 15} {3} 1/4 1
13 {15} {2, 3, 12} 1/2 3
14 {15} {1, 2, 3, 6, 7, 9, 10, 11, 12} 1/2 9
15 ∅ {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 1 13

Table 2.1: The Pareto domination relation of the individuals illustrated in Figure 2.4.

relation is used to define prevalence. Individuals that dominate many others will here receive
a lower fitness value than those which are prevailed by many. When taking a look at these
values, the disadvantage of this approach becomes clear: It promotes individuals that reside
in crowded region of the problem space and underrates those in sparsely explored areas.

By doing so, the fitness assignment process achieves exactly the opposite of what we
want. Instead of exploring the problem space and delivering a wide scan of the frontier
of best possible solution candidates, it will focus all effort on a small set of individuals.
We will only obtain a subset of the best solutions and it is even possible that this fitness
assignment method leads to premature convergence to a local optimum. A good example
for this problem are the four non-prevailed individuals {1, 2, 3, 4} from the Pareto frontier.
The best fitness is assigned to the element 2, followed by individual 1. Although individual
7 is dominated (by 1), its fitness is better than the fitness of the non-dominated element 3.

The solution candidate 4 gets the worst possible fitness 1, since it prevails no other
element. Its chances for reproduction are similarly low than those of individual 15 which
is dominated by all other elements except 4. Hence, both solution candidates will most
probably be not selected and vanish in the next generation. The loss of solution candidate
4 will greatly decrease the diversity and even increase the focus on the crowded area near 1
and 2.

A much better second approach for fitness assignment is directly based on the domination
(or prevalence) relation and has first been proposed by Goldberg [821]. Here, the idea is to
assign the number of individuals it is prevailed by to each solution candidate [1315, 253, 255,
851]. This way, the previously mentioned negative effects will not occur. The column “Ap 2”
in Table 2.1 shows that all four non-prevailed individuals now have the best possible fitness
0. Hence, the exploration pressure is applied to a much wider area of the Pareto frontier. This
so-called Pareto ranking can be performed by first removing all non-prevailed individuals
from the population and assigning the rank 0 to them. Then, the same is performed with
the rest of the population. The individuals only dominated by those on rank 0 (now non-
dominated) will be removed and get the rank 1. This is repeated until all solution candidates
have a proper fitness assigned to them. Algorithm 2.3 outlines another simple way to perform
Pareto ranking. Since we follow the idea of the freer prevalence comparators instead of Pareto
dominance relations, we will synonymously refer to this approach as Prevalence ranking.

As already mentioned, the fitness values of all non-prevailed elements in our example
Figure 2.4 and Table 2.1 are equally 0. However, the region around the individuals 1 and 2
has probably already extensively been explored, whereas the surrounding of solution candi-
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Algorithm 2.3: v ←− assignFitnessParetoRank(Pop, cmpF )

Input: Pop: the population to assign fitness values to
Input: cmpF : the prevalence comparator defining the prevalence relation
Data: i, j, cnt: the counter variables
Output: v: a fitness function reflecting the Prevalence ranking

begin1

for i←− len(Pop)− 1 down to 0 do2

cnt←− 03

p←− Pop[i]4

for j ←− len(Pop)− 1 down to 0 do5

// Check whether cmpF (Pop[j].x, p.x) < 0
if (j 6= i) ∧ (Pop[j].x≻p.x) then cnt←− cnt+ 16

v(p.x)←− cnt7

return v8

end9

date 4 is rather unknown. A better approach of fitness assignment should incorporate such
information and put a bit more pressure into the direction of individual 4, in order to make
the evolutionary algorithm investigate this area more thoroughly.

2.3.4 Sharing Functions

Previously, we have mentioned that the drawback of Pareto ranking is that it does not
incorporate any information about whether the solution candidates in the population reside
closely to each other or in regions of the problem space which are only sparsely covered by
individuals. Sharing, as a method for including such diversity information into the fitness
assignment process, was introduced by Holland [940] and later refined by Deb [532], Goldberg
and Richardson [824], and Deb and Goldberg [539]. [1801, 1417, 1558]

Definition 2.6 (Sharing Function). A sharing function Sh : R+ 7→ R+ is a function
used to relate two individuals p1 and p2 to a value that decreases with their distance14

d = dist(p1, p2) in a way that it is 1 for d = 0 and 0 if the distance exceeds a specified
constant σ.

Shσ(d = dist(p1, p2)) =





1 if d ≤ 0
Shσ(d) ∈ [0, 1] if 0 < d < σ

0 otherwise
(2.5)

Sharing functions can be employed in many different ways and are used by a variety
of fitness assignment processes [824, 532]. Typically, the simple triangular function Sh tri
[959] or one of its either convex (Sh cvexp) or concave (Sh ccavp) pendants with the power
p ∈ R+, p > 0 are applied. Besides using different powers of the distance-σ-ratio, another
approach is the exponential sharing method Sh exp.

14 The concept of distance and a set of different distance measures is defined in Section 29.1 on
page 537.
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Sh triσ(σ) d =

{
1− d

σ
if 0 ≤ d < σ

0 otherwise
(2.6)

Sh cvexσ,p(d) =

{(
1− d

σ

)p
if 0 ≤ d < σ

0 otherwise
(2.7)

Sh ccavσ,p(d) =

{
1−

(
d
σ

)p
if 0 ≤ d < σ

0 otherwise
(2.8)

Sh expσ,p(d) =





1 if d ≤ 0
0 if d ≥ σ

e
−

pd
σ −e−p

1−e−p otherwise

(2.9)

For sharing, the distance of the individuals in the search space G as well as their distance
in the problem space X or the objective space Y may be used. If the solution candidates
are real vectors in the Rn, we could use the Euclidean distance of the phenotypes of the
individuals directly, i.e., compute disteucl(p1.x, p2.x). In genetic algorithms, where the search
space is the set of all bit strings G = Bn of the length n, another suitable approach would be
to use the Hamming distance15 distHam(p1.g, p2.g) of the genotypes. The work of Deb [532],
however, indicates that phenotypical sharing will often be superior to genotypical sharing.

Definition 2.7 (Niche Count). The niche count m(p, P ) [535, 1417] of an individual p is
the sum its sharing values with all individual in a list P .

∀p ∈ P ⇒ m(p, P ) =

len(P )−1∑

i=0

Shσ(dist(p, P [i])) (2.10)

The niche count m is always greater than zero, since p ∈ P and, hence, Shσ(dist(p, p)) = 1
is computed and added up at least once. The original sharing approach was developed for
single-objective optimization where only one objective function f was subject to maximiza-
tion. In this case, its value was simply divided by the niche count, punishing solutions in
crowded regions [1417]. The goal of sharing was to distribute the population over a number
of different peaks in the fitness landscape, with each peak receiving a fraction of the popu-
lation proportional to its height [959]. The results of dividing the fitness by the niche counts
strongly depends on the height differences of the peaks and thus, on the complexity class16

of f . On f1 ∈ O(x), for instance, the influence of m is much bigger than on a f2 ∈ O(ex).
By multiplying the niche count m to predetermined fitness values v′, we can use this

approach for fitness minimization in conjunction with a variety of other different fitness
assignment processes, but also inherit its shortcomings:

v(p.x) = v′(p.x) ∗m(p,Pop) , v′ ≡ assignFitness(Pop, cmpF ) (2.11)

Sharing was traditionally combined with fitness proportionate, i. e., roulette wheel se-
lection17. Oei et al. [1558] have shown that if the sharing function is computed using the
parental individuals of the “old” population and then näıvely combined with the more so-
phisticated tournament selection18, the resulting behavior of the evolutionary algorithm may
be chaotic. They suggested to use the partially filled “new” population to circumvent this
problem. The layout of evolutionary algorithms, as defined in this book, bases the fitness
computation on the whole set of “new” individuals and assumes that their objective values
have already been completely determined. In other words, such issues simply do not exist
in multi-objective evolutionary algorithms as introduced here and the chaotic behavior does
occur.

15 See Definition 29.6 on page 537 for more information on the Hamming distance.
16 See Section 30.1.3 on page 550 for a detailed introduction into complexity and the O-notation.
17 Roulette wheel selection is discussed in Section 2.4.3 on page 124.
18 You can find an outline of tournament selection in Section 2.4.4 on page 127.
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For computing the niche count m, O
(
n2
)

comparisons are needed. According to Goldberg
et al. [827], sampling the population can be sufficient to approximate min order to avoid
this quadratic complexity.

2.3.5 Variety Preserving Ranking

Using sharing and the niche counts näıvely leads to more or less unpredictable effects. Of
course, it promotes solutions located in sparsely populated niches but how much their fitness
will be improved is rather unclear. Using distance measures which are not normalized can
lead to strange effects, too. Imagine two objective functions f1 and f2. If the values of f1
span from 0 to 1 for the individuals in the population whereas those of f2 range from 0 to
10 000, the components of f1 will most often be negligible in the Euclidian distance of two
individuals in the objective space Y. Another problem is that the effect of simple sharing
on the pressure into the direction of the Pareto frontier is not obvious either or depends on
the sharing approach applied. Some methods simply add a niche count to the Pareto rank,
which may cause non-dominated individuals having worse fitness than any others in the
population. Other approaches scale the niche count into the interval [0, 1) before adding it
which not only ensures that non-dominated individuals have the best fitness but also leave
the relation between individuals at different ranks intact, which does not further variety
very much.

Variety Preserving Ranking is a fitness assignment approach based on Pareto ranking
using prevalence comparators and sharing. We have developed it in order to mitigate all these
previously mentioned side effects and balance the evolutionary pressure between optimizing
the objective functions and maximizing the variety inside the population. In the following,
we will describe the process of Variety Preserving Ranking-based fitness assignment which
is defined in Algorithm 2.4.

Before this fitness assignment process can begin, it is required that all individuals with
infinite objective values must be removed from the population Pop. If such a solution candi-
date is optimal, i. e., if it has negative infinitely large objectives in a minimization process,
for instance, it should receive fitness zero, since fitness is subject to minimization. If the indi-
vidual is infeasible, on the other hand, its fitness should be set to len(Pop) +

√
len(Pop) + 1,

which is one larger than every other fitness values that may be assigned by Algorithm 2.4.
In lines 2 to 9, we create a list ranks which we use to efficiently compute the Pareto

rank of every solution candidate in the population. By the way, the word prevalence rank
would be more precise in this case, since we use prevalence comparisons as introduced in
Section 1.2.4. Therefore, Variety Preserving Ranking is not limited to Pareto optimization
but may also incorporate External Decision Makers (Section 1.2.4) or the method of in-
equalities (Section 1.2.3). The highest rank encountered in the population is stored in the
variable maxRank. This value may be zero if the population contains only non-prevailed
elements. The lowest rank will always be zero since the prevalence comparators cmpF define
order relations which are non-circular by definition.19. We will use maxRank to determine
the maximum penalty for solutions in an overly crowded region of the search space later on.

From line 10 to 18, we determine the maximum and the minimum values that each
objective function takes on when applied to the individuals in the population. These values
are used to store the inverse of their ranges in the array rangeScales, which we will use to
scale all distances in each dimension (objective) of the individuals into the interval [0, 1].
There are |F | objective functions in F and, hence, the maximum Euclidian distance between
two solution candidates in the (scaled) objective space becomes

√
|F |. It occurs if all the

distances in the single dimensions are 1.
The most complicated part of the Variety Preserving Ranking algorithm is between

line 19 and 33. Here we computed the scaled distance from every individual to each other

19 In all order relations imposed on finite sets there is always at least one “smallest” element.
See Section 27.7.2 on page 463 for more information.
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Algorithm 2.4: v ←− assignFitnessVarietyPreserving(Pop, cmpF )

Input: Pop: the population
Input: cmpF : the comparator function
Input: [implicit] F : the set of objective functions
Data: . . . : sorry, no space here, we’ll discuss this in the text
Output: v: the fitness function

begin1

/* If needed: Remove all elements with infinite objective values from Pop

and assign fitness 0 or len(Pop) +
√

len(Pop) + 1 to them. Then compute the

prevalence ranks. */

ranks←− createList(len(Pop) , 0)2

maxRank ←− 03

for i←− len(Pop)− 1 down to 0 do4

for j ←− i− 1 down to 0 do5

k ←− cmpF (Pop[i].x,Pop[j].x)6

if k < 0 then ranks[j]←− ranks[j] + 17

else if k > 0 then ranks[i]←− ranks[i] + 18

if ranks[i] > maxRank then maxRank ←− ranks[i]9

// determine the ranges of the objectives

mins←− createList(|F | ,+∞)10

maxs←− createList(|F | ,−∞)11

foreach p ∈ Pop do12

for i←− |F | down to 1 do13

if fi(p.x) < mins[i−1] then mins[i−1]←− fi(p.x)14

if fi(p.x) > maxs[i−1] then maxs[i−1]←− fi(p.x)15

rangeScales←− createList(|F | , 1)16

for i←− |F | − 1 down to 0 do17

if maxs[i] > mins[i] then rangeScales[i]←− 1/ (maxs[i]−mins[i])18

// Base a sharing value on the scaled Euclidean distance of all elements

shares←− createList(len(Pop) , 0)19

minShare←− +∞20

maxShare←− −∞21

for i←− len(Pop)− 1 down to 0 do22

curShare←− shares[i]23

for j ←− i− 1 down to 0 do24

dist←− 025

for k ←− |F | down to 1 do26

dist←− dist+ [(fk(Pop[i].x)− fk(Pop[j].x)) ∗ rangeScales[k−1]]227

s←− Sh exp√|F |,16

(√
dist

)
28

curShare←− curShare+ s29

shares[j]←− shares[j] + s30

shares[i]←− curShare31

if curShare < minShare then minShare←− curShare32

if curShare > maxShare then maxShare←− curShare33

// Finally, compute the fitness values

scale←−
{

1/ (maxShare−minShare) if maxShare > minShare
1 otherwise34

for i←− len(Pop)− 1 down to 0 do35

if ranks[i] > 0 then36

v(Pop[i].x)←− ranks[i] +
√
maxRank ∗ scale ∗ (shares[i]−minShare)37

else v(Pop[i].x)←− scale ∗ (shares[i]−minShare)38

end39
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solution candidate in the objective space and use this distance to aggregate share values
(in the array shares). Therefore, again two nested loops are needed (lines 22 and 24). The
distance components of two individuals Pop[i] and Pop[j] are scaled and summarized in a
variable dist in line 27. The Euclidian distance between them is

√
dist which we use to

determine a sharing value in 28. We therefore have decided for exponential sharing with
power 16 and σ =

√
|F |, as introduced in Equation 2.9 on page 115. For every individual,

we sum up all the shares (see line 30). While doing so, we also determine the minimum and
maximum such total share in the variables minShare and maxShare in lines 32 and 33.

We will use these variables to scale all sharing values again into the interval [0, 1] (line
34), so the individual in the most crowded region always has a total share of 1 and the most
remote individual always has a share of 0. So basically, we now know two things about the
individuals in Pop:

1. their Pareto ranks, stored in the array ranks, giving information about their relative
quality according to the objective values and

2. their sharing values, held in shares, denoting how densely crowded the area around
them is.

With this information, we determine the final fitness values of an individual p as follows:
If p is non-prevailed, i. e., its rank is zero, its fitness is its scaled total share (line 38).
Otherwise, we multiply the square root of the maximum rank,

√
maxRank, with the scaled

share and add it to its rank (line 37). By doing so, we preserve the supremacy of non-
prevailed individuals in the population but allow them to compete with each other based on
the crowdedness of their location in the objective space. All other solution candidates may
degenerate in rank, but at most by the square root of the worst rank.

Example

Let us now apply Variety Preserving Ranking to the examples for Pareto ranking from
Section 2.3.3. In Table 2.2, we again list all the solution candidates from Figure 2.4 on
page 112, this time with their objective values obtained with f1 and f2 corresponding to
their coordinates in the diagram. In the third column, you can find the Pareto ranks of the
individuals as it has been listed in Table 2.1 on page 113. The columns share/u and share/s
correspond to the total sharing sums of the individuals, unscaled and scaled into [0, 1].

x f1 f2 rank share/u share/s v(x)

1 1 7 0 0.71 0.779 0.779
2 2 4 0 0.239 0.246 0.246
3 6 2 0 0.201 0.202 0.202
4 10 1 0 0.022 0 0
5 1 8 1 0.622 0.679 3.446
6 2 7 2 0.906 1 5.606
7 3 5 1 0.531 0.576 3.077
8 2 9 4 0.314 0.33 5.191
9 3 7 4 0.719 0.789 6.845

10 4 6 2 0.592 0.645 4.325
11 5 5 2 0.363 0.386 3.39
12 7 3 1 0.346 0.366 2.321
13 8 4 3 0.217 0.221 3.797
14 7 7 9 0.094 0.081 9.292
15 9 9 13 0.025 0.004 13.01

Table 2.2: An example for Variety Preserving Ranking based on Figure 2.4.
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Figure 2.5: The sharing potential in the Variety Preserving Ranking example

But first things first; as already mentioned, we know the Pareto ranks of the solution
candidates from Table 2.1, so the next step is to determine the ranges of values the objective
functions take on for the example population. These can again easily be found out from
Figure 2.4. f1 spans from 1 to 10, which leads to rangeScale[0] = 1/9. rangeScale[1] = 1/8
since the maximum of f2 is 9 and its minimum is 1. With this, we now can compute the
(dimensionally scaled) distances amongst the solution candidates in the objective space, the
values of

√
dist in algorithm Algorithm 2.4, as well as the corresponding values of the sharing

function Sh exp√
|F |,16

(√
dist

)
. We have noted these in Table 2.3, using the upper triangle

of the table for the distances and the lower triangle for the shares.
The value of the sharing function can be imagined as a scalar field, as illustrated in

Figure 2.5. In this case, each individual in the population can be considered as an electron
that will build an electrical field around it resulting in a potential. If two electrons come
close, repulsing forces occur, which is pretty much the same what we want to do with Variety
Preserving Ranking. Unlike the electrical field, the power of the sharing potential falls expo-
nentially, resulting in relatively steep spikes in Figure 2.5 which gives proximity and density
a heavier influence. Electrons in atoms on planets are limited in their movement by other
influences like gravity or nuclear forces, which are often stronger than the electromagnetic
force. In Variety Preserving Ranking, the prevalence rank plays this role – as you can see in
Table 2.2, its influence on the fitness is often dominant.

By summing up the single sharing potentials for each individual in the example, we
obtain the fifth column of Table 2.3, the unscaled share values. Their minimum is around
0.022 and the maximum is 0.94. Therefore, we must subtract 0.022 from each of these values
and multiply the result with 1.131. By doing so, we build the column shares/s. Finally, we
can compute the fitness values v(x) according to lines 38 and 37 in Algorithm 2.4.
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Upper triangle: distances. Lower triangle: corresponding share values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.391 0.836 1.25 0.125 0.111 0.334 0.274 0.222 0.356 0.51 0.833 0.863 0.667 0.923

2 0.012 0.51 0.965 0.512 0.375 0.167 0.625 0.391 0.334 0.356 0.569 0.667 0.67 0.998

3 7.7E-5 0.003 0.462 0.933 0.767 0.502 0.981 0.708 0.547 0.391 0.167 0.334 0.635 0.936

4 6.1E-7 1.8E-5 0.005 1.329 1.163 0.925 1.338 1.08 0.914 0.747 0.417 0.436 0.821 1.006

5 0.243 0.003 2.6E-5 1.8E-7 0.167 0.436 0.167 0.255 0.417 0.582 0.914 0.925 0.678 0.898

6 0.284 0.014 1.7E-4 1.8E-6 0.151 0.274 0.25 0.111 0.255 0.417 0.747 0.765 0.556 0.817

7 0.023 0.151 0.003 2.9E-5 0.007 0.045 0.512 0.25 0.167 0.222 0.51 0.569 0.51 0.833

8 0.045 0.001 1.5E-5 1.5E-7 0.151 0.059 0.003 0.274 0.436 0.601 0.933 0.914 0.609 0.778

9 0.081 0.012 3.3E-4 4.8E-6 0.056 0.284 0.059 0.045 0.167 0.334 0.669 0.67 0.444 0.712

10 0.018 0.023 0.002 3.2E-5 0.009 0.056 0.151 0.007 0.151 0.167 0.502 0.51 0.356 0.67

11 0.003 0.018 0.012 2.1E-4 0.001 0.009 0.081 0.001 0.023 0.151 0.334 0.356 0.334 0.669

12 8E-5 0.002 0.151 0.009 3.2E-5 2.1E-4 0.003 2.6E-5 0.001 0.003 0.023 0.167 0.5 0.782

13 5.7E-5 0.001 0.023 0.007 2.9E-5 1.7E-4 0.002 3.2E-5 0.001 0.003 0.018 0.151 0.391 0.635

14 0.001 0.001 0.001 9.3E-5 4.6E-4 0.002 0.003 0.001 0.007 0.018 0.023 0.003 0.012 0.334

15 2.9E-5 1.2E-5 2.5E-5 1.1E-5 3.9E-5 9.7E-5 8E-5 1.5E-4 3.1E-4 0.001 0.001 1.4E-4 0.001 0.023

Table 2.3: The distance and sharing matrix of the example from Table 2.2.

The last column of Table 2.2 lists these results. All non-prevailed individuals have re-
tained a fitness value less than one, lower than those of any other solution candidate in
the population. However, amongst these best individuals, solution candidate 4 is strongly
preferred, since it is located in a very remote location of the objective space. Individual
1 is the least interesting non-dominated one, because it has the densest neighborhood in
Figure 2.4. In this neighborhood, the individuals 5 and 6 with the Pareto ranks 1 and 2 are
located. They are strongly penalized by the sharing process and receive the fitness values
v(5) = 3.446 and v(6) = 5.606. In other words, individual 5 becomes less interesting than
solution candidate 7 which has a worse Pareto rank. 6 now is even worse than individual 8
which would have a fitness better by two if strict Pareto ranking was applied.

Based on these fitness values, algorithms like Tournament selection (see Section 2.4.2) or
fitness proportionate approaches (discussed in Section 2.4.3) will pick elements in a way that
preserves the pressure into the direction of the Pareto frontier but also leads to a balanced
and sustainable variety in the population. The benefits of this approach have been shown,
for instance, in [1650, 2188].

2.3.6 Tournament Fitness Assignment

In tournament fitness assignment, which is a generalization of the q-level binary tournament
selection introduced by Weicker [2167], the fitness of each individual is computed by letting
it compete q times against r other individuals (with r = 1 as default) and counting the
number of competitions it loses. For a better understanding of the tournament metaphor
see Section 2.4.4 on page 127, where the tournament selection scheme is discussed. Anyway,
the number of losses will approximate its Pareto rank, but are a bit more randomized that
that. If we would count the number of tournaments won instead of the losses, we would
encounter the same problems than in the first idea of Pareto ranking.

TODO add remaining fitness
assignment methods
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Algorithm 2.5: v ←− assignFitnessTournamentq,r(Pop, cmpF )

Input: q: the number of tournaments per individuals
Input: r: the number of other contestants per tournament, normally 1
Input: Pop: the population to assign fitness values to
Input: cmpF : the comparator function providing the prevalence relation
Data: i, j, k, z: counter variables
Data: b: a Boolean variable being true as long as a tournament isn’t lost
Data: p: the individual currently examined
Output: v: the fitness function

begin1

for i←− len(Pop)− 1 down to 0 do2

z ←− q3

p←− Pop[i]4

for j ←− q down to 1 do5

b←− true6

k ←− r7

while (k > 0) ∧ b do8

b←− Pop[⌊randomu(0,len(Pop))⌋].x≻p.x9

k ←− k − 110

if b then z ←− z − 111

v(p.x)←− z12

return v13

end14

2.4 Selection

2.4.1 Introduction

Definition 2.8 (Selection). In evolutionary algorithms, the selection20 operation Mate =
select(Pop, v,ms) chooses ms individuals according to their fitness values v from the popu-
lation Pop and places them into the mating pool Mate [99, 1242, 232, 1431].

Mate = select(Pop, v,ms)⇒ ∀p ∈ Mate⇒ p ∈ Pop
∀p ∈ Pop⇒ p ∈ G× X
v(p.x) ∈ R+ ∀p ∈ Pop
(len(Mate) ≥ min {len(Pop) ,ms}) ∧ (len(Mate) ≤ ms)

(2.12)

On the mating pool, the reproduction operations discussed in Section 2.5 on page 137
will subsequently be applied. Selection may behave in a deterministic or in a randomized
manner, depending on the algorithm chosen and its application-dependant implementation.
Furthermore, elitist evolutionary algorithms may incorporate an archive Arc in the selection
process, as sketched in Algorithm 2.2.

Generally, there are two classes of selection algorithms: such with replacement (anno-
tated with a subscript r) and such without replacement (annotated with a subscript w, see
Equation 2.13) [1809]. In a selection algorithm without replacement, each individual from
the population Pop is taken into consideration for reproduction at most once and therefore

20 http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
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also will occur in the mating pool Mate one time at most. The mating pool returned by
algorithms with replacement can contain the same individual multiple times. Like in nature,
one individual may thus have multiple offspring. Normally, selection algorithms are used in
a variant with replacement. One of the reasons therefore is the number of elements to be
placed into the mating pool (corresponding to the parameter ms). If len(Pop) < ms, the
mating pool returned by a method without replacement contains less than ms individuals
since it can at most consist of the whole population.

Mate = selectw(Pop, v,ms)⇒ countOccurences(p,Mate) = 1 ∀p ∈ Mate (2.13)

The selection algorithms have major impact on the performance of evolutionary algo-
rithms. Their behavior has thus been subject to several detailed studies, conducted by, for
instance, Goldberg and Deb [823], Blickle and Thiele [232], and Zhong et al. [2318], just to
name a few.

Usually, fitness assignment processes are carried out before selection and the selection
algorithms base their decisions solely on the fitness v of the individuals. It is possible to rely
on the prevalence relation, i. e., to write select(Pop, cmpF ,ms) instead of select(Pop, v,ms),
thus saving the costs of the fitness assignment process. However, this will lead to the same
problems that occurred in the first approach of prevalence-proportional fitness assignment
(see Section 2.3.3 on page 112) and we will therefore not discuss such techniques in this
book.

Many selection algorithms only work with scalar fitness and thus need to rely on a fitness
assignment process in multi-objective optimization. Selection algorithms can be chained –
the resulting mating pool of the first selection may then be used as input for the next one,
maybe even with a secondary fitness assignment process in between. In some applications,
an environmental selection that reduces the number of individuals is performed first and
then a mating selection follows which extracts the individuals which should be used for
reproduction.

Visualization

In the following sections, we will discuss multiple selection algorithms. In order to ease
understanding them, we will visualize the expected number of times S(p) that an individual
p will reach the mating pool Mate for some of the algorithms.

S(p) = E[countOccurences(p,Mate)] (2.14)

Therefore, we will use the special case where we have a population Pop of len(Pop) = 1000
individuals, p0..p999 and also a target mating pool size ms = 1000. Each individual pi has
the fitness value v(pi.x), and fitness is subject to minimization. For this fitness, we consider
two cases:

1. As sketched in Fig. 2.6.a, the individual pi has fitness i, i. e., v1(p0.x) = 0, v1(p1.x) =
1, . . . , v1(p999.x) = 999.

2. Individual pi has fitness (i + 1)3, i. e., v2(p0.x) = 1, v2(p1.x) = 3, . . . , v2(p999.x) =
1 000 000 000, as illustrated in Fig. 2.6.b.

2.4.2 Truncation Selection

Truncation selection21, also called deterministic selection or threshold selection, returns the
k < ms best elements from the list Pop. These elements are copied as often as needed
until the mating pool size ms reached. For k, normally values like len(Pop)/2 or len(Pop)/3 are

21 http://en.wikipedia.org/wiki/Truncation_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Truncation_selection
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Figure 2.6: The two example fitness cases.

used. Algorithm 2.6 realizes this scheme by first sorting the population in ascending order
according to the fitness v. Then, it iterates from 0 to ms and inserts only the elements with
indices from 0 to k − 1 into the mating pool.

Algorithm 2.6: Mate←− truncationSelectk(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: k: cut-off value
Data: i: counter variables
Output: Mate: the winners of the tournaments which now form the mating pool

begin1

Mate←− ()2

k ←− min {k, len(Pop)}3

Pop←− sortLista(Pop, v)4

for i←− 0 up to ms− 1 do5

Mate←− addListItem(Mate,Pop[i mod k])6

return Mate7

end8

Truncation selection is usually used in Evolution Strategies with (µ+λ) and (µ, λ) strate-
gies. In general evolutionary algorithms, it should be combined with a fitness assignment
process that incorporates diversity information in order to prevent premature convergence.
Recently, Lässig et al. [1260] have proved that truncation selection is the optimal selection
strategy for crossover, provided that the right value of k is used. In practical applications,
this value is normally not known.

In Figure 2.7, we sketch the expected number of offspring for the individuals from our
examples specified in Section 2.4.1. In this selection scheme, the diagram will look exactly
the same regardless whether we use fitness configuration 1 or 2, since it is solely based
on the order of individuals and not on the numerical relation of their fitness. If we set
k = ms = len(Pop), each individual will have one offspring in average. If k = 1

2ms, the
top-50% individuals will have two offspring and the others none. For k = 1

10ms, only the
best 100 from the 1000 solution candidates will reach the mating pool but reproduce 10
times in average.
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Figure 2.7: The number of expected offspring in truncation selection.

2.4.3 Fitness Proportionate Selection

Fitness proportionate selection22 has already been applied in the original genetic algorithms
as introduced by Holland [940] and therefore is one of the oldest selection schemes. In fitness
proportionate selection, the probability P (p1) of an individual p1 ∈ Pop to enter the mating
pool is proportional to its fitness v(p.x) (subject to maximization) compared to the sum of
the fitness of all individuals. This relation in its original form is defined in Equation 2.15
below.

P (p1) =
v(p1.x)∑

∀p2∈Pop v(p2.x)
(2.15)

There exists a variety of approaches which realize such probability distributions [823],
like stochastic remainder selection (Brindle [289], Booker [248]) and stochastic universal
selection (Baker [121], Greffenstette and Baker [858]). The most commonly known method is
the Monte Carlo roulette wheel selection by De Jong [512], where we imagine the individuals
of a population to be placed on a roulette23 wheel as sketched in Fig. 2.8.a. The size of
the area on the wheel standing for a solution candidate is proportional to its fitness. The
wheel is spun, and the individual where it stops is placed into the mating pool Mate. This
procedure is repeated until ms individuals have been selected.

In the context of this book, fitness is subject to minimization. Here, higher fitness values
v(p.x) indicate unfit solution candidates p.x whereas lower fitness denotes high utility. Fur-
thermore, the fitness values are normalized into a range of [0, sum], because otherwise, fitness
proportionate selection will handle the set of fitness values {0, 1, 2} in a different way than
{10, 11, 12}. Equation 2.19 defines the framework for such a (normalized) fitness proportion-
ate selection “rouletteWheelSelect”. It is illustrated exemplarily in Fig. 2.8.b and realized
in Algorithm 2.7 as a variant with and in Algorithm 2.8 without replacement. Amongst

22 http://en.wikipedia.org/wiki/Fitness_proportionate_selection [accessed 2008-03-19]

23 http://en.wikipedia.org/wiki/Roulette [accessed 2008-03-20]

http://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://en.wikipedia.org/wiki/Roulette
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Figure 2.8: Examples for the idea of roulette wheel selection.

others, Whitley [2211] points out that even fitness normalization as performed here cannot
overcome the drawbacks of fitness proportional selection methods.

minV = min {v(p.x) ∀p ∈ Pop} (2.16)

maxV = max {v(p.x) ∀p ∈ Pop} (2.17)

normV(p.x) =
maxV− v(p.x)

maxV−minV
(2.18)

P (p1) =
normV (p1.x)∑

∀p2∈Pop normV (p2.x)
(2.19)

But what are the drawbacks of fitness proportionate selection methods? Let us therefore
visualize the expected results of roulette wheel selection applied to the special cases stated in
Section 2.4.1. Figure 2.9 illustrates the number of expected occurrences S(pi) of an individual
pi if roulette wheel selection was applied. Since ms = 1000, we draw one thousand times
a single individual from the population Pop. Each single choice is based on the proportion
of the individual fitness in the total fitness of all individuals, as defined in Equation 2.15
and Equation 2.19. Thus, in scenario 1 with the fitness sum 999∗998

2 = 498501, the relation

S(pi) = ms ∗ i
498501 holds for fitness maximization and S(pi) = ms 999−i

498501 for minimization.
As result (sketched in Fig. 2.9.a), the fittest individuals produce (on average) two offspring,
whereas the worst solution candidates will always vanish in this example. For the 2nd scenario
with v2(pi.x) = (i + 1)3, the total fitness sum is approximately 2.51 · 1011 and S(pi) =

ms (i+1)3

2.52 · 1011 holds for maximization. The resulting expected values depicted in Fig. 2.9.b
are significantly different from those in Fig. 2.9.a. The meaning of this is that the design of
the objective functions (or the fitness assignment process) has a much stronger influence on
the convergence behavior of the evolutionary algorithm. This selection method only works
well if the fitness of an individual is indeed something like a proportional measure for the
probability that it will produce better offspring.

Thus, roulette wheel selection has a bad performance compared to other schemes like
tournament selection [823, 231] or ranking selection [823, 232]. It is mainly included here for
the sake of completeness and because it is easy to understand and suitable for educational
purposes.
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Algorithm 2.7: Mate←− rouletteWheelSelectr(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Data: i: a counter variable
Data: a: a temporary store for a numerical value
Data: A: the array of fitness values
Data: min,max, sum: the minimum, maximum, and sum of the fitness values
Output: Mate: the mating pool

begin1

A←− createList(len(Pop) , 0)2

min←−∞3

max←− −∞4

for i←− 0 up to len(Pop)− 1 do5

a←− v(Pop[i].x)6

A[i]←− a7

if a < min then min←− a8

if a > max then max←− a9

if max = min then10

max←− max+ 111

min←− min− 112

sum←− 013

for i←− 0 up to len(Pop)− 1 do14

sum←− max−A[i]

max−min15

A[i]←− sum16

for i←− 0 up to ms− 1 do17

a←− searchItemas(randomu(0, sum) , A)18

if a < 0 then a←− −a− 119

Mate←− addListItem(Mate,Pop[a])20

return Mate21

end22
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Figure 2.9: The number of expected offspring in roulette wheel selection.
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Algorithm 2.8: Mate←− rouletteWheelSelectw(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Data: i: a counter variable
Data: a, b: temporary stores for numerical values
Data: A: the array of fitness values
Data: min,max, sum: the minimum, maximum, and sum of the fitness values
Output: Mate: the mating pool

begin1

A←− createList(len(Pop) , 0)2

min←−∞3

max←− −∞4

for i←− 0 up to len(Pop)− 1 do5

a←− v(Pop[i].x)6

A[i]←− a7

if a < min then min←− a8

if a > max then max←− a9

if max = min then10

max←− max+ 111

min←− min− 112

sum←− 013

for i←− 0 up to len(Pop)− 1 do14

sum←− max−A[i]

max−min15

A[i]←− sum16

for i←− 0 up to min {ms, len(Pop)} − 1 do17

a←− searchItemas(randomu(0, sum) , A)18

if a < 0 then a←− −a− 119

if a = 0 then b←− 020

else b←− A[a−1]21

b←− A[a]− b22

for j ←− a+ 1 up to len(A)− 1 do23

A[j]←− A[j]− b24

sum←− sum− b25

Mate←− addListItem(Mate,Pop[a])26

Pop←− deleteListItem(Pop, a)27

A←− deleteListItem(A, a)28

return Mate29

end30

2.4.4 Tournament Selection

Tournament selection24, proposed by Wetzel [2198] and studied by Brindle [289], is one
of the most popular and effective selection schemes. Its features are well-known and have
been analyzed by a variety of researchers such as Blickle and Thiele [231, 232], Miller and
Goldberg [1416], Lee et al. [1269], Sastry and Goldberg [1809], and Oei et al. [1558]. In
tournament selection, k elements are picked from the population Pop and compared with
each other in a tournament. The winner of this competition will then enter mating pool
Mate. Although being a simple selection strategy, it is very powerful and therefore used in
many practical applications [55, 316, 1403, 46].

As example, consider a tournament selection (with replacement) with a tournament size
of two [2208]. For each single tournament, the contestants are chosen randomly according to

24 http://en.wikipedia.org/wiki/Tournament_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tournament_selection
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a uniform distribution and the winners will be allowed to enter the mating pool. If we assume
that the mating pool will contain about as same as many individuals as the population, each
individual will, on average, participate in two tournaments. The best solution candidate of
the population will win all the contests it takes part in and thus, again on average, contributes
approximately two copies to the mating pool. The median individual of the population is
better than 50% of its challengers but will also loose against 50%. Therefore, it will enter the
mating pool roughly one time on average. The worst individual in the population will lose
all its challenges to other solution candidates and can only score even if competing against
itself, which will happen with probability (1/ms)

2
. It will not be able to reproduce in the

average case because ms ∗ (1/ms)
2

= 1/ms < 1 ∀ms > 1.
For visualization purposes, let us go back to our examples from Section 2.4.1 with a

population of 1000 individuals p0..p999 and ms = 1000. Again, we assume that each indi-
vidual has an unique fitness value of v1(pi.x) = i or v2(pi.x) = (i + 1)3, respectively. If we
apply tournament selection with replacement in this special scenario, the expected number
of occurrences S(pi) of an individual pi in the mating pool can be computed according to
Blickle and Thiele [232] as

S(pi) = ms ∗
((

1000− i
1000

)k

−
(

1000− i− 1

1000

)k
)

(2.20)

k=10
k=5

k=1

k=4
k=3
k=2

100 200 300 400 500 600 700 i 900

100 200 300 400 500 600 700 900v (p .x)1 i

1e6 8e6 3e7 6e7 1e8 2e8 3e8 7e8v (p .x)2 i

0

0

1

0

1

2

3

4

5

6

7

S(p )i

9

Figure 2.10: The number of expected offspring in tournament selection.

The absolute values of the fitness play no role. The only thing that matters is whether
or not the fitness of one individual is higher as the fitness of another one, not fitness dif-
ference itself. The expected numbers of offspring for the two example cases 1 and 2 from
Section 2.4.1 are the same. Tournament selection thus gets rid of the problems of fitness
proportionate methods. Figure 2.10 depicts these numbers for different tournament sizes
k = {1, 2, 3, 4, 5, 10}. If k = 1, tournament selection degenerates to randomly picking indi-
viduals and each solution candidate will occur one time in the mating pool on average. With
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rising k, the selection pressure increases: individuals with good fitness values create more
and more offspring whereas the chance of worse solution candidates to reproduce decreases.

Tournament selection with replacement (TSR) is presented in Algorithm 2.9. Tournament
selection without replacement (TSoR) [1269, 18] can be defined in two forms. In the first
variant specified as Algorithm 2.10, a solution candidate cannot compete against itself. This
method is defined in. In Algorithm 2.11, on the other hand, an individual may enter the
mating pool at most once.

Algorithm 2.9: Mate←− tournamentSelectr,k(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] k: the tournament size
Data: a: the index of the tournament winner
Data: i, j: counter variables
Output: Mate: the winners of the tournaments which now form the mating pool

begin1

Mate←− ()2

Pop←− sortLista(Pop, v)3

for i←− 0 up to ms− 1 do4

a←− ⌊randomu(0, len(Pop))⌋5

for j ←− 1 up to k − 1 do6

a←− min {a, ⌊randomu(0, len(Pop))⌋}7

Mate←− addListItem(Mate,Pop[a])8

return Mate9

end10

Algorithm 2.10: Mate←− tournamentSelectw1,k(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] k: the tournament size
Data: a: the index of the tournament winner
Data: i, j: counter variables
Output: Mate: the winners of the tournaments which now form the mating pool

begin1

Mate←− ()2

Pop←− sortLista(Pop, v)3

for i←− 0 up to min {len(Pop) ,ms} − 1 do4

a←− ⌊randomu(0, len(Pop))⌋5

for j ←− 1 up to min {len(Pop) , k} − 1 do6

a←− min {a, ⌊randomu(0, len(Pop))⌋}7

Mate←− addListItem(Mate,Pop[a])8

Pop←− deleteListItem(Pop, a)9

return Mate10

end11

The algorithms specified here should more precisely be entitled as deterministic tour-
nament selection algorithms since the winner of the k contestants that take part in each
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Algorithm 2.11: Mate←− tournamentSelectw2,k(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] k: the tournament size
Data: A: the list of contestants per tournament
Data: a: the tournament winner
Data: i, j: counter variables
Output: Mate: the winners of the tournaments which now form the mating pool

begin1

Mate←− ()2

Pop←− sortLista(Pop, v)3

for i←− 0 up to ms− 1 do4

A←− ()5

for j ←− 1 up to min {k, len(Pop)} do6

repeat7

a←− ⌊randomu(0, len(Pop))⌋8

until searchItemu(a,A) < 09

A←− addListItem(A, a)10

a←− minA11

Mate←− addListItem(Mate,Pop[a])12

return Mate13

end14

tournament enters the mating pool. In the non-deterministic variant this is not necessarily
the case. There, a probability p is defined. The best individual in the tournament is selected
with probability p, the second best with probability p(1−p), the third best with probability
p(1 − p)2 and so on. The ith best individual in a tournament enters the mating pool with
probability p(1 − p)i. Algorithm 2.12 on the facing page realizes this behavior for a tour-
nament selection with replacement. Notice that it becomes equivalent to Algorithm 2.9 on
the previous page if p is set to 1. Besides the algorithms discussed here, a set of additional
tournament-based selection methods has been introduced by Lee et al. [1269].
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Algorithm 2.12: Mate←− tournamentSelectp
r,k(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] p: the selection probability, p ∈ [0, 1]
Input: [implicit] k: the tournament size
Data: A: the set of tournament contestants
Data: i, j: counter variables
Output: Mate: the winners of the tournaments which now form the mating pool

begin1

Mate←− ()2

Pop←− sortLista(Pop, v)3

for i←− 0 up to ms− 1 do4

A←− ()5

for j ←− 0 up to k − 1 do6

A←− addListItem(A, ⌊randomu(0, len(Pop))⌋)7

A←− sortLista(A, cmp(a1, a2) ≡ (a1 − a2))8

for j ←− 0 up to len(A)− 1 do9

if (randomu() ≤ p) ∨ (j ≥ len(A)− 1) then10

Mate←− addListItem(Mate,Pop[A[j]])11

j ←−∞12

return Mate13

end14

2.4.5 Ordered Selection

Ordered selection is another approach for circumventing the problems of fitness proportion-
ate selection methods. Here, the probability of an individual to be selected is proportional
to (a power of) its position (rank) in the sorted list of all individuals in the population.
The implicit parameter k ∈ R+ of the ordered selection algorithm determines the selection
pressure. It equals to the number of expected offspring of the best individual and is thus
much similar to the parameter k of tournament selection. The bigger k gets, the higher is
the probability that individuals which are non-prevailed i. e., have good objective values will
be selected.

Algorithm 2.13 demonstrates how ordered selection with replacement works and the
variant without replacement is described in Algorithm 2.14. Basically, it first converts the
parameter k to a power q to which the uniformly drawn random numbers are raised that
are used for indexing the sorted individual list. This can be achieved with Equation 2.21.

q =
1

1− log k
log ms

(2.21)

Figure 2.11 illustrates the expected offspring in the application of ordered selection with
k ∈ {1, 2, 3, 4, 5}. Like tournament selection, a value of k = 1 leads degenerates the evolution-
ary algorithm to a parallel random walk. Another close similarity to tournament selection
occurs when comparing the exact formulas computing the expected offspring for our exam-
ples:

S(pi) = ms ∗
((

i+ 1

1000

)q

−
(

i

1000

)q)
(2.22)

Equation 2.22 looks pretty much like Equation 2.20. The differences between the two
selection methods become obvious when comparing the diagrams Figure 2.11 and Figure 2.10
which both are independent of the actual fitness values. Tournament selection creates many
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Algorithm 2.13: Mate←− orderedSelectp
r(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] k: the parameter of the ordering selection
Data: q: the power value to be used for ordering
Data: i: a counter variable
Output: Mate: the mating pool

begin1

q ←− 1

1− log k
log ms2

Mate←− ()3

Pop←− sortLista(Pop, v)4

for i←− 0 up to ms− 1 do5

Mate←− addListItem(Mate,Pop[⌊randomu()p∗len(Pop)⌋])6

return Mate7

end8

Algorithm 2.14: Mate←− orderedSelectp
w(Pop, v,ms)

Input: Pop: the list of individuals to select from
Input: v: the fitness values
Input: ms: the number of individuals to be placed into the mating pool Mate
Input: [implicit] k: the parameter of the ordering selection
Data: q: the power value to be used for ordering
Data: i, j: counter variables
Output: Mate: the mating pool

begin1

q ←− 1

1− log k
log ms2

Mate←− ()3

Pop←− sortLista(Pop, v)4

for i←− 0 up to min {ms, len(Pop)} − 1 do5

j ←− ⌊randomu()p ∗ len(Pop)⌋6

Mate←− addListItem(Mate,Pop[j])7

Pop←− deleteListItem(Pop, j)8

return Mate9

end10

copies of the better fraction of the population and almost none of the others. Ordered
selection focuses on an even smaller group of the fittest individuals but also even the worst
solution candidates still have a survival probability not too far from one. In other words,
while tournament selection reproduces a larger group of good individuals and kills most of
the others, ordered selection assigns very high fertility to very few individuals but preservers
also the less fitter ones.
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Figure 2.11: The number of expected offspring in ordered selection.

2.4.6 Ranking Selection

Ranking selection, introduced by Baker [120] and more thoroughly discussed by Whitley
[2211], Blickle and Thiele [232, 230], and Goldberg and Deb [823] is another approach for
circumventing the problems of fitness proportionate selection methods. In ranking selection
[120, 2211, 858], the probability of an individual to be selected is proportional to its position
(rank) in the sorted list of all individuals in the population. Using the rank smoothes out
larger differences of the objective values and emphasizes small ones. Generally, we can the
conventional ranking selection method as the application of a fitness assignment process
setting the rank as fitness (which can be achieved with Pareto ranking) and a subsequent
fitness proportional selection.

2.4.7 VEGA Selection

The Vector Evaluated Genetic Algorithm by Schaffer [1821, 1822] applies a special selection
algorithm which does not incorporate any preceding fitness assignment process but works on
the objective values directly. For each of the objective functions fi ∈ F , it selects a subset of
the mating pool Mate of the size ms/|F |. Therefore it applies fitness proportionate selection
which is based on fi instead of a fitness assignment “assignFitness”. The mating pool is then
a mixture of these sub-selections. Richardson et al. [1728] show in [1820] that this selection
scheme is approximately the same as if computing a weighted sum of the fitness values. As
pointed out by Fonseca and Fleming [714], in the general case, this selection method will
sample non-prevailed solution candidates at different frequencies. Schaffer also anticipated
that the population of his GA may split into different species, each particularly strong in
one objective, if the Pareto frontier is concave.
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Algorithm 2.15: Mate←− vegaSelect(Pop, F,ms)

Input: Pop: the list of individuals to select from
Input: F : the objective functions
Input: ms: the number of individuals to be placed into the mating pool Mate
Data: i: a counter variable
Data: j: the size of the current subset of the mating pool
Data: A: a temporary mating pool
Output: Mate: the individuals selected

begin1

Mate←− ()2

for i←− 1 up to |F | do3

j ←− ms
|F |4

if i = 1 then j ←− j +ms mod |F |5

A←− rouletteWheelSelectr(Pop, v ≡ fi, j)6

Mate←− appendList(Mate, A)7

return Mate8

end9

2.4.8 Clearing and Simple Convergence Prevention (SCP)

In our experiments (especially in Genetic Programming and problems with discrete objective
functions) we often use a very simple mechanism to prevent premature convergence (see
Section 1.4.2) which we outline in Algorithm 2.17. In our opinion, this SCP method is
neither a fitness nor a selection algorithm, but we think it fits best into this section.

The idea is simple: the more similar individuals we have in the population, the more
likely are we converged. We do not know whether we have converged to a global optimum
or to a local one. If we got stuck at a local optimum, we should maybe limit the fraction of
the population which resides at this spot. In case we have found the global optimum, this
approach does not hurt, because in the end, one single point on this optimum suffices.

Clearing

The first one to apply such an explicit limitation method was Pétrowski [1638, 1639] whose
clearing approach is applied in each generation and works as specified in Algorithm 2.16
where fitness is subject to minimization. Basically, clearing divides the population of an EA
into several sub-populations according to a distance measure dist applied in the genotypic
(G) or phenotypic space (X) in each generation. The individuals of each sub-population have
at most the distance σ to the fittest individual in this niche. Then, the fitness of all but the
k best individuals in such a sub-population is set to the worst possible value. This effectively
prevents that a niche can get too crowded. Sareni and Krähenbühl [1801] showed that this
method is very promising. Singh and Deb [1892] suggest a modified clearing approach which
shifts individuals that would be cleared farther away and reevaluates their fitness.

SCP

We modified this approach in two respects: We measure similarity not in form of a distance
in G or X, but in the objective space Y ⊆ R|F |. All individuals are compared with each
other. If two have exactly the same objective values25, one of them is thrown away with

25 The exactly-the-same-criterion makes sense in combinatorial optimization and many Genetic
Programming problems but may easily be replaced with a limit imposed on the Euclidian distance
in real-valued optimization problems, for instance.
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Algorithm 2.16: Pop′ ←− clearing(Pop, σ, k)

Input: Pop: the list of individuals to apply clearing to
Input: σ: the clearing radius
Input: k: the nieche capacity
Input: [implicit] v: the fitness values
Input: [implicit] dist: a distance measure in the genome or phenome
Data: n: the current number of winners
Data: i, j: counter variables
Output: Pop′: the pruned population

begin1

Pop′ ←− sortLista(Pop, v)2

for i←− 0 up to len(Pop′)− 1 do3

if v(Pop′
[i].x) <∞ then4

n←− 15

for j ←− i+ 1 up to len(Pop′)− 1 do6

if (v(Pop′
[j].x) <∞) ∧ (dist(Pop′

[i],Pop′
[j]) < σ) then7

if n < k then n←− n+ 18

else v(Pop′
[j].x)←−∞9

end10

probability26 cp ∈ [0, 1] and does not take part in any further comparisons. This way, we
weed out similar individuals without making any assumptions about G or X and make room
in the population and mating pool for a wider diversity of solution candidates. For cp = 0,
this prevention mechanism is turned off, for cp = 1, all remaining individuals will have
different objective values.

Although this approach is very simple, the results of our experiments were often sig-
nificantly better with this convergence prevention method turned on than without it
[1650, 2188]. Additionally, in none of our experiments, the outcomes were influenced nega-
tively by this filter, which makes it even more robust than other methods for convergence
prevention like sharing or variety preserving. Algorithm 2.17, which has to be applied after
the evaluation of the objective values of the individuals in the population and before any
fitness assignment or selection takes place, specifies how our simple mechanism works.

If an individual p occurs n times in the population or if there are n individuals with
exactly the same objective values, Algorithm 2.17 cuts down the expected number of their
occurrences S(p) to

S(p) =

n∑

i=1

(1− cp)
i−1

=

n−1∑

i=0

(1− cp)
i

=
(1− cp)

n − 1

−cp
=

1− (1− cp)
n

cp
(2.23)

In Figure 2.12, we sketch the expected number of remaining instances of the individual
p after this pruning process if it occurred n times in the population before Algorithm 2.17
was applied.

From Equation 2.23 follows that even a population of infinite size which has fully con-
verged to one single value will probably not contain more than 1

cp
copies of this individual

after the simple convergence prevention has been applied. This threshold is also visible in
Figure 2.12.

lim
n→∞

S(p) = lim
n→∞

1− (1− cp)
n

cp
=

1− 0

cp
=

1

cp
(2.24)

In Pétrowski’s clearing approach [1638], the maximum number of individuals which can
survive in a niche was a fixed constant k and, if less than k individuals resided in a niche,

26 instead of defining a fixed threshold k
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Algorithm 2.17: Pop′ ←− convergencePreventionSCP(Pop, cp)

Input: Pop: the list of individuals to apply convergence prevention to
Input: cp: the convergence prevention probability, cp ∈ [0, 1]
Input: [implicit] F : the set of objective functions
Data: i, j: counter variables
Data: p: the individual checked in this generation
Output: Pop′: the pruned population

begin1

Pop′ ←− ()2

for i←− 0 up to len(Pop)− 1 do3

p←− Pop[i]4

for j ←− len(Pop′)− 1 down to 0 do5

if f(p.x) = f(Pop′
[j].x) ∀f ∈ F then6

if randomu() < cp then7

Pop′ ←− deleteListItem(Pop′, j)8

Pop′ ←− addListItem(Pop′, p)9

return Pop′
10

end11
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Figure 2.12: The expected numbers of occurences for different values of n and cp.

none of them would be affected. Different from that, an expected value of the number of
individuals allowed in a niche is specified with the probability cp and may be both, exceeded
or undercut. Another difference of the approaches arises from the space in which the distance
is computed.

Discussion

Whereas clearing prevents the EA from concentrating too much on a certain area in the
search or problem space, SCP stops it from keeping too many individuals with equal utility.
The former approach works against premature convergence to a certain solution structure
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while the latter forces the EA to “keep track” of a trail to solution candidates with worse
fitness which may later evolve to good individuals with traits different from the currently
exploited ones.

Which of the two approaches is better has not yet been tested with comparative experi-
ments and is part of our future work. At the present moment, we assume that in real-valued
search or problem spaces, clearing should be more suitable whereas we know from exper-
iments using our approach only that SCP performs very good in combinatorial problems
[1650, 2188] Genetic Programming (see Section 21.3.2, for instance).

TODO add remaining selection
algorithms

2.5 Reproduction

An optimization algorithm uses the information gathered up to step t for creating the so-
lution candidates to be evaluated in step t + 1. There exist different methods to do so.
In evolutionary algorithms, the aggregated information corresponds to the population Pop
and the set of best individuals Arc if such an archive is maintained. The search operations
searchOp ∈ Op in used in the evolutionary algorithm family are called reproduction oper-
ation, inspired by the biological procreation mechanisms27 of mother nature [1730]. There
are four basic operations:

1. Creation has no direct natural paragon; it simple creates a new genotype without any
ancestors or heritage. Hence, it roughly can be compared with the occurrence of the first
living cells from out a soup of certain chemicals28.

2. Duplication resembles the cell division29, resulting in two individuals similar to one
parent.

3. Mutation in evolutionary algorithms corresponds to small, random variations in the
genotype of an individual, exactly like its natural counterpart30.

4. Like in sexual reproduction, recombination31 combines two parental genotypes to a new
genotype including traits from both elders.

In the following, we will discuss these operations in detail and provide general definitions
form them.

Definition 2.9 (Creation). The creation operation “create” is used to produce a new
genotype g ∈ G with a random configuration.

g = create()⇒ g ∈ G (2.25)

When an evolutionary algorithm starts, no information about the search space has been
gathered yet. Hence, we cannot use existing solution candidates to derive new ones and
search operations with an arity higher than zero cannot be applied. Creation is thus used
to fill the initial population Pop(t = 0).

Definition 2.10 (Duplication). The duplication operation duplicate : G 7→ G is used to
create an exact copy of an existing genotype g ∈ G.

g = duplicate(g) ∀g ∈ G (2.26)

27 http://en.wikipedia.org/wiki/Reproduction [accessed 2007-07-03]

28 http://en.wikipedia.org/wiki/Abiogenesis [accessed 2008-03-17]

29 http://en.wikipedia.org/wiki/Cell_division [accessed 2008-03-17]

30 http://en.wikipedia.org/wiki/Mutation [accessed 2007-07-03]

31 http://en.wikipedia.org/wiki/Sexual_reproduction [accessed 2008-03-17]

http://en.wikipedia.org/wiki/Reproduction
http://en.wikipedia.org/wiki/Abiogenesis
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Sexual_reproduction
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Duplication is just a placeholder for copying an element of the search space, i. e., it is
what occurs when neither mutation nor recombination are applied. It is useful to increase
the share of a given type of individual in a population.

Definition 2.11 (Mutation). The mutation operation mutate : G 7→ G is used to create a
new genotype gn ∈ G by modifying an existing one. The way this modification is performed
is application-dependent. It may happen in a randomized or in a deterministic fashion.

gn = mutate(g) : g ∈ G⇒ gn ∈ G (2.27)

Definition 2.12 (Recombination). The recombination (or crossover32) operation
recombine : G × G 7→ G is used to create a new genotype gn ∈ G by combining the
features of two existing ones. Depending on the application, this modification may happen
in a randomized or in a deterministic fashion.

gn = recombine(ga, gb) : ga, gb ∈ G⇒ gn ∈ G (2.28)

Notice that the term recombination is more general than crossover since it stands for
arbitrary search operations that combines the traits of two individuals. Crossover, however,
is only used if the elements search space G are linear representations. Then, it stands for
exchanging parts of these so-called strings.

Now we can define the set OpEA of search operations most commonly applied in evolu-
tionary algorithms as

OpEA = {create,duplicate,mutate, recombine} (2.29)

All of them can be combined arbitrarily. It is, for instance, not unusual to mutate the results
of a recombination operation, i. e., to perform mutate(recombine(g1, g2)).

The four operators are altogether used to reproduce whole populations of individuals.

Definition 2.13 (reproducePop). The population reproduction operation Pop =
reproducePop(Mate) is used to create a new population Pop by applying the reproduction
operations to the mating pool Mate.

Pop = reproducePop(Mate)⇒ ∀p ∈ Mate⇒ p ∈ P, ∀p ∈ Pop⇒ p ∈ P, len(Pop) = len(Mate)
∀p ∈ Pop⇒ p.g = create() ∨

p.g = duplicate(pold.g) : pold ∈ Mate ∨
p.g = mutate(pold.g) : pold ∈ Mate ∨
p.g = recombine(pold1.g, pold2.g) :

pold1, pold2 ∈ Mate
(2.30)

For creating an initial population of the size s, we furthermore define the function
createPop(s) in Algorithm 2.18.

2.5.1 NCGA Reproduction

The Neighborhood Cultivation Genetic Algorithm by Watanabe et al. [2160] discussed in
?? uses a special reproduction method. Recombination is performed only on neighboring
individuals, which leads to child genotypes close to their parents. This so-called neighbor-
hood cultivation shifts the recombination-operator more into the direction exploitation, i. e.,
NCGA uses crossover for investigating the close surrounding of known solution candidates.
The idea is that parents that do not differ much from each other are more likely to be com-
patible in order to produce functional offspring than parents that have nothing in common.

32 http://en.wikipedia.org/wiki/Recombination [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Recombination
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Algorithm 2.18: Pop←− createPop(s)

Input: s: the number of individuals in the new population
Input: [implicit] create: the creation operator
Data: i: a counter variable
Output: Pop: the new population of randomly created individuals (len(Pop) = s)

begin1

Pop←− ()2

for i←− 0 up to s− 1 do3

Pop←− addListItem(Pop, create())4

return Pop5

end6

Neighborhood cultivation is achieved in Algorithm 2.19 by sorting the mating pool along one
focused objective. Then, the elements situated directly besides each other are recombined.
The focus on the objective rotates in a way that in a three-objective optimization the first
objective is focused at the beginning, then the second, then the third and after that again
the first. The algorithm shown here receives the additional parameter foc which denotes
the focused objective. Both, recombination and mutation are performed with an implicitly
defined probability (r and m, respectively).

Algorithm 2.19: Pop←− ncgaReproducePopfoc(Mate)

Input: Mate: the mating pool
Input: foc: the objective currently focused
Input: [implicit] recombine,mutate: the recombination and mutation routines
Input: [implicit] r,m: the probabilities of recombination and mutation
Data: i: a counter variable
Output: Pop: the new population with len(Pop) = len(Mate)

begin1

Pop←− sortLista(Mate, ffoc)2

for i←− 0 up to len(Pop)− 1 do3

if (randomu() ≤ r) ∧ (i < len(Pop)− 1) then Pop[i]←− recombine(Pop[i],Pop[i+1])4

if randomu() ≤ m then Pop[i]←− mutate(Pop[i])5

return Pop6

end7

2.6 Algorithms

Besides the basic evolutionary algorithms introduced in Section 2.1.3 on page 98, there exists
a variety of other, more sophisticated approaches. Many of them deal especially with multi-
objective optimization which imposes new challenges on fitness assignment and selection. In
this section we discuss the most prominent of these evolutionary algorithms.

2.6.1 VEGA

The very first multi-objective genetic algorithm is the Vector Evaluated Genetic Algorithm
(VEGA) created by Schaffer [1821, 1822] in the mid-1980s. The main difference between
VEGA and the basic form of evolutionary algorithms is the modified selection algorithm
which you can find discussed in Section 2.4.7 on page 133. This selection algorithm solely



140 2 Evolutionary Algorithms

relies on the objective functions F and does not use any preceding fitness assignment process
nor can it incorporate a prevalence comparison scheme cmpF . However, it has severe weak-
nesses also discussed in Section 2.4.7 and thus cannot be considered as an efficient approach
to multi-objective optimization.

Algorithm 2.20: X⋆ ←− vega(F, s)

Input: F : the objective functions
Input: ps: the population size
Data: t: the generation counter
Data: Pop: the population
Data: Mate: the mating pool
Data: v: the fitness function resulting from the fitness assigning process
Output: X⋆: the set of the best elements found

begin1

t←− 02

Pop←− createPop(ps)3

while terminationCriterion() do4

Mate←− vegaSelect(Pop, F, ps)5

t←− t+ 16

Pop←− reproducePop(Mate)7

return extractPhenotypes(extractOptimalSet(Pop))8

end9

TODO add remaining EAs
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Genetic Algorithms

3.1 Introduction

Genetic algorithms1 (GAs) are a subclass of evolutionary algorithms where the elements
of the search space G are binary strings (G = B∗) or arrays of other elementary types. As
sketched in Figure 3.1, the genotypes are used in the reproduction operations whereas the
values of the objective functions f ∈ F are computed on basis of the phenotypes in the
problem space X which are obtained via the genotype-phenotype mapping “gpm”. [821,
940, 916, 2208]

The roots of genetic algorithms go back to the mid-1950s, where biologists like Barricelli
[150, 151, 152, 153] and the computer scientist Fraser [742] began to apply computer-aided
simulations in order to gain more insight into genetic processes and the natural evolution and
selection. Bremermann [287] and Bledsoe [216, 215, 217, 218] used evolutionary approaches
based on binary string genomes for solving inequalities, for function optimization, and for
determining the weights in neural networks in the early 1960s [219]. At the end of that
decade, important research on such search spaces was contributed by Bagley [116] (who
introduced the term genetic algorithm), Rosenberg [1760], Cavicchio, Jr. [354, 355], and
Frantz [741] – all based on the ideas of Holland at the University of Michigan. As a result of
Holland’s work [937, 939, 940, 938] genetic algorithms as a new approach for problem solving
could be formalized finally became widely recognized and popular. Today, there are many
applications in science, economy, and research and development [1681] that can be tackled
with genetic algorithms. Therefore, various forms of genetic algorithms [423] have been
developed to. Some genetic algorithms2 like the human-based genetic algorithms3 (HBGA),
for instance, even require human beings for evaluating or selecting the solution candidates
[1884, 1997, 1998, 1178, 883]

It should further be mentioned that, because of the close relation to biology and since ge-
netic algorithms were originally applied to single-objective optimization, the objective func-
tions f here are often referred to as fitness functions. This is a historically grown misnaming
which should not be mixed up with the fitness assignment processes discussed in Section 2.3
on page 111 and the fitness values v used in the context of this book.

1 http://en.wikipedia.org/wiki/Genetic_algorithm [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Interactive_genetic_algorithm [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/HBGA [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Interactive_genetic_algorithm
http://en.wikipedia.org/wiki/HBGA
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create an initial
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Figure 3.1: The basic cycle of genetic algorithms.

3.2 General Information

3.2.1 Areas Of Application

Some example areas of application of genetic algorithms are:

Application References

Scheduling
[1275, 417, 1228, 160, 340, 339,
341]

Chemistry, Chemical Engineering
[475, 2269, 474, 476, 531, 2127,
1075, 1401]

Medicine [319, 1900, 2278, 2117]
Data Mining and Data Analysis [1424, 1089, 834, 1991, 445]
Geometry and Physics [366, 367, 966, 1222, 1223]

Economics and Finance [2302]

Networking and Communication
[628, 1861, 1220, 290, 1164,
2324]
see Section 23.2 on page 401

Electrical Engineering and Circuit Design [1304, 1305, 1306]
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Image Processing [25]

Combinatorial Optimization
[1480, 1134, 1754, 2020, 2323,
32]

3.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on genetic algorithms are:

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

see Section 2.2.2 on page 106
FOGA: Foundations of Genetic Algorithms
http://www.sigevo.org/ [accessed 2007-09-01]

History: 2007: Mexico City, México, see [1960]
2005: Aizu-Wakamatsu City, Japan, see [2259]
2002: Torremolinos, Spain, see [519]
2000: Charlottesville, VA, USA, see [1927]
1998: Madison, WI, USA, see [139]
1996: San Diego, CA, USA, see [172]
1994: Estes Park, Colorado, USA, see [2214]
1992: Vail, Colorado, USA, see [2209]
1990: Bloomington Campus, Indiana, USA, see [1924]

FWGA: Finnish Workshop on Genetic Algorithms and Their Applications
NWGA: Nordic Workshop on Genetic Algorithms

History: 1997: Helsinki, Finland, see [30]
1996: Vaasa, Finland, see [29]
1995: Vaasa, Finland, see [28]
1994: Vaasa, Finland, see [27]
1992: Espoo, Finland, see [26]

GALESIA: International Conference on Genetic Algorithms in Engineering Systems: Inno-
vations and Applications

now part of CEC, see Section 2.2.2 on page 105
History: 1997: Glasgow, UK, see [990]

1995: Scheffield, UK, see [2309]
GECCO: Genetic and Evolutionary Computation Conference

see Section 2.2.2 on page 107
GEM: International Conference on Genetic and Evolutionary Methods

History: 2008: Las Vegas, Nevada, USA, see [81]
2007: Las Vegas, Nevada, USA, see [80]

ICGA: International Conference on Genetic Algorithms
Now part of GECCO, see Section 2.2.2 on page 107
History: 1997: East Lansing, Michigan, USA, see [98]

1995: Pittsburgh, PA, USA, see [636]
1993: Urbana-Champaign, IL, USA, see [730]
1991: San Diego, CA, USA, see [170]

http://www.sigevo.org/
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1989: Fairfax, Virginia, USA, see [1820]
1987: Cambridge, MA, USA, see [857]
1985: Pittsburgh, PA, USA, see [856]

ICANNGA: International Conference on Adaptive and Natural Computing Algorithms
see Section 2.2.2 on page 108

Mendel: International Conference on Soft Computing
see Section 1.6.2 on page 90

3.2.3 Online Resources

Some general, online available ressources on genetic algorithms are:

http://www.obitko.com/tutorials/genetic-algorithms/ [accessed 2008-05-17]

Last update: 1998
Description: A very thorough introduction to genetic algorithms by Marek Obitko

http://www.aaai.org/AITopics/html/genalg.html [accessed 2008-05-17]

Last update: up-to-date
Description: The genetic algorithms and Genetic Programming pages of the AAAI

http://www.illigal.uiuc.edu/web/ [accessed 2008-05-17]

Last update: up-to-date

Description: The Illinois Genetic Algorithms Laboratory (IlliGAL)

http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html [accessed 2008-05-17]

Last update: 1997-08-10
Description: The Genetic Algorithms FAQ.

http://www.rennard.org/alife/english/gavintrgb.html [accessed 2008-05-17]

Last update: 2007-07-10
Description: An introduction to genetic algorithms by Jean-Philippe Rennard.

http://www.optiwater.com/GAsearch/ [accessed 2008-06-08]

Last update: 2003-11-15
Description: GA-Search – The Genetic Algorithms Search Engine

3.2.4 Books

Some books about (or including significant information about) genetic algorithms are:

Goldberg [821]: Genetic Algorithms in Search, Optimization and Machine Learning
Mitchell [1431]: An Introduction to Genetic Algorithms
Davis [495]: Handbook of Genetic Algorithms
Haupt and Haupt [905]: Practical Genetic Algorithms
Gen and Cheng [787]: Genetic Algorithms and Engineering Design
Chambers [368]: Practical Handbook of Genetic Algorithms: Applications
Chambers [369]: Practical Handbook of Genetic Algorithms: New Frontiers
Chambers [370]: Practical Handbook of Genetic Algorithms: Complex Coding Systems
Holland [940]: Adaptation in Natural and Artificial Systems
Gen and Chen [786]: Genetic Algorithms (Engineering Design and Automation)
Cant’u-Paz [330]: Efficient and Accurate Parallel Genetic Algorithms
Heistermann [915]: Genetische Algorithmen. Theorie und Praxis evolutionärer Optimierung

http://www.obitko.com/tutorials/genetic-algorithms/
http://www.aaai.org/AITopics/html/genalg.html
http://www.illigal.uiuc.edu/web/
http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html
http://www.rennard.org/alife/english/gavintrgb.html
http://www.optiwater.com/GAsearch/
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Schöneburg, Heinzmann, and Feddersen [1831]: Genetische Algorithmen und Evolution-
sstrategien
Gwiazda [873]: Crossover for single-objective numerical optimization problems
Schaefer and Telega [1819]: Foundations of Global Genetic Optimization
Karr and Freeman [1093]: Industrial Applications of Genetic Algorithms
Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms
Davis [494]: Genetic Algorithms and Simulated Annealing
Alba and Dorronsoro [33]: Cellular Genetic Algorithms

3.3 Genomes in Genetic Algorithms

Most of the terminology which we have defined in Section 1.3 and used throughout this
book stems from the GA sector. The search spaces G of genetic algorithms, for instance, are
referred to genome and its elements are called genotypes. Genotypes in nature encompass
the whole hereditary information of an organism encoded in the DNA4. The DNA is a string
of base pairs that encodes the phenotypical characteristics of the creature it belongs to. Like
their natural prototypes, the genomes in genetic algorithms are strings, linear sequences of
certain data types [821, 945, 1431]. Because of the linear structure, these genotypes are also
often called chromosomes. In genetic algorithms, we most often use chromosomes which are
strings of one and the same data type, for example bits or real numbers.

Definition 3.1 (String Chromosome). A string chromosome can either be a fixed-length
tuple (Equation 3.1) or a variable-length list (Equation 3.2).

In the first case, the loci i of the genes gi are constant and, hence, the tuples may contain
elements of different types Gi.

G = {∀ (g[1], g[2], .., g[n]) : g[i] ∈ Gi ∀i ∈ 1..n} (3.1)

This is not given in variable-length string genomes. Here, the positions of the genes may
shift when the reproduction operations are applied. Thus, all elements of such genotypes
must have the same type GT .

G = {∀lists g : g[i] ∈ GT ∀0 ≤ i < len(g)} (3.2)

String chromosomes are normally bit strings, vectors of integer numbers, or vectors of real
numbers. Genetic algorithms with numeric vector genomes in their natural representation,
i. e., where G = X ⊆ Rn are called real-encoded [1107]. Today, more sophisticated methods
for evolving good strings (vectors) of (real) numbers exist (such as Evolution Strategies,
Differential Evolution, or Particle Swarm Optimization) than processing them like binary
strings with the standard reproduction operations of GAs.

Bit string genomes are sometimes complemented with the application of gray coding5

during the genotype-phenotype mapping. This is done in an effort to preserve locality (see
Section 1.4.3) and ensure that small changes in the genotype will also lead to small changes in
the phenotypes [349]. Collins and Eaton [430] studied different encodings for GAs and found
that their E-code outperform both gray and direct binary coding in function optimization.
Messy genomes (see Section 3.7) where introduced to improve locality by linkage learning.

Genetic algorithms are the original prototype of evolutionary algorithms and therefore,
fully adhere to the description given in Section 2.1.2. They provide search operators which
closely copy sexual and asexual reproduction schemes from nature. In such “sexual” search

4 You can find an illustration of the DNA in Figure 1.14 on page 42
5 http://en.wikipedia.org/wiki/Gray_coding [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Gray_coding
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operations, the genotypes of the two parents genotypes will recombine. In asexual reproduc-
tion, mutations are the only changes that occur. It is very common to apply both principles
in conjunction, i. e., to first recombine two elements from the search space and subsequently,
make them subject to mutation.

In nature, life begins with a single cell which divides6 time and again until a mature
individual is formed7 after the genetic information has been reproduced. The emergence
of a phenotype from its genotypic representation is called embryogenesis in biology and
its counterparts in evolutionary search are the genotype-phenotype mapping and artificial
embryogeny which we will discuss in Section 3.8 on page 155.

Let us shortly recapitulate the structure of the elements g of the search space G. A gene
(see Definition 1.23 on page 43) is the basic informational unit in a genotype g. Depending
on the genome, a gene can be a bit, a real number, or any other structure. In biology, a gene
is a segment of nucleic acid that contains the information necessary to produce a functional
RNA product in a controlled manner. An allele (see Definition 1.24) is a value of specific
gene in nature and in EAs alike. The locus (see Definition 1.25) is the position where a
specific gene can be found in a chromosome. Besides the functional genes and their alleles,
there are also parts of natural genomes which have no (obvious) function [2161, 819]. The
American biochemist Gilbert [806] coined the term intron8 for such parts. Similar structures
can also be observed in evolutionary algorithms with variable-length encodings.

Definition 3.2 (Intron). Parts of a genotype g ∈ G that does not contribute to the
phenotype x = gpm(g) are referred to as introns.

Biological introns have often been thought of as junk DNA or “old code”, i. e., parts
of the genome that were translated to proteins in evolutionary past, but now are not used
anymore. Currently though, many researchers assume that introns are maybe not as useless
as initially assumed [467]. Instead, they seem to provide support for efficient splicing, for
instance. The role of introns in genetic algorithms is as same as mysterious. They represent a
form of redundancy – which is known to have possible as well as negative effects, as outlined
in Section 1.4.5 on page 67 and Section 4.10.3.

Figure 3.2 combines Figure 1.15 on page 45 and Figure 1.13 and illustrates the relations
between the aforementioned entities in a bit string genome G = B4 of the length 4, where two
bits encode for one coordinate in a two-dimensional plane. Additional bits could appended
to the genotypes because a variable-length representation is used for some strange reason,
for instance. Then, these could occur as introns and would not influence the phenotype in
the example.

6 http://en.wikipedia.org/wiki/Cell_division [accessed 2007-07-03]

7 Matter of fact, cell division will continue until the individual dies. However, this is not important
here.

8 http://en.wikipedia.org/wiki/Intron [accessed 2007-07-05]

http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Intron
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Figure 3.2: A four bit string genome G and a fictitious phenotype X.

3.4 Fixed-Length String Chromosomes

Especially widespread in genetic algorithms are search spaces based on fixed-length chro-
mosomes. The properties of their crossover and mutation operations are well known and an
extensive body of research on them is available [821, 945].

3.4.1 Creation: Nullary Reproduction

Creation of fixed-length string individuals means simple to create a new tuple of the structure
defined by the genome and initialize it with random values. In reference to Equation 3.1 on
page 145, we could roughly describe this process with Equation 3.3.

createfl() ≡ (g[1], g[2], .., g[n]) : g[i] = Gi[⌊randomu()∗len(Gi)⌋] ∀i ∈ 1..n (3.3)

3.4.2 Mutation: Unary Reproduction

Mutation is an important method for preserving the diversity of the solution candidates by
introducing small, random changes into them. In fixed-length string chromosomes, this can
be achieved by randomly modifying the value (allele) of a gene, as illustrated in Fig. 3.3.a.
Fig. 3.3.b shows the more general variant of this form of mutation where 0 < n < len(g)
locations in the genotype g are changed at once. In binary coded chromosomes, for example,
these genes would be bits which can simply be toggled. For real-encoded genomes, modifying
an element gi can be done by replacing it with a number drawn from a normal distribution
with expected value g1, like gnew

i ∼ N
(
g1, σ

2
)
.

Fig. 3.3.a: Single-gene mutation. Fig. 3.3.b: Multi-gene mutation
(a).

Fig. 3.3.c: Multi-gene mutation
(b).

Figure 3.3: Value-altering mutation of string chromosomes.
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3.4.3 Permutation: Unary Reproduction

The permutation operation is an alternative mutation method where the alleles of two genes
are exchanged as sketched in Figure 3.4. This, of course, makes only sense if all genes have
similar data types. Permutation is, for instance, useful when solving problems that involve
finding an optimal sequence of items, like the travelling salesman problem [1263, 78]. Here, a
genotype g could encode the sequence in which the cities are visited. Exchanging two alleles
then equals of switching two cities in the route.

Figure 3.4: Permutation applied to a string chromosome.

3.4.4 Crossover: Binary Reproduction

Amongst all evolutionary algorithms, genetic algorithms have the recombination operation
which probably comes closest to the natural paragon. Figure 3.5 outlines the recombination
of two string chromosomes, the so-called crossover, which is performed by swapping parts
of two genotypes.

When performing single-point crossover (SPX9), both parental chromosomes are split
at a randomly determined crossover point . Subsequently, a new child genotype is created
by appending the second part of the second parent to the first part of the first parent as
illustrated in Fig. 3.5.a. In two-point crossover (TPX, sketched in Fig. 3.5.b), both parental
genotypes are split at two points and a new offspring is created by using parts number one
and three from the first, and the middle part from the second parent chromosome. Fig. 3.5.c
depicts the generalized form of this technique: the n-point crossover operation, also called
multi-point crossover (MPX). For fixed-length strings, the crossover points for both parents
are always identical.

(  )
Fig. 3.5.a: Single-point
Crossover (SPX).

(  )
Fig. 3.5.b: Two-point
Crossover (TPX).

(  )
Fig. 3.5.c: Multi-point
Crossover (MPX).

Figure 3.5: Crossover (recombination) operators for fixed-length string genomes.

9 This abbreviation is also used for simplex crossover, see Section 16.4.
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3.5 Variable-Length String Chromosomes

Variable-length genomes for genetic algorithms where first proposed by Smith in his PhD
thesis [1912]. There, he introduced a new variant of classifier systems10 with the goal of
evolving programs for playing poker [1912, 1688].

3.5.1 Creation: Nullary Reproduction

Variable-length strings can be created by first randomly drawing a length l > 0 and then
creating a list of that length filled with random elements.

3.5.2 Mutation: Unary Reproduction

If the string chromosomes are of variable length, the set of mutation operations introduced
in Section 3.4 can be extended by two additional methods. First, we could insert a couple
of genes with randomly chosen alleles at any given position into a chromosome (Fig. 3.6.a).
Second, this operation can be reversed by deleting elements from the string (Fig. 3.6.b).
It should be noted that both, insertion and deletion, are also implicitly be performed by
crossover. Recombining two identical strings with each other can, for example, lead to dele-
tion of genes. The crossover of different strings may turn out as an insertion of new genes
into an individual.

Since the reproduction operations can change the length of a genotypes (therefore the
name “variable-length”), variable-length strings need to be constructed of elements of the
same type. There is no longer a constant relation between locus and type.

Fig. 3.6.a: Insertion of random genes. Fig. 3.6.b: Deletion of genes.

Figure 3.6: Search operators for variable-length strings (additional to those from Section 3.4.2
and Section 3.4.3).

3.5.3 Crossover: Binary Reproduction

For variable-length string chromosomes, the same crossover operations are available as for
fixed-length strings except that the strings are no longer necessarily split at the same loci.
The lengths of the new strings resulting from such a cut and splice operation may differ
from the lengths of the parents, as sketched in Figure 3.7. A special case of this type of
recombination is the homologous crossover, where only genes at the same loci are exchanged.
This method is discussed thoroughly in Section 4.6.7 on page 195.

10 See Chapter 7 for more information on classifier systems.
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(  )
Fig. 3.7.a: Single-Point
Crossover

(  )
Fig. 3.7.b: Two-Point
Crossover

(  )
Fig. 3.7.c: Multi-Point
Crossover

Figure 3.7: Crossover of variable-length string chromosomes.

3.6 Schema Theorem

The Schema Theorem is a special instance of forma analysis (discussed in Section 1.5.1
on page 80) for genetic algorithms. Matter of fact, it is older than its generalization and
was first stated by Holland back in 1975 [940, 512, 945]. Here we will first introduce the
basic concepts of schemata, masks, and wildcards before going into detail about the Schema
Theorem itself, its criticism, and the related Building Block Hypothesis.

3.6.1 Schemata and Masks

Assume that the genotypes g in the search space G of genetic algorithms are strings of
a fixed-length l over an alphabet11 Σ, i. e., G = Σl. Normally, Σ is the binary alphabet
Σ = {true, false} = {0, 1}. From forma analysis, we know that properties can be defined
on the genotypic or the phenotypic space. For fixed-length string genomes, we can consider
the values at certain loci as properties of a genotype. There are two basic principles on
defining such properties: masks and do not care symbols.

Definition 3.3 (Mask). For a fixed-length string genome G = Σl, we define the set of all
genotypic masks Ml as the power set12 of the valid loci Ml = P({1, . . . , l}) [2167]. Every
mask mi ∈Ml defines a property φi and an equivalence relation:

g ∼φi
h⇔ g[j] = h[j] ∀j ∈ mi (3.4)

The order “order(mi)” of the mask mi is the number of loci defined by it:

order(mi) = |mi| (3.5)

The defined length δ(mi) of a mask mi is the maximum distance between two indices in
the mask:

δ(mi) = max {|j − k| ∀j, k ∈ mi} (3.6)

A mask contains the indices of all elements in a string that are interesting in terms of the
property it defines. Assume we have bit strings of the length l = 3 as genotypes (G = B3).
The set of valid masks M3 is then M3 = {{1} , {2} , {3} , {1, 3} , {1, 3} , {2, 3} , {1, 2, 3}}. The
mask m1 = {1, 2}, for example, specifies that the values at the loci 1 and 2 of a genotype
denote the value of a property φ1 and the value of the bit at position 3 is irrelevant. There-
fore, it defines four formae Aφ1=(0,0) = {(0, 0, 0) , (0, 0, 1)}, Aφ1=(0,1) = {(0, 1, 0) , (0, 1, 1)},
Aφ1=(1,0) = {(1, 0, 0) , (1, 0, 0)}, and Aφ1=(1,1) = {(1, 1, 0) , (1, 1, 1)}.
Definition 3.4 (Schema). A forma defined on a string genome concerning the values of
the characters at specified loci is called Schema [940, 389].

11 Alphabets and such and such are defined in Section 30.3 on page 561.
12 The power set you can find described in Definition 27.9 on page 458.
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3.6.2 Wildcards

The second method of specifying such schemata is to use don’t care symbols (wildcards)
to create “blueprints” H of their member individuals. Therefore, we place the don’t care
symbol * at all irrelevant positions and the characterizing values of the property at the
others.

∀j ∈ 1..l⇒ H [j] =

{
g[j] if j ∈ mi

∗ otherwise
(3.7)

H [j] ∈ Σ ∪ {∗} ∀j ∈ 1..l (3.8)

(3.9)

We now can redefine the aforementioned schemata like: Aφ1=(0,0) ≡ H1 = (0, 0, ∗),
Aφ1=(0,1) ≡ H2 = (0, 1, ∗), Aφ1=(1,0) ≡ H3 = (1, 0, ∗), and Aφ1=(1,1) ≡ H4 = (1, 1, ∗). These
schemata mark hyperplanes in the search space G, as illustrated in Figure 3.8 for the three
bit genome. Schemas correspond to masks and thus, definitions like the defined length and
order can easily be transported into their context.

( , , )1 0 0( , , )0 0 0

( , , )1 1 0( , , )0 1 0

( , , )1 0 1( , , )0 0 1

( , , )1 1 1( , , )0 1 1

g1

g0

g2

H =( , , )2 0 1 *

H =( , , )1 0 0 *

H =( , , )3 1 0 *

H =( , , )4 1 1 *

H =( , , )5 1 * *

Figure 3.8: An example for schemata in a three bit genome.

3.6.3 Holland’s Schema Theorem

The Schema Theorem13 was defined by Holland [940] for genetic algorithms which use
fitness-proportionate selection (see Section 2.4.3 on page 124) where fitness is subject to
maximization [512, 945].

countOccurences(H,Pop)t+1 ≥
countOccurences(H,Pop)t ∗ v(H)t

vt

(1− p) (3.10)

where

1. countOccurences(H,Pop)t is the number of instances of a given schema defined by the
blueprint H in the population Pop of generation t,

13 http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem [accessed 2007-07-29]

http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem
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2. v(H)t is the average fitness of the members of this schema (observed in time step t),
3. vt is the average fitness of the population in time step t, and
4. p is the probability that an instance of the schema will be “destroyed” by a reproduction

operation, i. e., the probability that the offspring of an instance of the schema is not an
instance of the schema.

From this formula can be deduced that genetic algorithms will generate for short, above-
average fit schemata an exponentially rising number of samples. This is because they will
multiply with a certain factor in each generation and only few of them are destroyed by the
reproduction operations. In the special case of single-point crossover (crossover rate cr) and
single-bit mutation (mutation rate mr) in a binary genome of the fixed length l

(
G = Bl

)
,

the destruction probability p is noted in Equation 3.11.

p = cr
δ(H)

l − 1
+ mr

order(H)

l
(3.11)

3.6.4 Criticism of the Schema Theorem

The deduction that good schemata will spread exponentially is only a very optimistic as-
sumption and not generally true. If a highly fit schema has many offspring with good fit-
ness, this will also improve the overall fitness of the population. Hence, the probabilities in
Equation 3.10 will shift over time. Generally, the Schema Theorem represents a lower bound
that will only hold for one generation [2208]. Trying to derive predictions for more than one
or two generations using the Schema Theorem as is will lead to deceptive or wrong results
[858, 854].

Furthermore, the population of a genetic algorithm only represents a sample of limited
size of the search space G. This limits the reproduction of the schemata but also makes
statements about probabilities in general more complicated. Since we only have samples
of the schemata H and cannot be sure if v(H)t really represents the average fitness of all
the members of the schema (that is why we annotate it with t instead of writing v(H)).
Thus, even reproduction operators which preserve the instances of the schema may lead to
a decrease of v(H)t+.. by time. It is also possible that parts of the population already have
converged and other members of a schema will not be explored anymore, so we do not get
further information about its real utility.

Additionally, we cannot know if it is really good if one specific schema spreads fast, even
it is very fit. Remember that we have already discussed the exploration versus exploitation
topic and the importance of diversity in Section 1.4.2 on page 60.

Another issue is that we implicitly assume that most schemata are compatible and can
be combined, i. e., that there is low interaction between different genes. This is also not
generally valid: Epistatic effects, for instance, can lead to schema incompatibilities. The
expressiveness of masks and blueprints even is limited and can be argued that there are
properties which we cannot specify with them. Take the set D3 of numbers divisible by
three for example D3 = {3, 6, 9, 12, ..}. Representing them as binary strings will lead to D3 =
{0011, 0110, 1001, 1100, . . . } if we have a bit-string genome of the length 4. Obviously, we
cannot seize these genotypes in a schema using the discussed approach. They may, however,
be gathered in a forma. The Schema Theorem, however, cannot hold for such a forma since
the probability p of destruction may be different from instance to instance.

3.6.5 The Building Block Hypothesis

According to Harik [896], the substructure of a genotype which allows it to match to a schema
is called a building block. The Building Block Hypothesis (BBH) proposed by Goldberg
[821], Holland [940] is based on two assumptions:
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1. When a genetic algorithm solves a problem, there exist some low-order, low-defining
length schemata with above-average fitness (the so-called building blocks).

2. These schemata are combined step by step by the genetic algorithm in order to form
larger and better strings. By using the building blocks instead of testing any possible bi-
nary configuration, genetic algorithms efficiently decrease the complexity of the problem.
[821]

Although it seems as if the Building Block Hypothesis is supported by the Schema
Theorem, this cannot be verified easily. Experiments that originally were intended to proof
this theory often did not work out as planned [1432] (and also consider the criticisms of the
Schema Theorem mentioned in the previous section). In general, there exists much criticism
of the Building Block Hypothesis and, although it is a very nice model, it cannot yet be
considered as proven sufficiently.

3.7 The Messy Genetic Algorithm

According to the schema theorem specified in Equation 3.10 and Equation 3.11, a schema
is likely to spread in the population if it has above-average fitness, is short (i. e., low defined
length) and is of low order [116]. Thus, according to Equation 3.11, from two schemas of the
same average fitness and order, the one with the lesser defined length will be propagated
to more offspring, since it is less likely to be destroyed by crossover. Therefore, placing
dependent genes close to each other would be a search space design approach since it will
allow good building blocks to proliferate faster. These building blocks, however, are not
known at design time – otherwise the problem would already be solved. Hence, it is not
generally possible to devise such a design.

The messy genetic algorithms (mGAs) developed by Goldberg et al. [825] use a coding
scheme which is intended to allow the genetic algorithm to re-arrange genes at runtime.
It can place the genes of a building block spatially close together. This method of linkage
learning may thus increase the probability that these building blocks, i.e., sets of epistatically
linked genes, are preserved during crossover operations, as sketched in Figure 3.9. It thus
mitigates the effects of epistasis as discussed in Section 1.4.6.

destroyed in 6 out of 9 cases by crossover

destroyed in 1 out of 9 cases by crossover

rearrange

Figure 3.9: Two linked genes and their destruction probability under single-point crossover.

3.7.1 Representation

The idea behind the genomes used in messy GAs goes back to the work Bagley
[116] from 1967 who first introduced a representation where the ordering of the
genes was not fixed. Instead, for each gene a tuple (φ, γ) with its position (lo-
cus) φ and value (allele) γ was used. For instance, the bit string 000111 can be
represented as g1 = ((0, 0) , (1, 0) , (2, 0) , (3, 1) , (4, 1) , (5, 1)) but as well as g2 =
((5, 1) , (1, 0) , (3, 1) , (2, 0) , (0, 0) , (4, 1)) where both genotypes map to the same phenotype,
i. e., gpm(g1) = gpm(g2).
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3.7.2 Reproduction Operations

Inversion: Unary Reproduction

The inversion operator reverses the order of genes between two randomly chosen loci
[116, 896]. With this operation, any particular ordering can be produced in a relatively
small number of steps. Figure 3.10 illustrates, for example, how the possible building block
components (1, 0), (3, 0), (4, 0), and (6, 0) can be brought together in two steps. Nevertheless,
the effects of the inversion operation were rather disappointing [116, 741].

(0, )0 (1, )0 (2, )0 (3, )0 (4, )1 (5, )1 (6, )1 (7, )1

(0, )0 (1, )0 (2, )0(3, )0(4, )1 (5, )1 (6, )1 (7, )1

(0, )0 (1, )0(2, )0 (3, )0 (4, )1(5, )1 (6, )1 (7, )1

first inversion

second inversion

Figure 3.10: An example for two subsequent applications of the inversion operation [896].

Cut: Unary Reproduction

The cut operator splits a genotype g into two with the probability pc = (len(g)− 1) pK where
pK is a bitwise probability and len(g) the length of the genotype [1153]. With pk = 0.1, the
g1 = ((0, 0) , (1, 0) , (2, 0) , (3, 1) , (4, 1) , (5, 1)) has a cut probability of pc = (6− 1)∗0.1 = 0.5.
A cut at position 4 would lead to g3 = ((0, 0) , (1, 0) , (2, 0) , (3, 1)) and g4 = ((4, 1) , (5, 1)).

3.7.3 Splice: Binary Reproduction

The splice operator joins two genotypes with a predefined probability ps by simply attach-
ing one to the other [1153]. Splicing g2 = ((5, 1) , (1, 0) , (3, 1) , (2, 0) , (0, 0) , (4, 1)) and g4 =
((4, 1) , (5, 1)), for instance, leads to g5 = ((5, 1) , (1, 0) , (3, 1) , (2, 0) , (0, 0) , (4, 1) , (4, 1) , (5, 1)).
In summary, the application of two cut and a subsequent splice operation to two genotypes
has roughly the same effect as a single-point crossover operator in variable-length string
chromosomes Section 3.5.3.

3.7.4 Overspecification and Underspecification

The genotypes in messy GAs have a variable length and the cut and splice operators can lead
to genotypes being over or underspecified. If we assume a three bit genome, the genotype g6 =
((2, 0) , (0, 0) , (2, 1) , (1, 0)) is overspecified since it contains two (in this example, different)
alleles for the third gene (at locus 2). g7 = ((2, 0) , (0, 0)), in turn, is underspecified since it
does not contain any value for the gene in the middle (at locus 1).

Dealing with overspecification is rather simple [1153, 608]: The genes are processed from
left to right during the genotype-phenotype mapping, and the first allele found for a specific
locus wins. In other words, g6 from above codes for 000 and the second value for locus 2 is
discarded. The loci left open during the interpretation of underspecified genes are filled with
values from a template string [1153]. If this string was 000, g7 would code for 000, too.
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3.7.5 The Process

In a simple genetic algorithm, building blocks are identified and recombined simultaneously,
which leads to a race between recombination and selection [896]. In the messy GA [825, 826],
this race is avoided by separating the evolutionary process into two stages:

1. In the primordial phase, building blocks are identified. In the original conception of
the messy GA, all possible building blocks of a particular order k are generated. Via
selection, the best ones are identified and spread in the population.

2. These building blocks are recombined with the cut and splice operators in the subsequent
juxtapositional phase.

The complexity of the original mGA needed a bootstrap phase in order to identify the
order-k building blocks which required to identify the order-k − 1 blocks first. This boot-
strapping was done by applying the primordial and juxtapositional phases for all orders from
1 to k − 1. This process was later improved by using a probabilistic complete initialization
algorithm [828] instead.

3.8 Genotype-Phenotype Mappings and Artificial Embryogeny

As already stated a dozen times by now, genetic algorithms use string genomes to encode
the phenotypes x that represent the possible solutions. These phenotypes, however, do not
necessarily need to be one-dimensional strings too. Instead, they can be construction plans,
circuit layouts, or trees14. The process of translating genotypes into corresponding pheno-
types is called genotype-phenotype mapping and has been introduced in Definition 1.30 on
page 44.

Embryogenesis is the natural process in which the embryo forms and develops15 and
to which the genotype-phenotype mapping in genetic algorithms and Genetic Programming
corresponds. Most of even the more sophisticated of these mappings are based on an implicit
one-to-one relation in terms of complexity. In the Grammar-guided Genetic Programming
approach Gads16, for example, a single gene encodes (at most) the application of a single
grammatical rule, which in turn unfolds a single node in a tree.

Embryogeny in nature is much more complex. Among other things, the DNA, for in-
stance, encodes the structural design information of the human brain. As pointed out by
Manos et al. [1358], there are only about 30 thousand active genes in the human genome
(2800 million amino acids) for over 100 trillion neural connections in our cerebrum. A huge
manifold of information is hence decoded from “data” which is of a much lower magnitude.
This is possible because the same genes can be reused in order to repeatedly create the same
pattern. The layout of the light receptors in the eye, for example, is always the same – just
their wiring changes.

Definition 3.5 (Artificial Embryogeny). We subsume all methods of transforming
a genotype into a phenotype of (much) higher complexity under the subject of artificial
embryogeny [1358, 1957, 192] (also known as computational embryogeny [1221, 259]).

Two different approaches are common in artificial embryogeny: constructing the phe-
notype by using a grammar to translate the genotype and expanding it step by step until

14 See for example Section 4.5.6 on page 181
15 http://en.wikipedia.org/wiki/Embryogenesis [accessed 2007-07-03]

16 See Section 4.5.5 on page 179 for more details.

http://en.wikipedia.org/wiki/Embryogenesis


156 3 Genetic Algorithms

a terminal state is reached or simulating chemical processes. Both methods may also re-
quire subsequent correction steps that ensure that the produced results are correct, which is
also common in normal genotype-phenotype mappings [2295]. An example for gene reuse is
the genotype-phenotype mapping performed in Grammatical Evolution which is discussed
in Section 4.5.6 on page 182.
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Genetic Programming

4.1 Introduction

The term Genetic Programming1 (GP) [1196, 916] has two possible meanings. First, it is often
used to subsume all evolutionary algorithms that have tree data structures as genotypes.
Second, it can also be defined as the set of all evolutionary algorithms that breed programs2,
algorithms, and similar constructs. In this chapter, we focus on the latter definition which
still includes discussing tree-shaped genomes.

The conventional well-known input-processing-output model3 from computer science
states that a running instance of a program uses its input information to compute and
return output data. In Genetic Programming, usually some inputs or situations and corre-
sponding output data samples are known or can be produced or simulated. The goal then
is to find a program that connects them or that exhibits some kind of desired behavior
according to the specified situations, as sketched in Figure 4.1.

Process
(running Program)

outputinput

samples are known

to be found with genetic programming

Figure 4.1: Genetic Programming in the context of the IPO model.

4.1.1 History

The history of Genetic Programming [63] goes back to the early days of computer science.
In 1957, Friedberg [750] left the first footprints in this area by using a learning algorithm
to stepwise improve a program. The program was represented as a sequence of instructions4

for a theoretical computer called Herman [750, 751]. Friedberg did not use an evolutionary,
population-based approach for searching the programs. This may be because the idea of

1 http://en.wikipedia.org/wiki/Genetic_programming [accessed 2007-07-03]

2 We have extensively discussed the topic of algorithms and programs in Section 30.1.1 on page 547.
3 see Section 30.1.1 on page 549
4 Linear Genetic Programming is discussed in Section 4.6 on page 191.

http://en.wikipedia.org/wiki/Genetic_programming
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evolutionary algorithms wasn’t fully developed yet5 and also because of the limited compu-
tational capacity of the computers of that era.

Around the same time, Samuel applied machine learning to the game of checkers and by
doing so, created the world’s first self-learning program. In the future development section
of his 1959 paper [1795], he suggested that effort could be spent into allowing the (checkers)
program to learn scoring polynomials – an activity which would equal symbolic regression.
Yet, in his 1967 follow-up work [1797], he could not report any progress in this issue.

The evolutionary programming approach for evolving finite state machines by Fogel et al.
[708], discussed in Chapter 6 on page 231, dates back to 1966. In order to build predictors,
different forms of mutation (but no crossover) were used for creating offspring from successful
individuals.

Fourteen years later, the next generation of scientists began to look for ways to evolve
programs. New results were reported by Smith [1912] in his PhD thesis in 1980. Forsyth
[733] evolved trees denoting fully bracketed Boolean expressions for classification problems
in 1981 [733, 735, 734].

The mid-1980s were a very productive period for the development of Genetic Program-
ming. Cramer [462] applied a genetic algorithm in order to evolve a program written in a
subset of the programming language PL in 1985.6 This GA used a string of integers as genome
and employed a genotype-phenotype mapping that recursively transformed them into pro-
gram trees. At the same time, the undergraduate student Schmidhuber [1828] also used a
genetic algorithm to evolve programs at the Siemens AG. He re-implemented his approach
in Prolog at the TU Munich in 1987 [562, 1828]. Hicklin [924] and Fujuki [754] implemented
reproduction operations for manipulating the if-then clauses of LISP programs consisting of
single COND-statements. With this approach, Fujiko and Dickinson [753] evolved strategies
for playing the iterated prisoner’s dilemma game. Bickel and Bickel [206] evolved sets of
rules which were represented as trees using tree-based mutation crossover operators.

Genetic Programming became fully accepted at the end of this productive decade mainly
because of the work of Koza [1183, 1184]. He also studied many benchmark applications of
Genetic Programming, such as learning of Boolean functions [1190, 1185], the Artificial Ant
problem7 [1188, 1187, 1196], and symbolic regression8 [1190, 1196], a method for obtaining
mathematical expressions that match given data samples. Koza formalized (and patented
[1183, 1194]) the idea of employing genomes purely based on tree data structures rather than
string chromosomes as used in genetic algorithms. In symbolic regression, such trees can, for
instance, encode Lisp S-expressions9 where a node stands for a mathematical operation and
its child nodes are the parameters of the operation. Leaf nodes then are terminal symbols
like numbers or variables. This form of Genetic Programming is called Standard Genetic
Programming or SGP, in short. With it, not only mathematical functions but also more
complex programs can be expressed as well.

Generally, a tree can represent a rule set [1389, 1390], a mathematical expressions, a
decision tree [1193], or even the blueprint of an electrical circuit [1082]. Trees are very
close to the natural structure of algorithms and programs. The syntax of most of the high-
level programming languages, for example, leads to a certain hierarchy of modules and
alternatives. Not only does this form normally constitute a tree – compilers even use tree
representations internally. When reading the source code of a program, they first split it into
tokens10, parse11 these tokens, and finally create an abstract syntax tree12 (AST) [1065, 961].
The internal nodes of ASTs are labeled by operators and the leaf nodes contain the operands

5 Compare with Section 3.1 on page 141.
6 Cramer’s approach is discussed in Section 4.4.1 on page 171.
7 The Artificial Ant is discussed in Section 21.3.1 on page 354 in this book.
8 More information on symbolic regression is presented in Section 23.1 on page 397 in this book.
9 List S-expressions are discussed in Section 30.3.11 on page 571

10 http://en.wikipedia.org/wiki/Lexical_analysis [accessed 2007-07-03]

11 http://en.wikipedia.org/wiki/Parse_tree [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/Abstract_syntax_tree [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Lexical_analysis
http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
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Abstract Syntax Tree Representation

Algorithm

1

2

3

4

5

6

7

8

List<IIndividual> createPop(s) {
List<Individual> Xpop;
Xpop = new ArrayList<IIndividual>(s);
for(int i=s; i>0; i--) {
Xpop.add(create());
}

return Xpop;
}

Program
(Schematic Java, High-Level Language)

Pop = createPop(s)

Input: s the size of the population to be created

Data: i a counter variable

Output: Pop the new, random population

1

2

3

while i 0 do>4

5

6

return Pop7

begin

end8

Pop      ()

i      s

Pop appendList(Pop, create())

i i-1

Pop () i s

i 0

Pop

1i

iPop create

appendList

ret

>

while

{block}

{block}

Figure 4.2: The AST representation of algorithms/programs.

of these operators. In principle, we can illustrate almost every13 program or algorithm as
such an AST (see Figure 4.2).

Tree-based Genetic Programming directly evolves individuals in this form, which also
provides a very intuitive representation for mathematical functions for which it has initially
been used for by Koza. Another interesting aspect of the tree genome is that it has no natu-
ral role model. While genetic algorithms match their direct biological metaphor particularly
well, Genetic Programming introduces completely new characteristics and traits. Genetic
Programming is one of the few techniques that are able to learn solutions of potentially
unbound complexity. It can be considered as more general than genetic algorithms, because
it makes fewer assumptions about the structure of possible solutions. Furthermore, it of-
ten offers white-box solutions that are human-interpretable. Other optimization approaches
like artificial neural networks, for example, generate black-box outputs, which are highly
complicated if not impossible to fully grasp [1382].

13 Excluding such algorithms and programs that contain jumps (the infamous “goto”) that would
produce crossing lines in the flowchart (http://en.wikipedia.org/wiki/Flowchart [accessed 2007-

07-03]).

http://en.wikipedia.org/wiki/Flowchart
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4.2 General Information

4.2.1 Areas Of Application

Some example areas of application of Genetic Programming are:

Application References

Symbolic Regression and Function Synthesis
[1190, 1196, 87, 2270, 1699,
1196, 17, 528]
Section 23.1

Grammar Induction [1042, 1394, 465, 1174]

Data Mining and Data Analysis
[1186, 744, 1592, 1593, 242, 445,
1193, 2253, 332]
Section 22.1.2

Electrical Engineering and Circuit Design
[1082, 1182, 1080, 1206, 1205,
1211, 1669, 506]

Medicine [2055, 270, 243, 956]

Economics and Finance [1191, 1513, 1674, 1577]
Geometry and Physics [1307, 2277]

Cellular Automata and Finite State Machines [58, 59, 508, 509]

Automated Programming
[140, 1242, 1324, 1325, 1317,
1212]

Robotics
[1201, 1202, 1204, 986, 1317, 57,
1576, 986, 1323]

Networking and Communication
[434, 504, 2180, 1257, 1887,
1888]

Section 24.1 on page 413
and Section 23.2 on page 401

Evolving Behaviors, e.g., for Agents or Game Players

[1187, 179, 180, 1688, 1686,
1687, 907, 909, 55, 54, 1933, 67,
1492, 984, 987, 985, 986, 1340,
1341, 1342, 2194, 1323]

Pattern Recognition [53, 56, 2015, 2014, 2016]
Biochemistry [1200, 1199]
Machine Learning [1203, 863]

See also Section 4.4.3 on page 174, Section 4.5.6 on page 184, and Section 4.7.4 on page 201.

4.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Genetic Programming are:

EuroGP: European Conference on Genetic Programming
http://www.evostar.org/ [accessed 2007-09-05]

Co-located with EvoWorkshops and EvoCOP.
History: 2009: Tübingen, see [2106]

2008: Naples, Italy, see [1579]
2007: Valencia, Spain, see [617]
2006: Budapest, Hungary, see [429]

http://www.evostar.org/
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2005: Lausanne, Switzerland, see [1116]
2004: Coimbra, Portugal, see [1115]
2003: Essex, UK, see [1786]
2002: Kinsale, Ireland, see [737]
2001: Lake Como, Italy, see [1423]
2000: Edinburgh, Scotland, UK, see [1666]
1999: Göteborg, Sweden, see [1664]
1998: Paris, France, see [141, 1663]

GECCO: Genetic and Evolutionary Computation Conference
see Section 2.2.2 on page 107

GP: Annual Genetic Programming Conference
Now part of GECCO, see Section 2.2.2 on page 107
History: 1998: Madison, Wisconsin, USA, see [1209, 1198]

1997: Stanford University, CA, USA, see [1208, 1956]
1996: Stanford University, CA, USA, see [1207, 1197]

GPTP: Genetic Programming Theory Practice Workshop
http://www.cscs.umich.edu/gptp-workshops/ [accessed 2007-09-28]

History: 2007: Ann Arbor, Michigan, USA, see [1945]
2006: Ann Arbor, Michigan, USA, see [1735]
2005: Ann Arbor, Michigan, USA, see [2298]
2004: Ann Arbor, Michigan, USA, see [1583]
2003: Ann Arbor, Michigan, USA, see [1734]

ICANNGA: International Conference on Adaptive and Natural Computing Algorithms
see Section 2.2.2 on page 108

Mendel: International Conference on Soft Computing
see Section 1.6.2 on page 90

4.2.3 Journals

Some journals that deal (at least partially) with Genetic Programming are:

Genetic Programming and Evolvable Machines (GPEM), ISSN: 1389-2576 (Print) 1573-7632
(Online), appears quaterly, editor(s): Wolfgang Banzhaf, publisher: Springer Netherlands,
http://springerlink.metapress.com/content/104755/ [accessed 2007-09-28]

4.2.4 Online Resources

Some general, online available ressources on Genetic Programming are:

http://www.genetic-programming.org/ [accessed 2007-09-20] and http://www.

genetic-programming.com/ [accessed 2007-09-20]

Last update: up-to-date

Description:
Two portal pages on Genetic Programming websites, both maintained by
Koza.

http://www.cs.bham.ac.uk/~wbl/biblio/ [accessed 2007-09-16]

Last update: up-to-date
Description: Langdon’s large Genetic Programming bibliography.
http://www.lulu.com/items/volume_63/2167000/2167025/2/print/book.pdf [accessed

2008-03-26]

http://www.cscs.umich.edu/gptp-workshops/
http://springerlink.metapress.com/content/104755/
http://www.genetic-programming.org/
http://www.genetic-programming.com/
http://www.genetic-programming.com/
http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.lulu.com/items/volume_63/2167000/2167025/2/print/book.pdf
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Last update: up-to-date

Description: A Field Guide to Genetic Programming, see [1667]

http://www.aaai.org/AITopics/html/genalg.html [accessed 2008-05-17]

Last update: up-to-date
Description: The genetic algorithms and Genetic Programming pages of the AAAI

http://www.cs.ucl.ac.uk/staff/W.Langdon/www_links.html [accessed 2008-05-18]

Last update: 2007-07-28
Description: William Langdon’s Genetic Programming contacts

4.2.5 Books

Some books about (or including significant information about) Genetic Programming are:

Koza [1196]: Genetic Programming, On the Programming of Computers by Means of Natural
Selection
Poli, Langdon, and McPhee [1667]: A Field Guide to Genetic Programming
Koza [1195]: Genetic Programming II: Automatic Discovery of Reusable Programs: Auto-
matic Discovery of Reusable Programs
Koza, Bennett III, Andre, and Keane [1210]: Genetic Programming III: Darwinian Invention
and Problem Solving
Koza, Keane, Streeter, Mydlowec, Yu, and Lanza [1212]: Genetic Programming IV: Routine
Human-Competitive Machine Intelligence
Langdon and Poli [1242]: Foundations of Genetic Programming
Langdon [1238]: Genetic Programming and Data Structures: Genetic Programming + Data
Structures = Automatic Programming!
Banzhaf, Nordin, Keller, and Francone [140]: Genetic Programming: An Introduction – On
the Automatic Evolution of Computer Programs and Its Applications
Kinnear, Jr. [1140]: Advances in Genetic Programming, Volume 1
Angeline and Kinnear, Jr [61]: Advances in Genetic Programming, Volume 2
Spector, Langdon, O’Reilly, and Angeline [1936]: Advances in Genetic Programming, Volume
3
Brameier and Banzhaf [275]: Linear Genetic Programming
Wong and Leung [2253]: Data Mining Using Grammar Based Genetic Programming and
Applications
Geyer-Schulz [795]: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning
Spector [1932]: Automatic Quantum Computer Programming – A Genetic Programming
Approach
Nedjah, Abraham, and de Macedo Mourelle [1511]: Genetic Systems Programming: Theory
and Experiences

4.3 (Standard) Tree Genomes

Tree-based Genetic Programming (TGP), usually referred to as Standard Genetic Program-
ming, SGP) is the most widespread Genetic Programming variant, both for historical reasons
and because of its efficiency in many problem domains. In this section, the well-known re-
production operations applicable to tree genomes are outlined.

4.3.1 Creation: Nullary Reproduction

Before the evolutionary process can begin, we need an initial, randomized population. In
genetic algorithms, we therefore simply created a set of random bit strings. For Genetic
Programming, we do the same with trees instead of such one-dimensional sequences.

http://www.aaai.org/AITopics/html/genalg.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/www_links.html
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Normally, there is a maximum depth d specified that the tree individuals are not allowed
to surpass. Then, the creation operation will return only trees where the path between the
root and the most distant leaf node is not longer than d. There are three different ways for
realizing the “create()” operation (see Definition 2.9 on page 137) for trees which can be
distinguished according to the depth of the produced individuals.

maximum depth

Figure 4.3: Tree creation by the full method.

maximum depth

Figure 4.4: Tree creation by the grow method.

The full method (Figure 4.3) creates trees where each (non-backtracking) path from the
root to the leaf nodes has exactly the length d. The grow method depicted in Figure 4.4,
also creates trees where each (non-backtracking) path from the root to the leaf nodes is not
longer than d but may be shorter. This is achieved by deciding randomly for each node if
it should be a leaf or not when it is attached to the tree. Of course, to nodes of the depth
d− 1, only leaf nodes can be attached to.

Koza [1196] additionally introduced a mixture method called ramped half-and-half. For
each tree to be created, this algorithm draws a number r uniformly distributed between 2
and d: (r = ⌊random2d+ 1⌋). Now either full or grow is chosen to finally create a tree with
the maximum depth r (in place of d). This method is often preferred since it produces an
especially wide range of different tree depths and shapes and thus provides a great initial
diversity.

4.3.2 Mutation: Unary Reproduction

Tree genotypes may undergo small variations during the reproduction process in the evo-
lutionary algorithm. Such a mutation is usually defined as the random selection of a node
in the tree, removing this node and all of its children, and finally replacing it with another
node [1196]. From this idea, three operators can be derived:

1. replacement of existing nodes randomly created ones (Fig. 4.5.a),
2. insertions of new nodes or small trees (Fig. 4.5.b), and
3. the deletion of nodes, as illustrated in Fig. 4.5.c.

The effects of insertion and deletion can also be achieved with replacement.
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maximum depth

Fig. 4.5.a: Sub-tree replacement.

maximum depth

Fig. 4.5.b: Sub-tree insertions.

maximum depth

Fig. 4.5.c: Sub-tree deletion.

Figure 4.5: Possible tree mutation operations.

4.3.3 Recombination: Binary Reproduction

The mating process in nature – the recombination of the genotypes of two individuals –
is also copied in tree-based Genetic Programming. Applying the default sub-tree exchange
recombination operator to two trees means to swap sub-trees between them as illustrated
in Figure 4.6. Therefore, one single sub-tree is selected randomly from each of the parents
and subsequently are cut out and reinserted in the partner genotype. Notice that, like in
genetic algorithms, the effects of insertion and deletion operations can also be achieved by
recombination.

maximum depth

( )
Figure 4.6: Tree crossover by exchanging sub-trees.

If a depth restriction is imposed on the genome, both, the mutation and the crossover
operation have to respect them. The new trees they create must not exceed it.

The intent of using the recombination operation in Genetic Programming is the same
as in genetic algorithms. Over many generations, successful building blocks – for example a
highly fit expression in a mathematical formula – should spread throughout the population
and be combined with good genes of different solution candidates. Yet, recombination in
Standard Genetic Programming can also have a very destructive effect on the individual
fitness [1525, 1544, 140]. Angeline [62] even argues that it performs no better than mutation
and causes bloat [65].
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Several techniques have been proposed in order to mitigate these effects. In 1994,
D’Haeseleer [557] obtained modest improvements with his strong context preserving
crossover that permitted only the exchange of sub-trees that occupied the same positions
in the parents. Poli and Langdon [1661, 1662] define the similar single-point crossover for
tree genomes with the same purpose: increasing the probability of exchanging genetic ma-
terial which is structural and functional akin and thus decreasing the disruptiveness. A
related approach define by Francone et al. [740] for linear Genetic Programming is discussed
in Section 4.6.7 on page 195.

4.3.4 Permutation: Unary Reproduction

The tree permutation operation illustrated in Figure 4.7 resembles the permutation operation
of string genomes or the inversion used in messy GA (Section 3.7.2, [1196]). Like mutation,
it is used to reproduce one single tree. It first selects an internal node of the parental tree.
The child nodes attached to that node are then shuffled randomly, i. e., permutated. If
the tree represents a mathematical formula and the operation represented by the node is
commutative, this has no direct effect. The main goal is to re-arrange the nodes in highly
fit sub-trees in order to make them less fragile for other operations such as recombination.
The effects of this operation are doubtable and most often it is not applied [1196].

Figure 4.7: Tree permutation – (asexually) shuffling sub-trees.

4.3.5 Editing: Unary Reproduction

Editing trees in Genetic Programming is what simplifying is to mathematical formulas. Take
x = b+ (7− 4) + (1 ∗ a) for instance. This expression clearly can be written in a shorter way
be replacing (7−4) with 3 and (1∗a) with a. By doing so, we improve its readability and also
decrease the computational time for concrete values of a and b. Similar measures can often
be applied to algorithms and program code. Editing a tree as outlined in Figure 4.8 means
to create a new offspring tree which is more efficient but, in terms of functional aspects,
equivalent to its parent. It is thus a very domain-specific operation.

+

a1

*+

b -
7 4

+

a+

b 3

Figure 4.8: Tree editing – (asexual) optimization.

A positive aspect of editing is that it usually reduces the number of nodes in a tree
by removing useless expression, for instance. This makes it more easy for recombination
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operations to pick “important” building blocks. At the same time, the expression (7 − 4)
is now less likely to be destroyed by the reproduction processes since it is replaced by the
single terminal node 3.

On the other hand, editing also reduces the diversity in the genome which could degrade
the performance by decreasing the variety of structures available. Another negative aspect
would be if (in our example) a fitter expression was (7− (4 ∗ a)) and a is a variable close to
1. Then, transforming (7− 4) into 3 prevents a transition to the fitter expression.

In Koza’s experiments, Genetic Programming with and without editing showed equal
performance, so this operation is not necessarily needed [1196].

4.3.6 Encapsulation: Unary Reproduction

The idea behind the encapsulation operation is to identify potentially useful sub-trees and
to turn them into atomic building block as sketched in Figure 4.9. To put it plain, we create
new terminal symbols that (internally hidden) are trees with multiple nodes. This way,
they will no longer be subject to potential damage by other reproduction operations. The
new terminal may spread throughout the population in the further course of the evolution.
According to Koza, this operation has no substantial effect but may be useful in special
applications like the evolution of artificial neural networks [1196].

Figure 4.9: An example for tree encapsulation.

4.3.7 Wrapping: Unary Reproduction

Applying the wrapping operation means to first select an arbitrary node n in the tree.
Additionally, we create a new non-terminal node m outside of the tree. In m, at least one
child node position is left unoccupied. We then cut n (and all its potential child nodes) from
the original tree and append it to m by plugging it into the free spot. Now we hang m into
the tree position that formerly was occupied by n.

Figure 4.10: An example for tree wrapping.
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The purpose of this reproduction method illustrated in Figure 4.10 is to allow modi-
fications of non-terminal nodes that have a high probability of being useful. Simple mu-
tation would, for example, cut n from the tree or replace it with another expression.
This will always change the meaning of the whole sub-tree below n dramatically, like for
example in (b+3) + a −→ (b*3) + a. By wrapping however, a more subtle change like
(b+3) + a −→ ((b+1)+3) + a is possible.

The wrapping operation is introduced by the author – at least, I have not seen another
source where it is used.

4.3.8 Lifting: Unary Reproduction

While wrapping allows nodes to be inserted in non-terminal positions with small change of
the tree’s semantic, lifting is able to remove them in the same way. It is the inverse operation
to wrapping, which becomes obvious when comparing Figure 4.10 and Figure 4.11.

Figure 4.11: An example for tree lifting.

Lifting begins with selecting an arbitrary inner node n of the tree. This node then replaces
its parent node. The parent node inclusively all of its child nodes (except n) are removed
from the tree. With lifting, a tree that represents the mathematical formula (b+ (1− a)) ∗ 3
can be transformed to b ∗ 3 in a single step. Lifting is used by the author in his experiments
with Genetic Programming (see for example Section 24.1.2 on page 414). I, however, have
not yet found other sources using a similar operation.

4.3.9 Automatically Defined Functions

The concept of automatically defined functions (ADFs) introduced by Koza [1196] provides
some sort of pre-specified modularity for Genetic Programming. Finding a way to evolve
modules and reusable building blocks is one of the key issues in using GP to derive higher-
level abstractions and solutions to more complex problems [66, 67, 1195]. If ADFs are used,
a certain structure is defined for the genome. The root of the tree usually loses its functional
responsibility and now serves only as glue that holds the individual together and has a fixed
number n of children, from which n − 1 are automatically defined functions and one is the
result-generating branch. When evaluating the fitness of an individual, often only this first
branch is taken into consideration whereas the root and the ADFs are ignored. The result-
generating branch, however, may use any of the automatically defined functions to produce
its output.

When ADFs are employed, typically not only their number must be specified beforehand
but also the number of arguments of each of them. How this works can maybe best illustrated
by using the example given in Figure 4.12. It stems from function approximation14, since
this is the area where many early examples of the idea of ADFs come from.

Assume that the goal of GP is to approximate a function g with the one parameter x
and that a genome is used where two functions (f0 and f1) are automatically defined. f0

14 A very common example for function approximation, Genetic Programming-based symbolic re-
gression, is discussed in Section 23.1 on page 397.
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Figure 4.12: A concrete example for automatically defined functions.

has a single formal parameter a and f1 has two formal parameters a and b. The genotype
Figure 4.12 encodes the following mathematical functions:

g(x) = f1(4, f0(x)) ∗ (f0(x) + 3)

f0(a) = a+ 7

f1(a, b) = (−a) ∗ b

Hence, g(x) ≡ ((−4) ∗ (x + 7)) ∗ ((x + 7) + 3). The number of children of the function
calls in the result-generating branch must be equal to the number of the parameters of the
corresponding ADF.

Although ADFs were first introduced in symbolic regression by Koza [1196], they can
also be applied to a variety of other problems like in the evolution of agent behaviors [1688,
1686, 52, 55], electrical circuit design [1206], or the evolution of robotic behavior [57].

4.3.10 Automatically Defined Macros

Spector’s idea of automatically defined macros (ADMs) complements the ADFs of Koza
[1928, 1929]. Both concepts are very similar and only differ in the way that their parameters
are handled. The parameters in automatically defined functions are always values whereas
automatically defined macros work on code expressions. This difference shows up only when
side-effects come into play.

In Figure 4.13, we have illustrated the pseudo-code of two programs – one with a function
(called ADF) and one with a macro (called ADM). Each program has a variable x which is
initially zero. The function y() has the side-effect that it increments x and returns its new
value. Both, the function and the macro, return a sum containing their parameter a two
times. The parameter of ADF is evaluated before ADF is invoked. Hence, x is incremented one
time and 1 is passed to ADF which then returns 2=1+1. The parameter of the macro, however,
is the invocation of y(), not its result. Therefore, the ADM resembles to two calls to y(),
resulting in x being incremented two times and in 3=1+2 being returned.

The ideas of automatically defined macros and automatically defined functions are very
close to each other. Automatically defined macros are likely to be useful in scenarios where
context-sensitive or side-effect-producing operators play important roles [1928, 1929]. In
other scenarios, there is no much difference between the application of ADFs and ADMs.
Finally, it should be mentioned that the concepts of automatically defined functions and
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C:\ produced output

exec main_program
-> “out 2”

C:\ produced output

exec main_program
-> “out 3”

...roughly resembles

main_program
begin
variable temp
temp = y() + y()
print(          temp)
end

”out: “ +

main_program
begin
variable temp1, temp2
temp1 = y()
temp2 = temp1 + temp1
print(          temp2)
end

”out: “ +

...roughly resembles

function
ADF(param a) (a+a)

main_program
begin
print(          func(y))
end

variable x=0

y()
begin
x++
return x
end

”out: “ +

subroutine

º

Program with ADF

variable x=0

subroutine y()
begin
x++
return x
end

”out: “ +

macro
ADM(param a) (a+a)

main_program
begin
print(          ADM(y))
end

º

Program with ADM

C:\

C:\C:\

C:\

C:\C:\

Figure 4.13: Comparison of functions and macros.

macros are not restricted to the standard tree genomes but are also applicable in other
forms of Genetic Programming, such as linear Genetic Programming or PADO.15

4.3.11 Node Selection

In most of the reproduction operations for tree genomes, in mutation as well as in recom-
bination, certain nodes in the trees need to be selected. In order to apply the mutation, we
first need to find the node which is to be altered. For recombination, we need one node in
each parent tree. These nodes are then exchanged. The question how to select these nodes
seems to be more or less irrelevant but plays an important role in reality. The literature
most often speaks of “randomly selecting” a node but does not describe how exactly this
should be done.

A good method for doing so could select all nodes c and n in the tree t
with exactly the same probability as done by the method “uniformSelectNode”, i. e.,
P (uniformSelectNode(t) = c) = P (uniformSelectNode(t) = n) ∀s, n ∈ t.
15 Linear Genetic Programming is discussed in Section 4.6 on page 191 and a summary on PADO

can be found in Section 4.7.1 on page 196.
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Therefore, we define the weight nodeWeight(n) of a tree node n to be the total num-
ber of nodes in the sub-tree with n as root, i. e., itself, its children, grandchildren, grand-
grandchildren, etc.

nodeWeight(n) = 1 +

len(n.children)−1∑

i=0

nodeWeight(n.children[i]) (4.1)

Thus, the nodeWeight of the root of a tree is the number of all nodes in the tree and
the nodeWeight of each of the leaves is exactly 1. In uniformSelectNode, the probability for
a node of being selected in a tree t is thus 1/nodeWeight(t). We can create such a probability
distribution by descending it from the root according to Algorithm 4.1.

Algorithm 4.1: n←− uniformSelectNode(t)

Input: t: the (root of the) tree to select a node from
Data: c: the currently investigated node
Data: c.children: the list of child nodes of c
Data: b, d: two Boolean variables
Data: r: a value uniformly distributed in [0, nodeWeight(c)]
Data: i: an index
Output: n: the selected node

begin1

b←− true2

c←− t3

while b do4

r ←− ⌊randomu(0, nodeWeight(c))⌋5

if r ≥ nodeWeight(c)− 1 then b←− false6

else7

i←− len(c.children)− 18

while i ≥ 0 do9

r ←− r − nodeWeight(c.children[i])10

if r < 0 then11

c←− c.children[i]12

i←− −113

else14

i←− i− 115

return c16

end17

A tree descend where with probabilities different from these defined here will lead to
unbalanced node selection probability distributions. Then, the reproduction operators will
prefer accessing some parts of the trees while very rarely altering the other regions. We could,
for example, descend the tree by starting at the root t and would return the current node
with probability 0.5 or recursively go to one of its children (also with 50% probability). Then,
the root t would have a 50 : 50 chance of being the starting point of reproduction operation.
Its direct children have at most probability 0.52

/len(t.children) each, and their children even
0.53

/len(t.children)len(t.children[i].children) and so on. Hence, the leaves would almost never take
actively part in reproduction. We could also choose other probabilities which strongly prefer
going down to the children of the tree, but then, the nodes near to the root will most likely
be left untouched during reproduction. Often, this approach is favored by selection methods,
although leaves in different branches of the tree are not chosen with the same probabilities
if the branches differ in depth. When applying Algorithm 4.1 on the other hand, there exist
no regions in the trees that have lower selection probabilities than others.
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4.4 Genotype-Phenotype Mappings

Genotype-phenotype mappings (GPM, see Section 3.8 on page 155) are used in many differ-
ent Genetic Programming approaches. Here we give a few examples about them. Many of
the Grammar-guided Genetic Programming approaches discussed in Section 4.5 on page 176
are based on similar mappings.

4.4.1 Cramer’s Genetic Programming

It is interesting to see that the earliest Genetic Programming approaches were based on a
genotype-phenotype mapping. One of them, dating back to 1985, is the method of Cramer
[462]. His goal was to evolve programs in a modified subset of the programming language
PL. Two simple examples for such programs, obtained from his work, are:

1 ;;Set variable V0 to have the value of V1

2 (:ZERO V0)

3 (:LOOP V1 (:INC V0))

4

5 ;;Multiply V3 by V4 and store the result in V5

6 (:ZERO V5)

7 (:LOOP V3 (:LOOP V4 (:INC V5)))

Listing 4.1: Two examples for the PL dialect used by Cramer for Genetic Programming

On basis of a genetic algorithm working on integer strings, he proposed two ideas on how
to convert these strings to valid program trees.

The JB Mapping

The first approach was to divide the integer string into tuples of a fixed length which is large
enough to hold the information required to encode an arbitrary instruction. In the case our
examples, these are triplets where the first item identifies the operation, and the following
two numbers define its parameters. Superfluous information, like a second parameter for a
unary operation, is ignored.

1 (0 4 2) → (:BLOCK AS4 AS2)

2 (1 6 0) → (:LOOP V6 AS0)

3 (2 1 9) → (:SET V1 V9)

4 (3 17 8) → (:ZERO V17) ;;the 8 is ignored

5 (4 0 5) → (:INC V0) ;;the 5 is ignored

Listing 4.2: An example for the JB Mapping

Here, the symbols of the form Vn and ASn represent variables and auxiliary statements,
respectively. Cramer distinguishes between input variables providing data to a program and
local (body) variables used for computation. Any of them can be chosen as output variable
at the end of the execution. The multiplication program used in Listing 4.1 can now be
encoded as (0 0 1 3 5 8 1 3 2 1 4 3 4 5 9 9 2) which translates to

1 (0 0 1) ;;main statement → (: BLOCK AS0 AS1)

2 (3 5 8) ;;auxiliary statement 0 → (:ZERO V5)

3 (1 3 2) ;;auxiliary statement 1 → (:LOOP V3 AS2)

4 (1 4 3) ;;auxiliary statement 2 → (:LOOP V4 AS3)

5 (4 5 9) ;;auxiliary statement 3 → (:INC V5)

Listing 4.3: Another example for the JP Mapping

Cramer outlines some of the major problems of this representation, especially the strong
positional epistasis16 – the strong relation of the meaning of an instruction to its position.
This epistasis makes it very hard for the genetic operations to work efficiently, i.e., to prevent
destruction of the genotypes passed to them.

16 We come back to positional epistasis in Section 4.8.1 on page 202.
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The TB Mapping

The TB mapping is essentially the same as the JB mapping, but reduces these problems a
bit. Instead of using the auxiliary statement method as done in JB, the expressions in the
TB language are decoded recursively. The string (0 (3 5)(1 3 (1 4 (4 5))) ), for instance,
expands to the program tree illustrated in Listing 4.3. Furthermore, Cramer restricts mu-
tation to the statements near the fringe of the tree, more specifically, to leaf operators that
do not require statements as arguments and to non-leaf operations with leaf statements as
arguments. Similar restrictions apply to crossover.

4.4.2 Binary Genetic Programming

With their Binary Genetic Programming (BGP) approach [136], Keller and Banzhaf [1119,
1120, 1121] further explore the utility of explicit genotype-phenotype mappings and neutral
variations in the genotypes. They called the genes in their fixed-length binary string genome
codons analogously to molecular biology where a codon is a triplet of nucleic acids in the
DNA17, encoding one amino acid at most. Each codon corresponds to one symbol in the
target language. The translation of the binary string genotype g into a string representing
an expression in the target language works as follows:

1. x←− ε
2. Take the next gene (codon) g from g and translate it to the according symbol s.
3. If s is a valid continuation of x, set x←− x◦s and continue in step 2.
4. Otherwise, compute the set of symbols S that would be valid continuation of x.
5. From this set, extract the set of (valid) symbols S′ which have the minimal Hamming

distance18 to the codon g.
6. From S′ take the symbol s′ which has the minimal codon value and append it to x:
x←− x◦s′.

After this mapping, x can still be an invalid expression since there maybe were not
enough genes in g so the phenotype is incomplete, for example x = 3 ∗ 4 − sin(v∗. These
incomplete sequences are fixed by consecutively appending symbols that lead to a quick end
of an expression according to some heuristic.

The genotype-phenotype mapping of Binary Genetic Programming represents a n : 1
relation: Due to the fact that different codons may be replaced by the same approximation,
multiple genotypes have the same phenotypic representation. This also means that there can
be genetic variations induced by the mutation operation that do not influence the fitness.
Such neutral variations are often considered as a driving force behind (molecular) evolution
[1137, 1138, 973] and are discussed in Section 1.4.5 on page 67 in detail.

From the form of the genome we assume the number of corrections needed in the
genotype-phenotype mapping(especially for larger grammars) will be high. This, in turn,
could lead to very destructive mutation and crossover operations since if one codon is mod-
ified, the semantics of many subsequent codons may be influenced wildly. This issue is also
discussed in Section 4.8.1 on page 204.

4.4.3 Gene Expression Programming

Gene Expression Programming (GEP) by Ferreira [654, 655, 656, 657, 658] introduces an
interesting method for dealing with remaining unsatisfied function arguments at the end
of the expression tree building process. Like BGP, Gene Expression Programming uses a
genotype-phenotype mapping that translates fixed-length string chromosomes into tree phe-
notypes representing programs.

17 See Figure 1.14 on page 42 for more information on the DNA.
18 see Definition 29.6 on page 537
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A gene in GEP is composed of a head and a tail [654] which are further divided into
codons, where each codon directly encodes one expression. The codons in the head of a
gene can represent arbitrary expressions whereas the codons in the tail can only stand
for parameterless terms. This makes the tail a reservoir for unresolved arguments of the
expressions in the head.

For each problem, the length h of the head is chosen as a fixed value, and the length of the
tail t is defined according to Equation 4.2, where n is the arity (the number of arguments)
of the function with the most arguments.

t = h(n− 1) + 1 (4.2)

The reason for this formula is that we have h expressions in the head, each of them
taking at most n parameters. An upper bound for the total number of arguments is thus
h ∗n. From this number, h− 1 are already satisfied since all expressions in the head (except
for the first one) themselves are arguments to expressions instantiated before. This leaves at
most h ∗ n− (h− 1) = h ∗ n− h+ 1 = h(n− 1) + 1 unsatisfied parameters. With this simple
measure, incomplete expressions that require additional repair operations in BGP and most
other approaches simply cannot occur.

For instance, consider the grammar for mathematical expressions with the terminal sym-
bols Σ =

{√· , *, /, -, +, a, b
}

given as example in [654]. It includes two variables, a and b,
as well as five mathematical functions,

√ · , *, /, +, and -.
√· has the arity 1 since it takes

one argument, the other four have arity 2. Hence, n = 2.
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Figure 4.14: A GPM example for Gene Expression Programming.

Figure 4.14 illustrates an example gene (with h = 10 and t = h(2− 1) + 1 = 11) and its
phenotypic representation of this mathematical expression grammar. A phenotype is built
by interpreting the gene as a level-order traversal19 of the nodes of the expression tree. In

19 http://en.wikipedia.org/wiki/Tree_traversal [accessed 2007-07-15]

http://en.wikipedia.org/wiki/Tree_traversal
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other words, the first codon of a gene encodes the root r of expression tree (here +). Then,
all nodes in the first level (i. e., the children of r, here

√· and -) are stored from left to
right, then their children and so on. In the phenotypic representation, we have sketched the
traversal order and numbered the levels. These level numbers are annotated to the gene but
are neither part of the real phenotype nor the genotype. Furthermore, the division of the
gene into head and tail is shown. In the head, the mathematical expressions as well as the
variables may occur, while variables are the sole construction element of the tail.

In GEP, multiple genes form one genotype, thus encoding multiple expression trees.
These trees may then be combined to one phenotype by predefined statements. It is easy
to see that binary or integer strings can be used as genome, because the number of allowed
symbols is known in advance.

This fixed mapping is also a disadvantage of Gene Expression Programming in com-
parison with the methods introduced later which have variable input grammars. On the
other hand, there is the advantage that all genotypes can be translated to valid expression
trees without requiring any corrections. Another benefit is that it seems to circumvent –
at least partially – the problem of low causality from which the string-to-tree-GPM based
approaches in often suffer. By modularizing the genotypes, potentially harmful influences
of the reproduction operations are confined to single genes while others may stay intact.
(See Section 4.8.1 on page 204 for more details.)

General Information

Areas Of Application

Some example areas of application of Gene Expression Programming are:

Application References

Symbolic Regression and Function Synthesis [659, 660, 1308]

Data Mining and Data Analysis
[1389, 1390, 2319, 2334, 2320,
1361]

Electrical Engineering and Circuit Design [337]
Machine Learning [661, 1278]
Geometry and Physics [2018, 1127, 364]

Online Resources

Some general, online available ressources on Gene Expression Programming are:

http://www.gene-expression-programming.com/ [accessed 2007-08-19]

Last update: up-to-date

Description:
Gene Expression Programming Website. Includes publications, tutorials, and
software.

4.4.4 Edge Encoding

Up until now, we only have considered how string genotypes can be transformed to more
complex structures like trees. Obviously, genotype-phenotype mappings are not limited to
this, but can work on tree genotypes as well. In [1321], Luke and Spector present their
edge encoding approach where the genotypes are trees (or forests) of expressions from a
graph-definition language. During the GPM, these trees are interpreted and construct the
phenotypes, arbitrary directed graphs. Edge encoding is closely related to Gruau’s cellular
encoding [863], which works on nodes instead of edges.

http://www.gene-expression-programming.com/
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Each functions and terminals in edge encoding work on tuples (a, b) containing two node
identifiers. Such a tuple represents a directed edge from node a to node b. The functions
edit these tuples, add nodes or edges and thus, successively build the graph. Unlike normal
Genetic Programming applications like symbolic regression, for instance, the nodes of trees
in edge encoding are “executed” from top to bottom (pre-order) and pass control down to
their children (from left to right). After an edge has been processed by a terminal node,
it becomes permanent part of the graph constructed. In order to allow the construction of
arbitrary graphs, an additional control structure, a stack of node identifiers, is used. Each
node in the GP tree may copy this stack, modify this copy, and pass it to all of its children.

In their paper [1321], Luke and Spector give multiple possible function and terminal sets
for edge encoding. We provide a set that is sufficient to build arbitrary graphs in Table 4.1.
Generally, each node receives an input edge tuple E = (a, b) and a stack s which it can
process. The two commands labelE and labelN in the table are no real functions but just
here to demonstrate how nodes and edges can be enriched with labels and other sorts of
information.

Operator Children Description

double 2 1. create a new edge F = (a, b)
2. pass E = (a, b) and the stack s to the first child
3. pass F = (a, b) and the stack s to the second child

bud 2 1. create node c
2. create an edge F = (b, c)
3. pass E = (a, b) and the stack s to the first child
4. pass F = (b, c) and the stack s to the second child

split 2 1. create a node c
2. change edge E = (a, b) to E = (a, c)
3. change edge F = (c, b)
4. pass E = (a, c) and the stack s to the first child
5. pass F = (c, b) and the stack s to the second child

loop 2 1. create a new edge F = (b, b)
2. pass E = (a, b) and the stack s to the first child
3. pass F = (b, b) and the stack s to the second child

cut 0 1. eliminate edge E = (a, b)
nop 0 1. make edge E = (a, b) permanent
push 1 1. create a new node c

2. make a copy s′ of the stack s
3. push c onto this copy s′

4. pass E = (a, b) and the new stack s′ to the child
attach 3 1. make a copy s′ of the stack s

2. if s′ is empty, create a new node and push it onto s′

3. pop the node c from the top of the stack s′

4. create two new edges F = (a, c) and G = (b, c)
5. pass E = (a, b) and the new stack s′ to the first child
6. pass F = (a, c) and the new stack s′ to the second child
7. pass G = (b, c) and the new stack s′ to the third child

labelN 1 1. label node b from edge E = (a, b) with something
2. pass E = (a, b) and the stack s to the child

labelE 1 1. label the edge E = (a, b) with something
2. pass E = (a, b) and the stack s to the child

Table 4.1: One possible operator set of edge encoding.

In Figure 4.15, an example genotype for edge encoding is given. The nodes of this geno-
type are annotated with the parameters which are passed to them by their parent. The root
receives an initial node tuple and an empty stack. Notice that we have replaced the node
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Figure 4.15: An example for edge encoding.

names a, b, c from Table 4.1 with running numbers and that new edges receive automatically
a new name. At the bottom of the graphic, you find the result of the interpretation of the
genotype by the GPM, a beautiful graph.

Edge encoding can easily be extended with automatically defined functions (as also shown
in [1321]) and gave the inspiration for Sinclair’s node pair encoding method for evolving
network topologies [1887] (discussed in ?? on page ??). Vaguely related to such a graph
generating approach are some of the methods for deriving electronic circuits by Lohn et al.
[1306] and Koza et al. [1205] which you can find listed in the “Applications” tables in the
general information sections.

4.5 Grammars in Genetic Programming

4.5.1 Introduction

We have learned that the most common genotypic and phenotypic representations in Genetic
Programming are trees and also have discussed the reproduction operations available for tree-
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based genomes. In this discussion, we left one out important point: in many applications,
reproduction cannot occur freely. Normally, there are certain restrictions to the structure
and shape of the trees that must not be violated. Take our pet-example symbolic regression20

for instance. If we have a node representing a division operation, it will take two arguments:
the dividend and the divisor. One argument is not enough and a third argument is useless,
as one can easily see in Figure 4.16.

invalid

1 1 2 3
invalid

1 2
validinvalid

...
Figure 4.16: Example for valid and invalid trees in symbolic regression.

There are four general methods how to avoid invalid configurations under these limita-
tions:

1. Compensate illegal configurations during the evaluation of the objective functions. This
would mean, for example, that a division with no arguments could return 1, a division
with only the single argument a could return a, and that superfluous arguments (like c
in Figure 4.16) would simply be ignored.

2. A subsequent repair algorithm could correct errors in the tree structure that have been
introduced during reproduction.

3. Using additional checking and refined node selection algorithms, we can ensure that only
valid trees are created during the reproduction cycle.

4. With special genotype-phenotype mappings, we can prevent the creation of invalid trees
from the start.

In this section, we will introduce some general methods of enforcing valid configurations
in the phenotypes, mostly regarding the fourth approach. A very natural way to express
structural and semantic restrictions of a search space are formal grammars which are elab-
orated on in Section 30.3 on page 561. Genetic Programming approaches that limit their
phenotypes (the trees) to sentences of a formal language are subsumed under the topic of
Grammar-guided Genetic Programming (GGGP, G3P) [1382].

4.5.2 Trivial Approach

Standard Genetic Programming as introduced by Koza [1196] already inherently utilizes
simple mechanisms to ensure the correctness of the tree structures. These mechanisms are
rather trivial, though, and should not be counted to the family of GGGP approaches, but
are mentioned here for the sake of completeness.

In Standard Genetic Programming, all expressions have exactly the same type. Applied
to symbolic regression, this means that, for instance, all constructs will be real-valued or
return real values. If logical functions like multiplexers are grown, all entities will be Boolean-
valued, and so on. For each possible tree node type, we just need to specify the exact
amount of children. This approach corresponds to a context-free grammar21 with a single
non-terminal symbol which is expanded by multiple rules. Listing 4.4 illustrates such a trivial
grammar G = (N,Σ,P, S) in Backus-Naur Form (BNF)22. Here, the non-terminal symbol

20 See Section 23.1 on page 397.
21 see Section 30.3.2 on page 563 for details
22 The Backus-Naur form is discussed in Section 30.3.4 on page 564.
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1 <Z> ::= (<Z> + <Z>)

2 <Z> ::= (<Z> - <Z>)

3 <Z> ::= (<Z> * <Z>)

4 <Z> ::= (<Z> / <Z>)

5 <Z> ::= (sin <Z>)

6 <Z> ::= X

Listing 4.4: A trivial symbolic regression grammar.

is Z (N = {Z}), the terminal symbols are Σ = {(, ), +, -, *, /, sin, X}, and six different
productions are defined. The start symbol is S = Z.

Standard Genetic Programming does not utilize such grammars directly. Rather, they are
hard-coded in the reproduction operators or are represented in fixed internal data structures.

Here we should mention that illegal configurations can also rise at runtime from seman-
tics. In symbolic regression, a division operation is invalid if the divisor is zero, for instance.
The same goes for logarithms, or a tangent of

(
n+ 1

2

)
π ∀n ∈ Z. All four approaches for

enforcing a proper tree structure previously introduced cannot prevent such errors from the
start. Therefore, the function set (the possible inner nodes of the trees) need to ensure the
property of closure as defined by Koza [1196].

Definition 4.1 (Closure). If a function set N has the property closure, it ensures that all
possible values are accepted as parameter by any function.

Closure is especially important in approaches like symbolic regression, and can easily be
achieved by redefining the mathematical functions for special cases, like setting a

0 = a ∀a ∈
R, for instance. It does, however, not consider the tree structure itself – the number of
arguments still needs to be sufficient.

4.5.3 Strongly Typed Genetic Programming

The strongly typed Genetic Programming (STGP) approach developed by Montana [1446,
1447, 1448] is still very close to Standard Genetic Programming. With strongly typed Genetic
Programming, it becomes possible to use typed data structures and expressions in Genetic
Programming. Hence, the issue of well-typedness arises, as illustrated in Figure 4.17.

1 2
valid

...
invalid

1 { }3,4

invalid

,,x`` 2
invalid

true void

Figure 4.17: Example for valid and invalid trees in typed Genetic Programming.

As already mentioned in Section 4.5.2 on the previous page, in Standard Genetic Pro-
gramming such errors are circumvented by only using representations that are type-safe per
definition. In symbolic regression, for instance, only functions and variables which are real-
typed are allowed, and in the evolution of logic functions only Boolean-valued expressions
will be admitted. Thus, inconsistencies like in Figure 4.17 are impossible.

In STGP, a tree genome is used which permits different data types that are not
assignment-compatible. One should not mistake STGP for a fully grammar-guided approach,
since it uses rules still based on an implicit, hard-coded internal grammar which are built
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in the bootstrap phase of the GP system. However, it represents clearly a method to shape
the individuals according to some validity constraints.

These constraints are realized by modified reproduction operations that use types possi-
bilities tables which denote which types for expressions are allowed in which level of a tree
(individual). The creation and mutation operators now return valid individuals per default.
Recombination still selects the node to be replaced in the first parent randomly, but the
sub-tree in the second parent which should replace this node is selected in a way that en-
sures that the types match. If this is not possible recombination either returns the parents
or an empty set.

STGP also introduces interesting new concepts like generic functions and data types, very
much like in Ada or C [1448] and hierarchical type systems, comparable to object-oriented
programming in their inheritance structure [910]. This way, STGP increases the reusability
and modularity in GP which is needed for solving more complex problems [67, 1195].

4.5.4 Early Research in GGGP

Research steps into grammatically driven program evolution can be traced to the early
1990s where Antonisse [73] developed his Grammar-based Genetic Algorithm. As genome,
he used character strings representing sentences in a formal language defined by a context-
free grammar. Whenever crossover was to be performed, these strings were parsed into
the derivation trees23 of that grammar. Then, recombination was applied in the same way
as in tree-based systems. This parsing was the drawback of the approach, leading to two
major problems: First, it slows down the whole evolution since it is an expensive operation.
Secondly, if the grammar is ambiguous, there may be more than one derivation tree for
the same sentence [1382]. Antonisse’s early example was succeeded by other researchers like
Stefanski [1958], Roston [1763], and Mizoguchi et al. [1439].

In the mid-1990s [1382, 1785], more scientists began to concentrate on this topic. The LO-
GENPRO system developed by Wong and Leung [2250, 2247, 2248, 2249, 2251, 2252, 2253]
used PROLOG Definite Clause Grammars to derive first-order logic programs. A GP sys-
tem proposed by Whigham [2201, 2202, 2203, 2205, 2204] applied context-free grammars
in order to generate populations of derivation trees. This method additionally had the ad-
vantage that it allowed the user to bias the evolution into the direction of certain parts
of the grammar [2205]. Geyer-Schulz [795] derived a similar approach, differing mainly in
the initialization procedure [241, 1382], for learning rules for expert systems. The Genetic
Programming Kernel (GPK) by Hörner [960] used tree-genomes where each genotype was a
deviation tree generated from a BNF definition.

4.5.5 Gads 1

The Genetic Algorithm for Deriving Software 1 (Gads 1) by Paterson and Livesey [1620,
1621] is one of the basic research projects that paved the way for other, more sophisticated
approaches like Grammatical Evolution. Like the Binary Genetic Programming system by
Keller and Banzhaf [1119], it uses a clear distinction between the search space G and the
problem space X. The genotypes g ∈ G in Gads are fixed-length integer strings which are
transformed to character string phenotypes x ∈ X (representing program syntax trees) by a
genotype-phenotype mapping (see Section 3.8 on page 155). Because of this genome, Gads
can use a conventional genetic algorithm engine24 to evolve the solution candidates.

Gads receives a context-free grammar G = (N,Σ,P, S) specified in Backus-Naur form
as input. In Binary Genetic Programming, the genome encodes the sequence of terminal
symbols of the grammar directly. Here, a genotype specifies the sequence of the productions
to be applied to build a sentence of terminal symbols.

23 An elaboration on derivation trees can be found in Section 30.3.3 on page 563.
24 Gads 1 uses the genetic algorithm C++ class library GAGS (http://geneura.ugr.es/GAGS/

[accessed 2007-07-09]) release 0.95.

http://geneura.ugr.es/GAGS/
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1 (0) <expr > ::= <expr > <op > <expr >

2 (1) <expr > ::= (<expr > <op > <expr >)

3 (2) <expr > ::= <pre -op > (<expr >)

4 (3) <expr > ::= <var >

5

6 (4) <op > ::= +

7 (5) <op > ::= -

8 (6) <op > ::= /

9 (7) <op > ::= *

10

11 (8) <pre -op > ::= log

12 (9) <pre -op > ::= tan

13 (10) <pre -op > ::= sin

14 (11) <pre -op > ::= cos

15

16 (12) <var > ::= X

17

18 (13) <func > ::= double func(double x){

19 return <expr >;

20 }

Listing 4.5: A simple grammar for C functions that could be used in Gads.

Although Gads was primarily tested with LISP S-expressions, it can evolve sentences in
arbitrary BNF grammars. For the sake of coherence with later sections, we use a grammar
for simple mathematical functions in C as example. Here, the set of possible terminals
is Σ = {sin, cos, tan, log, +, -, *, /, X, (), . . . } and as non-terminal symbols we use N =
{expr, op, pre-op, func}. The starting symbol is S = func and the set of productions P is
illustrated in Listing 4.5.

In the BNF grammar definitions for Gads, the “|” symbol commonly denoting alterna-
tives is not used. Instead, multiple productions can be defined for the same non-terminal
symbol.

Every gene in a Gads genotype contains the index of the production in G to be applied
next. For now, let us investigate the genotype g = (2, 0, 12, 5, 5, 13, 10) as example. If the
predefined start symbol is func, we would start with the phenotype string x1

1 double func(double x){

2 return <expr >;

3 }

The first gene in g, 2, leads to the application of rule (2) to x1 and we obtain x2:

1 double func(double x){

2 return <pre -op > (<expr >);

3 }

The next gene is 0, which means that we will use production (0)). There is a (non-
terminal) expr symbol in x2, so we get x3 as follows:

1 double func(double x){

2 return <pre -op > (<expr > <op > <expr >);

3 }

Now comes the next gene with allele 1225. We cannot apply rule (12) since no var symbol
can be found in x3 – we simple ignore this gene and set x3 = x4. The following gene with
value 5 translates the symbol op to - and we obtain for x5:

25 An allele is a value of specific gene, see Definition 1.24 on page 43.
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1 double func(double x){

2 return <pre -op > (<expr > - <expr >);

3 }

The next two genes, 5 and 13, must again be ignored (x7 = x6 = x5). Finally, the last
gene with the allele 10 resolves the non-terminal pre-op and we get for x8:

1 double func(double x){

2 return sin (<expr > - <expr >);

3 }

For the remaining two expr non-terminal symbols no rule is defined in the genotype g.
There are several ways for dealing with such incomplete resolutions. One would be to exclude
the individual from evaluation/simulation and to give it the lowest possible objective values
directly. Gads instead uses simple default expansion rules. In this example, we could translate
all remaining exprs to vars and these subsequently to X. This way we obtain the resulting
function below.

1 double func(double x){

2 return sin (X - X);

3 }

One of the problems in Gads is the unacceptable large number of introns26 [1619] caused
by the encoding scheme. Many genes will not contribute to the structure of the phenotype
since they encode productions that cannot be executed (like allele 12 in the example genotype
g) because there are no matching non-terminal symbols. This is especially the case in “real-
world” applications where the set of non-terminal symbols N becomes larger.

With the Gads system, Paterson paved the way for many of the advanced techniques
described in the following sections.

4.5.6 Grammatical Evolution

Like Gads, Grammatical Evolution27 (GE), developed by Ryan et al. [1785], creates expres-
sions in a given language by iteratively applying the rules of a grammar specified in the
Backus-Naur form [1785, 1565, 1784].

In order to discuss how Grammatical Evolution works, we re-use the example of C-style
mathematical functions [1785] from Section 4.5.5. Listing 4.6 specifies the according rules
using a format which is more suitable for grammatical evolution.

There are five rules in the set of productions P , labeled from A to E. Some of the rules
have different options (separated by |). In each rule, options are numbered started with 0.
When the symbol <exp> for example is expanded, for example, there are four possible results
(0-3). The shape of the sentences produced by the grammar depends on these choices.

Like in Gads, the genotypes in GE are numerical strings. These strings encode the indices
of the options instead of the productions themselves. In Gads, each option was treated as
a single production because of the absence of the “|” operator. The idea of Grammatical
Evolution is that it is already determined which rules must be used by the non-terminal
symbol to be expanded and we only need to decide which option of this rule is to be applied.
Therefore, the number of introns is dramatically reduced compared to Gads.

The variable-length string genotypes of Grammatical Evolution can again be evolved
using genetic algorithms [1785, 1783] (like in Gads) or with other techniques, like Par-
ticle Swarm Optimization [1578, 1568] or Differential Evolution [1567]. As illustrated in
Figure 4.18, a Grammatical Evolution system consists of three components: the problem
definition (including the means of evaluating a solution candidate), the grammar that defines
the possible shapes of the individuals, and the search algorithm that creates the individuals
[1782].

26 Introns are genes or sequences of genes (in the genotype) that do not contribute to the phenotype
or its behavior, see Definition 3.2 on page 146 and Section 4.10.3.

27 http://en.wikipedia.org/wiki/Grammatical_evolution [accessed 2007-07-05]

http://en.wikipedia.org/wiki/Grammatical_evolution
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1 (A) <expr > ::= <expr > <op > <expr > (0)

2 | (<expr > <op > <expr >) (1)

3 | <pre -op > (<expr >) (2)

4 | <var > (3)

5

6 (B) <op > ::= + (0)

7 | - (1)

8 | / (2)

9 | * (3)

10

11 (C) <pre -op > ::= log (0)

12 | tan (1)

13 | sin (2)

14 | cos (3)

15

16 (D) <var > ::= X (0)

17

18 (E) <func > ::= double func(double x){

19 return <expr >;

20 } (0)

Listing 4.6: A simple grammar for C functions that could be used by GE.

Problem

Grammar

Search Algorithm G
ra

m
m

at
ic

al
E

v
ol

u
ti
on

Program

Figure 4.18: The structure of a Grammatical Evolution system [1782].

An Example Individual

We get back to our mathematical C function example grammar in Listing 4.6. As already
said, a genotype g ∈ G is a variable-length string of numbers that denote the choices to be
taken whenever a non-terminal symbol from N is to be expanded and more than one option is
available (as in the productions (A), (B), and (C)). The start symbol, S = func does not need
to be encoded since it is predefined. Rules with only one option do not consume information
from the genotype. The processing of non-terminal symbols uses a depth-first order [1785],
so resolving a non-terminal symbol ultimately to terminal symbols has precedence before
applying an expansion to a sibling.

Let us assume we have settled for bytes as genes in the genome. As we may have less
than 256 options, we apply modulo arithmetic to get the index of the option. This way, the
sequence g = (193, 47, 51, 6, 251, 88, 63) is a valid genotype. According to our grammar, the
first symbol to expand is S = func (rule (E)) where only one option is available. Therefore,
all phenotypes will start out like

1 double func(double x){

2 return <expr >;

3 }

The next production we have to check is (A), since it expands expr. This productions has
four options, so taking the first number from the genotype g, we get 193 mod 4 = 1 which
means that we use option (1) and obtain
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1 double func(double x){

2 return (<expr > <op > <expr >);

3 }

As expr appears again, we have to evaluate rule (A) once more. The next number, 47,
gives us 47 mod 4 = 3 so option (3) is used.

1 double func(double x){

2 return (<var > <op > <expr >);

3 }

var is expanded by rule (D) where only one result is possible:

1 double func(double x){

2 return (X <op > <expr >);

3 }

Subsequently, op will be evaluated to * since 51 mod 4 = 3 (rule (B)(3)) and expr becomes
pre-op(<expr>) because 6 mod 4 = 2 (production (A)(2)). Rule (C)(3) then turns pre-op

into cos since 251 mod 4 = 3. expr is expanded to <expr> <op> <expr> by (A)(0) because
88 mod 4 = 0. The last gene in our genotype is 63, and thus rule (A)(3) (63 mod 4 = 3)
transforms expr to <var> which then becomes X.

1 double func(double x){

2 return (X * cos(X <op > <expr >));

3 }

By now, the numbers available in g are exhausted and we still have non-terminal symbols
left in the program. As already outlined earlier, there are multiple possible approaches how
to proceed in such a situation:

1. Mark g as invalid and give it a reasonably bad fitness.
2. Expand the remaining non-terminals using default rules (i. e., we could say the default

value for expr is X and op becomes +),
3. or wrap around and restart taking numbers from the beginning of g.

The latter method is applied in Grammatical Evolution. It has the disadvantage that it
can possible result in an endless loop in the genotype-phenotype translation, so there should
be a reasonable maximum for the iteration steps after which we fall back to default rules.

In the example, we will proceed by expanding op according to (B)(1) since 193 mod 4 = 1
and obtain - (minus). The next gene gives us 47 mod 4 = 3 so the last expr will become a
<var> and finally our phenotype is:

1 double func(double x){

2 return (X * cos(X - X));

3 }

Note that if the last gene 63 was missing in g, the “restart method” which we have just
described would produce an infinite loop, because the first non-terminal to be evaluated
whenever we restart taking numbers from the front of the genome then will always be expr.
In this example, we are lucky and this is not the case since after wrapping at the genotype
end, a pre-op is to be resolved. The gene 193 thus is an index into rule A at its first usage
and an index into production C in the second application.

Initialization

Grammatical Evolution uses an approach for initialization similar to ramped half-and-half28,
but on basis of derivation trees29. Therefore, the numbers of the choices made during a

28 An initialization method of standard, tree-based Genetic Programming that creates a good mix-
ture of various tree shapes [1196], see Section 4.3.1 on page 163 for more details.

29 see Section 30.3.3 on page 563



184 4 Genetic Programming

random grammatical rule expansion beginning at the start symbol are recorded. Then, a
genotype is built by reversing the modulo operation, i. e., finding a number that produces
the same number as recorded when modulo-divided for each gene. The number of clones is
subsequently reduced and, optionally, the single-point individuals are deleted.

General Information

Areas Of Application

Some example areas of application of Grammatical Evolution are:

Application References

Mathematical Problems (vs. Standard Genetic Program-
ming: [1196])

[1783, 1785]

Automated Programming [1784, 1569, 1566]
Robotics (vs. Standard Genetic Programming: [1317, 1204]) [1576, 1575]
Economics and Finance (vs. Standard Genetic Program-
ming: [1513, 1674])

[1577, 266, 264, 265]

There even exists an approach called “Grammatical Evolution by Grammatical Evolution”
((GE)2, [1571]) where the grammar defining the structure of the solution candidates itself
is co-evolved with the individuals.

Conferences, Workshops, etc.

Some conferences, workshops and such and such on Grammatical Evolution are:

GEWS: Grammatical Evolution Workshop
http://www.grammatical-evolution.com/gews.html [accessed 2007-09-10]

History: 2004: Seattle, WA, USA, see [1574]
2003: Chicago, IL, USA, see [1573]
2002: New York, NY, USA, see [1572]

Online Resources

Some general, online available ressources on Grammatical Evolution are:

http://www.grammatical-evolution.com/ [accessed 2007-07-05]

Last update: up-to-date
Description: Grammatical Evolution Website. Includes publications, links, and software.

Books

Some books about (or including significant information about) Grammatical Evolution are:

O’Neill and Ryan [1570]: Grammatical Evolution: Evolutionary Automatic Programming in
an Arbitrary Language

http://www.grammatical-evolution.com/gews.html
http://www.grammatical-evolution.com/
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4.5.7 Gads 2

In Gads 2, Paterson [1619] uses the experiences from Gads 1 and the methods of the Gram-
matical Evolution approach to tackle context-sensitive grammars with Genetic Program-
ming. While context-free grammars are sufficient to describe the syntax of a programming
language, they are not powerful enough to determine if a given source code is valid. Take
for example the C snippet:

1 char i;

2 i = 0.5;

3 y = 1;

This is obviously not a well-typed program although syntactically correct. Context-
sensitive grammars30 allow productions like αAβ → αγβ where A ∈ N is a non-terminal
symbol, and α, β, γ ∈ V ∗ are concatenations of arbitrary many terminal and non-terminal
symbols (with the exception that γ 6= ε, i. e., it must not be the empty string). Hence, it is
possible to specify that a value assignment to a variable must be of the same type as the
variable and that the variable must have previously been declared with a context-sensitive
grammar. Paterson argues that the application of existing approaches like two-level gram-
mars and standard attribute grammars31 in Genetic Programming is infeasible [1619] and
introduces an approach based on reflective attribute grammars.

Definition 4.2 (Reflective Attribute Grammar). A reflective attribute grammar
(rag32) [1619] is a special form of attribute grammars. When expanding a non-terminal
symbol with a rag production, the grammar itself is treated as an (inherited) attribute.
During the expansion, it can be modified and is finally passed on to the next production
step involving the newly created nodes.

The transformation of a genotype g ∈ G into a phenotype using a reflective attribute
grammar r resembles Grammatical Evolution to some degree. Here we discuss it with the
example of the recursive expansion of the symbol s:

1. Write the symbol s to the output.
2. If s ∈ Σ, i. e., s is a terminal symbol, nothing else is to do – return.
3. Use the next gene in the genotype g to choose one of the alternative productions that

have s on their left hand side. If g is exhausted, choose the default rule.
4. Create the list of the child symbols s1. . .sn according to the right-hand side of the

production.
5. For i = 1 to n do

a) Resolve the symbol i, passing in si, r, and g.
b) If needed, modify the grammar r according to the semantics of s and si.

Item 5 is the main difference between Gads 2 and Grammatical Evolution. What happens
here depends on the semantics in the rag. For example, if a non-terminal symbol that declares
a variable x is encountered, a new terminal symbol κ is added to the alphabet Σ that
corresponds to the name of x. Additionally, the rule which expands the non-terminal symbol
that stands for variables of the same type now is extended by a new option that returns κ.
Thus, the new variable becomes available in the subsequent code.

Another difference to Grammatical Evolution is the way the genes are used to select an
option in item 3. GE simply uses the modulo operation to make its choice. Assume we have

30 See Section 30.3.2 on page 563 where we discuss the Chomsky Hierarchy of grammars.
31 See Section 30.3.6 on page 565 for a discussion of attribute grammars.
32 Notice that the shortcut of this definition rag slightly collides with the one of Recursive Adaptive

Grammars (RAG) introduced by Shutt [1874] and discussed in Section 30.3.8 on page 568,
although their letter cases differ. To the knowledge of the author, rags are exclusively used in
Gads 2.
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genotypes where each gene is a single byte and encounter a production with four options
while the next gene has the value 45. In Grammatical Evolution, this means to select the
second option since 45 mod 4 = 1 and we number the alternatives beginning with zero. Gads
2, on the other hand, will divide the range of possible alleles into four disjoint intervals of
(approximately) equal size [0, 63], [64, 127], [128, 191], [192, 255] where 45 falls clearly into the
first one. Thus, Gads 2 will expand the first rule.

The advantage of Gads 2 is that it allows to grow valid sentences according to context-
sensitive grammars. It becomes not only possible to generate syntactically correct but also
well-typed source code for most conventional programming languages. Its major drawback
is that it has not been realized fully. The additional semantics of the production expansion
rule 5b have not been specified in the grammar or in an additional language as input for the
Genetic Programming system but are only exemplarily realized in a hard-coded manner for
the programming language S-Algol [1461]. The experimental results in [1619], although suc-
cessful, do not provide substantial benefits compared to the simpler Grammatical Evolution
approach.

Gads 2 shows properties that we also experienced in the past: Even if constructs like loops,
procedure calls, or indexed access to memory are available, the chance that they are actually
used in the way in which we would like them to be used is slim. Genetic Programming of
real algorithms in a high-level programming language-like syntax exhibits a high affinity to
employ rather simple instructions while neglecting more powerful constructs. Good fitness
values are often reached with overfitting only.

Like Grammatical Evolution, the Gads 2 idea can be realized with arbitrary genetic
algorithm engines. Paterson [1619] uses the Java-based evolutionary computation system
ECJ by Luke et al. [1327] as genetic algorithm engine in his experiments.

4.5.8 Christiansen Grammar Evolution

Christiansen Grammar, which you can find described in Section 30.3.9 on page 569, have
many similarities to the reflective attribute grammars used in Gads 2. They are both Ex-
tended Attribute Grammars33 and the first attribute of both grammars is an inherited in-
stance of themselves. Christiansen Grammars are formalized and backed by comprehensive
research since being developed back in 1985 by Christiansen [402].

Building on their previous work de la Cruz Echeand́ıa et al. [520] place the idea of Gads
2 on the solid foundation of Christiansen Grammars with their Christiansen Grammar Evo-
lution approach (CGE) [521]. They tested their system for finding logic function identities
with constraints on the elementary functions to be used. Instead of elaborating on this
experiment, let us stick with the example of mathematical functions in C for the sake of
simplicity.

In Listing 4.7 we define the productions P of a Christiansen Grammar that extends the
examples from before by the ability of creating and using local variables. Three new rules
(F), (G), and (H) are added, and the existing ones have been extended with attributes.

The non-terminal symbol expr now receives the inherited attribute g which is the (Chris-
tiansen) grammar to be used for its expansion. The ↓ (arrow down) indicates inherited
attribute values that are passed down from the parent symbol, whereas ↑a (arrow up) iden-
tifies an attribute value a synthesized during the expansion of a symbol and passed back to
the parent symbol.

The start symbol S is still func, but the corresponding production (E) has been com-
plemented by a reference to the new non-terminal symbol stmt (line 19). The symbol stmt
has two attributes: an inherited (input) grammar g0 and a synthesized (output) grammar
g2. We need to keep that in mind when discussing the options possible for its resolution. A
stmt symbol can either be expanded to two new stmts in option (0), a variable declaration

33 See Section 30.3.7 on page 567 for more information on such grammars.
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1 (A) <expr ↓g> ::= <expr↓g> <op↓g> <expr↓g> (0)

2 | (<expr ↓g> <op ↓g> <expr ↓g>) (1)

3 | <pre -op ↓g> (<expr ↓g>) (2)

4 | <var ↓g> (3)

5

6 (B) <op ↓g> ::= "+" (0)

7 | "-" (1)

8 | "/" (2)

9 | "*" (3)

10

11 (C) <pre -op ↓g> ::= "log" (0)

12 | "tan" (1)

13 | "sin" (2)

14 | "cos" (3)

15

16 (D) <var ↓g> ::= "X" (0)

17

18 (E) <func ↓g1 > ::= "double func(double x){"

19 <stmt ↓g1 ↑g2 >
20 "return " <expr ↓g2 > ";"

21 } (0)

22

23 (F) <stmt ↓g0 ↑g2 > ::= <stmt ↓g0 ↑g1 ><stmt ↓g1 ↑g2 > (0)

24 | <new -var ↓g0 ↑g2 > (1)

25 | <assign ↓g0 ↑g2 > (2)

26

27 (G) <new -var ↓g ↑g+new -rule > ::=

28 "double " <alpha -list ↓g ↑w> "=0;" (0)

29 where <new -rule > is <var ↓g> ::= w

30

31 (H) <assign ↓g ↑g> ::= <var ↓g> "=" <expr ↓g> ";" (0)

Listing 4.7: A Christiansen grammar for C functions that that use variables.

represented by the non-terminal symbol new-var as option (1), or to a variable assignment
(symbol assign) in option (2). Most interesting here is option (1), the variable declaration.

The production for new-var, labeled (G), receives the grammar g as input. The synthesized
attribute it generates as output is g extended by a new rule new-rule. The name of the new
variable is a string over the Latin alphabet. In order to create this string, we make use of the
non-terminal symbol alpha-list defined in Listing 30.12 on page 569. alpha-list inherits a
grammar as first attribute, generates a character string w, and also synthesizes it as output.
Production (G) uses this value w in order to build its output grammar. It creates a new rule
(see line 29) which extends the production (D) by a new option. var can now be resolved
to either X or to one of the new variables in subsequent expansions of expr because the
synthesized grammar is passed up to stmt and from there to all subsequent statements (see
rule (F) option (0)) and even by the returned expression in line 20. It should be mentioned
that this example grammar does not prevent name collisions of the identifiers, since X, for
instance, is also a valid expansion of new-var.

With this grammar, a Christiansen Grammar Evolution system would proceed exactly
as done in Section 4.5.6 on page 181.

4.5.9 Tree-Adjoining Grammar-guided Genetic Programming

A different approach to Grammar-guided Genetic Programming has been developed by
Nguyen [1525] with his Tree-Adjoining Grammar-guided Genetic Programming (TAG3P)
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system [1526, 1529, 1527, 1528, 1530]. Instead of using grammars in the Backus-Naur Form
or one of its extensions as done in the aforementioned methods, it bases on tree-adjoining
grammars (TAGs) which are introduced in Section 30.3.10 on page 569.

An Example TAG grammar

A tree-adjoining grammar can be defined as quintuple G = (N,Σ,A, I, S) where N are the
non-terminal, Σ contains the terminal symbols, and S is the start symbol. TAGs support
two basic operations: adjunction and substitution. For these operations, blueprint trees are
provided in the set of auxiliary and initial trees respectively (A and I). Substitution is quite
similar to expansion in BNF, the root of an initial tree replaces a leaf with the same label
in another tree. A tree β to be used for adjunction has at least one leaf node ν (usually
marked with an asterisk *) with the same label as its root. It is injected into another tree
by replacing a node with (again) that label whose children are then attached to ν.

expr

preop expr( )*op

expr

exprexpr * op

expr

exprexpr*

op

expr

exprexpr( )* op

expr

exprexpr( )*

(0)

(1)

(2)

op op op op

*

preop

log

preop

tan

preop

sin

preop

cos

expr

X

(3+12)(4 7)...

(8 11)... expr

func

double func(double X)
return

{ ; }X

(13)

I = set of initial trees a

A = set of auxiliary trees b

start symbol S = a1

b1 b2

b3 b4 b5

Figure 4.19: An TAG realization of the C-grammar of Listing 4.6.

Let us take a look back on the tree-adjoining representation of our earlier example gram-
mar G in Listing 4.6 on page 182 for mathematical functions in C. Figure 4.19 illustrates
one possible realization of G as TAG. The productions are divided into the set of initial
trees I, which are used in substitution operations, and the auxiliary trees A needed by the
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adjunction operator. Again, the start symbol is func – this time however it identifies a tree
in I. We additionally have annotated the trees with the index of the corresponding rule in
Listing 4.6. It is possible that we need to build multiple TAG trees for one BNF rule, as
done with rule 1 which is reflected in the two auxiliary tress β1 and β2. The rules 3 and 12

on the other hand have been united into one initial tree for the purpose of simplicity (It
could have been done in the BNF in the same way).

Like the other grammar-guided methods, the TAG3P approach uses a genotype-
phenotype mapping. The phenotypes are, of course, trees that comply with the input tree-
adjoining grammar. The genotypes being evolved are derivation trees that work on this
grammar too. Derivation trees illustrate the way the productions of a grammar are applied
in order to derive a certain sentence, as discussed in Section 30.3.3 on page 563.

Derivation Trees

For tree-adjoining grammars, there exist different types of derivation trees [1525]. In the
method of Weir [2174], they are characterized as object trees where the root is labeled
with an S-type initial tree (i. e., the start symbol) and all other trees are labeled with
the names of auxiliary trees. Each connection from a parent p to a child node c is labeled
with the index of the node in p being the center of the operation. Indices are determined
by numbering the non-terminal nodes according to a preorder traversal34. The number of
adjunctions performed with each node is limited to one. Substitution operations are not
possible with Weir’s approach. Joshi and Schabes [1074] introduce an extension mitigating
this problem. In their notation (not illustrated here) a solid connection between two nodes
in the derivation tree stands for adjunction, whereas a broken line denotes a substitution.

In TAG3P, Nguyen [1525] uses a restricted form of such TAG derivation trees where ad-
junction is not permitted to (initial) trees used for substitution. This essentially means that
all adjunctions are performed before any substitutions. With this definition, substitutions
become basically in-node operations. We simply attach the nodes substituted into a tree as
list of lexemes (here terminal symbols) to the according node of a derivation tree.

Example Mapping: Derivations Tree → Tree

Figure 4.20 outlines some example mappings from derivation trees on the left side to sen-
tences of the target languages (displayed as trees) on the right side. In Figure 4.19, we have
annotated some of the elementary trees with α or β and numbers which we will use here. The
derivation tree α1, for example, represents the initial production for the starting symbol.
In addition, we have attached the preorder index to each node of the trees α1, β3, and β5.
In the next tree we show how the terminal symbols X and + can be substituted into β3. In
the corresponding derivation tree, they are simply attached as a list of lexemes. A similar
substitution can be performed with β5, where sin is attached as terminal symbol.

In the fourth example, the second derivation tree is adjoined to the first one. Since it
replaces the node with the preorder index 1, the connection from β3 to α1 is labeled with
1. Finally, in the fifth example, the third derivation tree is adjoined. We use the rule for
preops to replace the node number 3 (according to preorder) in the second derivation in its
adjoined state.

As you can see, all initial trees as well as all trees derived from them are always valid
sentences of the grammar. This means that we can remove any of the derivation steps and
still get valid phenotypes. Thus, we can evaluate the share of the fitness clubbed by every
single modification by evaluating the resulting phenotypes with and without it.

34 http://en.wikipedia.org/wiki/Tree_traversal [accessed 2007-07-18]

http://en.wikipedia.org/wiki/Tree_traversal
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Figure 4.20: One example genotype-phenotype mapping in TAG3P.
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Summary

Tree-Adjoining Grammar-guided Genetic Programming is a different approach to Grammar-
guided Genetic Programming which has some advantages compared with the other methods.
One of them is the increased domain of locality. All nodes of a derivation tree stay accessible
for the reproduction operations. This becomes interesting when modifying nodes “without
side effects to other regions of the resulting trees”. If we, for example, toggle one bit in
a Grammatical Evolution-based genotype, chances are that the meaning of all subsequent
genes change and the tree resulting from the genotype-phenotype mapping will be totally
different from its parent. In TAG3P, this is not the case. All operations can, at most, influence
the node they are applied to and its children. Here, the principle of strong causality holds
since small changes in the genotype lead to small changes in the phenotype. On the other
hand, some of these positive effects may also be reached more easily with the wrapping
and lifting operations for Genetic Programming introduced in this book in Section 4.3.7 on
page 166 and Section 4.3.8. The reproduction operations of TAG3P become a little bit more
complicated. When performing crossover, for instance, we can only exchange compatible
nodes. We cannot adjoin the tree α1 in Figure 4.20 with itself, for example.

General Information

Areas Of Application

Some example areas of application of Tree-Adjoining Grammar-guided Genetic Program-
ming are:

Application References

Symbolic Regression and Function Synthesis [1529, 1527, 1528]

Mathematical Problems [1524, 1531]

Online Resources

Some general, online available ressources on Tree-Adjoining Grammar-guided Genetic Pro-
gramming are:

http://sc.snu.ac.kr/SCLAB/Research/publications.html [accessed 2007-09-10]

Last update: up-to-date

Description:
Publications of the Structural Complexity Laboratory of the Seoul National
University, includes Nguyen’s papers about TAG3P

4.6 Linear Genetic Programming

4.6.1 Introduction

In the beginning of this chapter, we have learned that the major goal of Genetic Programming
is to find programs that solve a given set of problems. We have seen that tree genomes are
suitable to encode such programs and how the genetic operators can be applied to them.

Nevertheless, we have also seen that trees are not the only way for representing programs.
Matter of fact, a computer processes them as sequences of instructions instead. These se-
quences may contain branches in form of jumps to other places in the code. Every possible
flowchart describing the behavior of a program can be translated into such a sequence. It is
therefore only natural that the first approach to automated program generation developed
by Friedberg [750] at the end of the 1950s used a fixed-length instruction sequence genome

http://sc.snu.ac.kr/SCLAB/Research/publications.html
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[750, 751]. The area of Genetic Programming focused on such instruction string genomes is
called linear Genetic Programming (LGP).

Linear Genetic Programming can be distinguished from approaches like Grammatical
Evolution (see Section 4.5.6 on page 181) by the fact that strings there are just genotypic,
intermediate representations that encode the program trees. In LGP, they are the center
of the whole evolution and contain the program code directly. Some of the most important
early contributions to this field come from [1667]:

1. Banzhaf [135], who used a genotype-phenotype mapping with repair mechanisms to
translate a bit string into a sequence of simple arithmetic instructions in 1993,

2. Perkis [1636] (1994), whose stack based GP evaluated arithmetic expressions in Reverse
Polish Notation (RPN),

3. Openshaw and Turton [1582] (1994) who also used Perkis’s approach but already repre-
sented mathematical equations as fixed-length bit string back in the 1980s [1581], and

4. Crepeau [464], who developed a machine code GP system around an emulator for the
Z80 processor.

Besides the methods discussed in this section, other interesting approaches to linear Genetic
Programming are the LGP variants developed by Eklund [627] and Leung et al. [1273, 380]
on specialized hardware, the commercial system by Foster [736], and the MicroGP (µGP)
system for test program induction by Corno et al. [451, 1949].

4.6.2 Advantages and Disadvantages

The advantage of linear Genetic Programming lies in the straightforward evaluation of the
evolved algorithms. Its structure furthermore eases limiting the runtime in the program
evaluation and even simulating parallelism. The drawback is that simply reusing the genetic
operators for variable-length string genomes (discussed in Section 3.5 on page 149), which
randomly insert, delete, or toggle bits, is not really feasible. In LGP forms that allow arbi-
trary jumps and call instructions to shape the control flow, this becomes even more eminent
because of a high degree of epistasis (see Section 1.4.6 and Section 4.8).

We can visualize, for example, that the alternatives and loops which we know from
high-level programming languages are mapped to conditional and unconditional jump in-
structions in machine code. These jumps target to either absolute or relative addresses inside
the program. Let us consider the insertion of a single, new command into the instruction
string, maybe as result of a mutation or recombination operation. If we do not perform
any further corrections after this insertion, it is well possible that the resulting shift of the
absolute addresses of the subsequent instructions in the program invalidates the control flow
and renders the whole program useless. This issue is illustrated in Fig. 4.21.a. Nordin et al.
[1546, 1546] point out that standard crossover is highly disruptive. Even though the sub-
tree crossover in tree-genomes is shown to be not very efficient either [62], in comparison,
tree-based genomes are less vulnerable in this aspect. The loop in Fig. 4.21.b, for instance,
stays intact although it is now one useless instruction richer. In LGP, precautions have to be
taken in order to mitigate these problems, linear Genetic Programming becomes more com-
petitive to Standard Genetic Programming also in terms of robustness of the recombination
operations.

One approach to do so is to create intelligent mutation and crossover operators which
preserve the control flow of the program when inserting or deleting instructions. Such op-
erations could, for instance, analyze the program structure and automatically correct jump
targets, for instance. Operations which are restricted to have only minimal effect on the
control flow from the start can also easily be introduced. In Section 4.6.6, we shortly outline
some of the work of Brameier and Banzhaf, who define some interesting approaches to this
issue. Section 4.6.7 discusses the homologous crossover operation which represents another
method for decreasing the destructive effects of reproduction in LGP.
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(before insertion)

... 50 01       9A 10 38 33 83 8F 03 50 ...50 01

(after insertion: loop begin shifted)

... 50 01       9A 10    38 33 83 8F 03 50 ...50 01 23

Fig. 4.21.a: Inserting into an instruction string.

0

1i

iPop create

> {block}

while

{block}

appendList

n i

(after Insertion)

Fig. 4.21.b: Inserting in a tree representation.

Figure 4.21: The impact of insertion operations in Genetic Programming

4.6.3 The Compiling Genetic Programming System

Its roots go back to Nordin [1541], who was dissatisfied with the performance of GP systems
written in an interpreted language which, in turn, interpret the programs evolved using a
tree-shaped genome. In 1994, he published his work on a new Compiling Genetic Program-
ming System (CGPS) written in the C programming language35 [1126] directly manipulating
individuals represented as machine code.

Each solution candidate consisted of a prologue for shoveling the input from the stack into
registers, a set of instructions for information processing, and an epilogue for terminating the
function [1542]. The prologue and epilogue were never modified by the genetic operations.
As instructions for the middle part, the Genetic Programming system had arithmetical
operations and bit-shift operators at its disposal in [1541], but no control flow manipulation
primitives like jumps or procedure calls. These were added in [1543] along with ADFs,
making this LGP approach Turing-complete.

Nordin [1541] used the classification of Swedish words as task in the first experiments
with this new system. He found that it had approximately the same capability for grow-
ing classifiers as artificial neural networks but performed much faster. Another interesting
application of his system was the compression of images and audio data [1545].

4.6.4 Automatic Induction of Machine Code by Genetic Programming

CGPS originally evolved code for the Sun Sparc processors, which is a member of the
RISC36 processor class. This had the advantage that all instructions are have the same
size. In the Automatic Induction of Machine Code with GP system (AIM-GP, AIMGP),
the successor of CGPS, the support for multiple other architectures was added by Nordin,
Banzhaf, and Francone [1549, 1550], including Java bytecode37 and CISC38 CPUs with
variable instruction widths such as Intel 80x86 processors. A new interesting application for

35 http://en.wikipedia.org/wiki/C_(programming_language) [accessed 2008-09-16]

36 http://de.wikipedia.org/wiki/Reduced_Instruction_Set_Computing [accessed 2008-09-16]

37 http://en.wikipedia.org/wiki/Bytecode [accessed 2008-09-16]

38 http://de.wikipedia.org/wiki/Complex_Instruction_Set_Computing [accessed 2008-09-16]

http://en.wikipedia.org/wiki/C_(programming_language)
http://de.wikipedia.org/wiki/Reduced_Instruction_Set_Computing
http://en.wikipedia.org/wiki/Bytecode
http://de.wikipedia.org/wiki/Complex_Instruction_Set_Computing
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1 void ind(double [8] v) {

2 ...

3 v[0] = v[5] + 73;

4 v[7] = v[0] - 59; (I)

5 if(v[1] > 0)

6 if(v[5] > 23)

7 v[4] = v[2] * v[1];

8 v[2] = v[5] + v[4]; (I)

9 v[6] = v[0] * 25; (I)

10 v[6] = v[4] - 4;

11 v[1] = sin(v[6]);

12 if(v[0] > v[1]) (I)

13 v[3] = v[5] * v[5]; (I)

14 v[7] = v[6] * 2;

15 v[5] = v[7] + 115; (I)

16 if(v[1] <= v[6])

17 v[1] = sin(v[7]);

18 }

Listing 4.8: A genotype of an individual in Brameier and Banzhaf’s LGP system.

linear Genetic Programming tackled with AIMGP is the evolution of robot behavior such
as obstacle avoiding and wall following [1548].

4.6.5 Java Bytecode Evolution

Besides AIMGP, there exist numerous other approaches to the evolution of linear Java
bytecode functions. The Java Bytecode Genetic Programming system (JBGP, also Java
Method Evolver, JME) by Lukschandl et al. [1328, 1329, 1330, 1331] is written in Java.
A genotype in JBGP contains the maximum allowed stack depth together with a linear
list of instruction descriptors. Each instruction descriptor holds information such as the
corresponding bytecode and the branch offset. The genotypes are transformed with the
genotype-phenotype mapping into methods of a Java class which then can be loaded into
the JVM, executed, and evaluated. [903, 902].

The JAPHET system of Klahold et al. [1147], the user provides an initial Java class at
startup. Classes are divided into a static and a dynamic part. The static parts contain things
like version information are not affected by the reproduction operations. The dynamic parts,
containing the methods, are modified by the genetic operations which add new byte code
[903, 902].

Harvey et al. [903, 902] introduce byte code GP (bcGP), where the whole population of
each generation is represented by one class file. Like in AIMGP, each individual is a linear
sequence of Java bytecode and is surrounded by a prologue and epilogue. Furthermore, by
adding buffer space, each individual has the same size and, thus, the whole population can
be kept inside a byte array of a fixed size, too.

4.6.6 Brameier and Banzhaf: LGP with Implicit Intron removal

In the Genetic Programming system developed by Brameier and Banzhaf [272] based on
former experience with AIMGP, an individual is represented as a linear sequence of simple
C instructions as outlined in the example Listing 4.8 (a slightly modified version of the
example from [272]). Due to reproduction operations like as mutation and crossover, such
genotypes may contain introns, i.e., instructions not influencing the result (see Definition 3.2
and Section 4.10.3). Given that the output of the program defined in Listing 4.8 will store
its outputs in v[0] and v[1], all the lines marked with (I) do not contribute to the overall
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functional fitness. Brameier and Banzhaf [272] introduce an algorithm which removes these
introns during the genotype-phenotype mapping, before the fitness evaluation. This linear
Genetic Programming method was successfully tested with several classification tasks [272,
271, 273], function approximation and Boolean function synthesis [274].

In his doctoral dissertation, Brameier [269] elaborates that the control flow of linear
Genetic Programming more equals a graph than a tree because of jump and call instructions.
In the earlier work of Brameier and Banzhaf [272] mentioned just a few lines ago, introns were
only excluded by the genotype-phenotype mapping but preserved in the genotypes because
they were expected to make the programs robust against variations. In [269], Brameier
concludes that such implicit introns representing unreachable or ineffective code have no real
protective effect but reduce the efficiency of the reproduction operations and, thus, should
be avoided or at least minimized by them. Instead, the concept of explicitly defined introns
(EDIs) proposed by Nordin et al. [1547] is utilized in form of something like nop instructions
in order to decrease the destructive effect of crossover. Brameier finds that introducing EDIs
decreases the proportion of introns arising from unreachable or ineffective code and lead to
better results. In comparison with standard tree-based GP, his linear Genetic Programming
approach performed better during experiments with classification, regression, and Boolean
function evolution benchmarks.

4.6.7 Homologous Crossover: Binary Reproduction

According to Banzhaf et al. [140], natural crossover is very restricted and usually exchanges
only genes that express the same functionality and are located at the same positions (loci)
on the chromosomes.

Definition 4.3 (Homology). In genetics, homology39 of protein-coding DNA sequences
means that they code for the same protein which may indicate common functionality. Ho-
mologous chromosomes40 are either chromosomes in a biological cell that pair during meiosis
or non-identical chromosomes which code for the same functional feature by containing sim-
ilar genes in different allelic states.

In other words, homologous genetic material is very similar and in nature, only such
material is exchanged in sexual reproduction. In linear Genetic Programming with default
crossover, it is hard for the evolution to establish a clear structure or a map between locus
and functionality. Francone et al. [740, 1549] introduce a sticky crossover operator which
resembles homology by allowing the exchange of instructions between two genotypes (pro-
grams) only if they reside at the same loci. It first chooses a sequence of code in the first
genotype and then swaps it with the sequence at exactly the same position in the second
parent.

4.6.8 Page-based LGP

A similar approach is the Page-based linear Genetic Programming of Heywood and Zincir-
Heywood [923], where programs are described as sequences of pages, each including the same
number of instructions. Here, crossover exchanges only a single page between the parents
and, as a result, becomes less destructive. This approach should be distinguished from the
fixed block size approach of Nordin et al. [1549] for CISC architectures which was developed
to accommodate variable instruction lengths in AIMGP.

4.7 Graph-based Approaches

In this section, we will discuss some Genetic Programming approaches that are based on
graphs rather than on trees or linear sequences of instructions.

39 http://en.wikipedia.org/wiki/Homology_(biology) [accessed 2008-06-17]

40 http://en.wikipedia.org/wiki/Homologous_chromosome [accessed 2008-06-17]

http://en.wikipedia.org/wiki/Homology_(biology)
http://en.wikipedia.org/wiki/Homologous_chromosome
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4.7.1 Parallel Algorithm Discovery and Orchestration

Parallel Algorithm Discovery and Orchestration (PADO) is a Genetic Programming method
introduced by Teller and Veloso [2011, 2015] in the mid-1990s. In their CEC paper [2014]
and their 1996 book chapter [2016], they describe the graph-structure of their approach as
sketched in Figure 4.22. A PADO program is a directed graph of up to n nodes, where

start

end

ADFLib1

Lib37

ADF

Main Program

start

end

ADF

Lib13

Private ADF(s) Indexed Memory

Figure 4.22: The general structure of a Parallel Algorithm Discovery and Orchestration
program.

each node may have as many as n outgoing arcs which define the possible control flows. A
node consists of two parts: and action and a branching decision. The programs used indexed
memory and an implicitly accessed stack. The actions pop their inputs from the stack and
place their outputs onto it. After a node’s action has been executed, the branching decision
function is used to determine over which of the outgoing arcs the control will be transferred.
It can access the stack, the memory, and the action type of the previous node in order to
make that decision.

A program in the PADO-syntax has a start node which will initially receive the control
token and an end node which terminates the program after its attached action has been
performed. Furthermore, the actions may call functions from a library and automatically
defined functions (ADFs). These ADFs basically have same structure as the main program
and can also invoke themselves recursively.

As actions, PADO provides algebraic primitives like +, -, *, /, NOT, MAX, and MIN; the
memory instructions READ and WRITE; branching primitives like IF-THEN-ELSE and PIFTE (al-
ternative with a randomized condition); as well as constants and some domain-specific in-
structions. Furthermore, actions may invoke more complex library functions or ADFs. An
action takes its arguments from the stack and also pushes its results back onto it. The action
6, for instance, pushes 6 on the stack whereas the WRITE action pops two values, v1 and v2,
from it and pushes the value of the memory cell indexed by v2 before storing v1 at this
location.

In PADO, so-called SMART operators are used for mutation and recombination which
co-evolve with the main population as described in [2013, 2016].

4.7.2 Parallel Distributed Genetic Programming

Parallel Distributed Genetic Programming (PDGP) is a method for growing programs in
the form of graphs that has been developed by Poli [1654, 1655, 1658, 1659] in the mid
1990s. In PDGP, a graph is represented as a fixed-size, n-dimensional grid. The nodes of the
grid are labeled with operations, functions, or references to variables. Except for the latter
case, they are connected to their inputs with directed links. Both, the labels as well as the
connections in the grid are subject to evolution.
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Figure 4.23: The term max {x ∗ y, x ∗ y + 3}

In order to illustrate this structure, we use the term max {x ∗ y, x ∗ y + 3} as example.
We already have elaborately discussed how we can express mathematical terms as trees.
Fig. 4.23.a illustrates such a function tree. Using a directed graph, as outlined in Fig. 4.23.b,
we can retrieve a more compact representation of the same term by reusing the expression
x ∗ y. Evolving such graphs is the goal of PDGP. Therefore, a grid structure needs to be
defined first. In Fig. 4.23.c, we have settled for a two dimensional 4*3 grid. Additionally, we
add a row at the top containing one cell for each output of the program. We can easily fill the
graph from Fig. 4.23.b into this grid. This leaves some nodes unoccupied. If we assume that
Fig. 4.23.c represents a solution grown by this Genetic Programming approach, these nodes
would be labeled with some unused expressions and would somehow be connected without
any influence on the result of the program. Such an arbitrary configuration of inactive nodes
(or introns and links is sketched in light gray in Fig. 4.23.c. The nodes which have influence
on the result of the program, i. e., those which are connected to an output node directly or
indirectly, are called active nodes.

We may impose restrictions on the connectivity of PDGP graphs. For instance, we can
define that each row must only be connected to its predecessor in order to build layered
feed-forward networks. We can transform any given parallel distributed program (i. e., any
given acyclic graph) into such a layered network if we additionally provide the identity
function so pass-through nodes can evolve as shown in Fig. 4.23.c. Furthermore, we could
also attach weights to the links between the nodes and make them also subject to evolution.
This way, we can also grow artificial neural networks [1657]. However, we can as well do
without any form of restrictions for the connectivity and may allow backward connections
in the programs, depending on the application.

An interesting part of PDGP is how the programs are executed. Principally, it allows
for a great proportion of parallelism. Coming back to the example outlined Fig. 4.23.c, the
values of the leaf nodes could be computed in parallel, as well those of the pass-through and
the addition node.

Genetic Operations

For this new program representation, novel genetic operations are needed.

Creation

Similar to the grow and full methods for creating trees in Standard Genetic Programming
introduced in Section 4.3.1 on page 162, it is possible to obtain balanced or unbalanced
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graphs/trees in PDGP, depending whether we allow variables and constants to occur any-
where in the program or only at a given, predetermined depth.

Crossover: Binary Reproduction

SAAN Crossover The basic recombination operation in PDGP is Sub-graph Active-Active
Node (SAAN) crossover. The idea of SAAN crossover is that active sub-graphs represent
functional units which should be combined in different ways in order to explore new, useful
constellations. It proceeds as follows:

1. Select a random active node in each parent, the crossover points.
2. Extract the sub-graph that contains all the (active) nodes that influence the result of

the node marking the crossover point in the first parent.
3. Insert this sub-graph at the crossover point in the second parent. If its x-coordinate is

incompatible and some nodes of the sub-graph would be outside the grid, wrap it so
that these nodes are placed on the other side of the offspring.

Of course, we have to ensure that the depths of the crossover points are compatible
and no nodes of the sub-graph would “hang” below the grid in the offspring. This can
be achieved by first selecting the crossover point in the first parent and then choosing a
compatible crossover point in the second parent.

SSAAN Crossover The Sub-Sub-Graph Active-Active Node (SSAAN) Crossover method
works essentially the same way, with one exception: it disregards crossover point depth
compatibility. It may now happen that we want to insert a sub-graph into an offspring at
a point where it does not fit because it is too long. Here we make use of the simple fact
that the lowest row in a PDGP graph always is filled with variables and constants only –
functions cannot occur there because otherwise, no arguments could be connected to them.
Hence, we can cut the overhanging nodes of the sub-graph and connect the now unsatisfied
arguments at second-to-last row with the nodes in the last row of the second parent. Of
course, we have to pay special attention where to cut the sub-graph: terminal nodes that
would be copied to the last row of the offspring can remain in it, functions cannot.

SSIAN Sub-Sub-Graph Inactive-Active Node (SSIAN) Crossover works exactly like SSAAN
crossover except that the crossover point in the first parent is chosen amongst both, active
and inactive nodes.

Mutation: Unary Reproduction

We can extend the mutation operation from Standard Genetic Programming easily to PDGP
by creating new, random graphs and insert them at random points into the offspring. In the
context of PDGP, this is called global mutation and can be achieved by creating a completely
new graph and performing crossover with an existing one.

Furthermore, link mutation is introduced as an operation that performs simple local
changes on the connection topology of the graphs.

ADLs

Similar to Standard Genetic Programming, we can also introduce automatically defined
functions41 in PDGP by extending the function set with a new symbol which then executes
an (also evolved) subprogram when being evaluated. Automatically Defined Links, ADLs,
work similarly, except that a link is annotated with the subprogram-invoking symbol [1653,
1656].

41 More information on ADFs can be found in Section 4.3.9 on page 167.
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4.7.3 Genetic Network Programming

Genetic Network Programming (GNP) is a Genetic Programming technique introduced by
Katagiri et al. [1095] at the 2001 CEC conference in Seoul [1095, 1096, 1097, 931]. In GNP,
programs are represented as directed graphs called networks which consist of three types of
nodes: the start node, judgment nodes and processing nodes. A processing nodes executes
an action from a predefined set of actions P and can have exactly on outgoing connection
to a successor node. Judgment nodes may have multiple outgoing connections and have one
expression from the set of possible judgment decisions J attached to them with which they
make this decision. As in the example illustrated in Figure 4.24, each node in the network is

start

pro 4
1

jud 3
2

pro 7
3

pro 6
5

jud 1
4

0

jud 3
6

node connections

2Node 0:

0 4 2Node 1:

1 3 4 6Node 2:

0 7 1Node 3:

1 1 3 5Node 4:

0 6 6Node 5:

1 3 5 1Node 6:

node type:
0: processing node
1: judgment node

node function

Phenotype Genotype

Figure 4.24: An example program in Genetic Network Programming syntax.

represented by two genes, a node gene and a connection gene. The node gene consists of two
values, the node type (which is 0 for processing nodes and 1 for judgment nodes) and the
function index. For processing nodes, the function index can take on the values from 0 to
|P |−1 and for judgment nodes, it is in 0..|J |−1. These values identify the action or decision
function to be executed whenever the node receives the control token. In the connection gene,
the indices of the other nodes the node is connected to are stored. For processing nodes,
this list has exactly one entry, for judgment nodes there always are at least two outgoing
connections (in Figure 4.24, there are exactly two). Notice that programs can be interpreted
in this representation directly without needing an explicit genotype-phenotype mapping.

Crossover is performed by randomly exchanging notes (and their attached connections)
between the parent networks and mutation randomly changes the connections. Murata and
Nakamura [1492] extended their approach in order to evolve programs for multi-agent sys-
tems where the behavior of agents depends on the group they are assigned groups to. In
this Automatically Defined Groups (ADG) model, an individual is defined as a set of GNP
programs [1491, 1490]. Genetic Network Programming has also been combined with rein-
forcement learning by Mabu et al. [1337].

4.7.4 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) was developed by Miller and Thomson [1421] in
order to achieve a higher degree of effectiveness in learning Boolean functions [1418, 1422].
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In his 1999 paper, Miller [1418] explains the idea of Cartesian Genetic Programming with the
example of a program with o = 2 outputs that computes both, the difference and the sum,
of the volumes of two boxes V1 = X1X2X3 and V2 = Y1Y2Y3. As illustrated in Figure 4.25,
the i = 6 input variables X1 . . . X3 and Y1 . . . Y3, placed to the left, are numbered from 0
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Figure 4.25: An example for the GPM in Cartesian Genetic Programming.

to 5. As function set, we use {+ = 0,− = 1, ∗ = 2, / = 3,∨ = 4,∧ = 5,⊕ = 6,¬ = 7}. Like
in PDGP, we define a grid of cells before the evolution begins. In our example, this grid
is n = 3 cells wide and m = 2 cells deep. Each of the cells can accommodate an arbitrary
function and has a fixed number of inputs and outputs (in the example i′ = 2 and o′ = 1,
respectively). The outputs of the cells, similarly to the inputs of the program, are numbered
in ascending order beginning with i. The output of the cell in the top-left has number 6,
the one of the cell below number 7, and so on. This numeration is annotated in gray in
Figure 4.25.

Which functions the cells should carry out and how their inputs and outputs are con-
nected will be decided by the optimization algorithm. Therefore, we could use, for instance,
a genetic algorithm with or without crossover or a hill climbing approach. The genotypes of
Cartesian Genetic Programming are fixed-length integer strings. They consist of n∗m genes,
each encoding the configuration of one cell. Such a gene starts with i′ numbers identifying
the incoming data and one number (underlined in Figure 4.25) denoting the function it will
carry out. Another gene at the end of the genotype identifies which of the available data are
“wired” to the outputs of the program.

By using a fixed-length genotype, the maximum number of expressions in a Cartesian
program is also predefined. It may, however, be shorter, since not all internal cells are
necessarily connected with the output-producing cells. Furthermore, not all functions need
to incorporate all i′ inputs into their results. ¬, which is also part of the example function
set, for instance, uses only the first of its i′ = 2 input arguments and ignores the second one.

Levels-back, a parameter of CGP, is the number of columns to the left of a given cell
whose outputs may be used as inputs of this cell. If levels-back is one, the cell with the
output 8 in the example could only use 6 or 7 as inputs. A levels-back value of 2 allows
it to be connected with 0-5. Of course, the reproduction operations have to respect the
levels-back value set.

CGP labeled itself a Genetic Programming technique from the beginning. However, most
of the work contributed about it did not consider a recombination operation. Hence, one
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could regarded it also as an evolutionary programming42 method. Lately, researchers also
begin to focus on efficient crossover techniques for CGP [414].

Neutrality in CGP

Cartesian Genetic Programming explicitly utilizes different forms of neutrality43 in order to
foster the evolutionary progress. Normally, neutrality can have positive as well as negative
effects on the evolvability of a system. Yu and Miller [2297, 2296] outline different forms
of neutrality in Cartesian Genetic Programming which also apply to other forms of GP or
GAs:

1. Inactive genes define cells that are not connected to the outputs in any way and hence
cannot influence the output of the program. Mutating these genes therefore has no effect
on the fitness and represents explicit neutrality .

2. Active genes have direct influence on the results of the program. Neutral mutations here
are such modifications that have no influence on the fitness. This implicit neutrality is
the results of functional redundancy or introns.

Their experiments indicate that neutrality can increase the chance of success of Genetic
Programming for needle-in-a-haystack fitness landscapes and in digital circuit evolution
[2110].

Embedded Cartesian Genetic Programming

In 2005, Walker and Miller [2135] published their work on Embedded Cartesian Genetic
Programming (ECGP), a new type of CGP with a module acquisition [66] method in form
of automatic module creation [2135, 2136, 2137]. Therefore, three new operations are intro-
duced:

1. Compress randomly selects two points in the genotype and creates a new module
containing all the nodes between these points. The module then replaces these nodes with
a cell that invokes it. The compress operator has the effect of shortening the genotype
of the parent and of making the nodes in the module immune against the standard
mutation operation but does not affect its fitness. Modules are more or less treated like
functions so cell to which a module number has been assigned now uses that module as
“cell function”.

2. Expand randomly selects a module and replaces it with the nodes inside. Only the cell
which initially replaced the module cells due to the Compress operation can be expanded
in order to avoid bloat.

3. The new operator Module Mutation changes modules by adding or removing inputs
and outputs and may also carry out the traditional one-point mutation on the cells of
the module.

General Information

Areas Of Application

Some example areas of application of Cartesian Genetic Programming are:

Application References

Electrical Engineering and Circuit Design
[1420, 2110, 1421, 1419, 1081,
2136]

42 See Chapter 6 on page 231 for more details on evolutionary programming.
43 See Section 1.4.5 on page 64 and Section 1.4.5 on page 67 for more information on neutrality and

redundancy.
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Symbolic Regression and Function Synthesis [1418, 1422, 2297, 1422]

Robotics [895, 2138]

Prime Number Prediction [2139]

Online Resources

Some general, online available ressources on Cartesian Genetic Programming are:

http://www.cartesiangp.co.uk/ [accessed 2007-11-02]

Last update: up-to-date
Description: The homepage of Cartesian Genetic Programming

http://www.emoware.org/evolutionary_art.asp [accessed 2007-11-02]

Last update: 2006
Description: A website with art pieces evolved using Cartesian Genetic Programming.

4.8 Epistasis in Genetic Programming

In the previous sections, we have discussed many different Genetic Programming approaches
like Standard Genetic Programming and the Grammar-guided Genetic Programming family.
We also have elaborated on linear Genetic Programming techniques that encode an algorithm
as a stream of instructions, very much like real programs are represented in the memory of
a computer.

When we use such methods to evolve “real algorithms”, we often find that the fitness land-
scape is very rugged. To a good part, this ruggedness is rooted in epistasis (see Section 1.4.6
on page 68). In the following section, we want to discuss the different epistatic effects which
can be observed in Genetic Programming.

Subsequently, we will introduce some means to mitigate the effects of epistasis. One such
approach would be to “learn the linkage” (see Section 1.4.6) between the single instructions.
Module acquisition [66] can be regarded as one idea on how to do this. Generally, the linkage
between the primitives in GP is far more complicated than in usual genetic algorithm-
problems, which is why the author tends to believe that linkage learning will not achieve the
same success in the GP than it did in the area of genetic algorithms. Therefore, we consider
methods which consider the representation of the solution candidates rather than the nature
of the search operations applied to the genotypes in order to mitigate or circumvent epistasis
more promising. In Section 4.8.2 to Section 4.8.4, we will discuss three such methods.

4.8.1 Forms of Epistasis in Genetic Programming

Semantic Epistasis

In an algorithm, the behavior of each instruction depends on the operations that have been
executed before. The result of one instruction will influence the behavior of those executed
afterwards. If an instruction is changed, if the arithmetic operation a = b + c is swapped
with a = b - c, for instance, its effects on subsequent instructions will change too [2011].
This obvious fact fully complies with the definition of epistasis and we will refer to it as
semantic epistasis.

Positional Epistasis

Epistasis also occurs in form of positional interdependencies. In order to clarify the role of
this facet in the context of Genetic Programming, we begin with some basic assumptions.

http://www.cartesiangp.co.uk/
http://www.emoware.org/evolutionary_art.asp
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Let us consider a program P as some sort of function P : I 7→ O that connects the possible
inputs I of a system to its possible outputs O. Two programs P1 and P2 can be considered
as equivalent if P1(i) = P2(i) ∀i ∈ I.44

For the sake of simplicity, we further define a program as a sequence of n statements
P = (s1, s2, . . . , sn). For these statements, there are n! possible permutations. We argue
that the fraction θ(P ) = m

n! of m permutations that lead to programs equivalent to P is one
measure of robustness for a given program representation. More precisely, a low value of θ
indicates a high degree of positional epistasis, which means that the loci (the positions) of
many different genes in a genome have influence on their functionality [1502]. This reduces,
for example, the efficiency of reproduction operations like recombination, since they often
change the number and order of instructions in a program.
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Figure 4.26: Positional epistasis in Genetic Programming.

Many of the phenotypic and most genotypic representations in Genetic Programming
mentioned so far seem to be rather fragile in terms of insertion and crossover points. One of

44 In order to cover stateful programs, the input and output sets may also comprise sequences of
data.
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the causes is that their genomes have high positional epistasis (low θ-measures), as sketched
in Figure 4.26.

Embryogenic Epistasis (Problems of String-to-Tree GPMs)

Many Grammar-guided Genetic Programming methods like Grammatical Evolution45,
Christiansen Grammar Evolution46, and Gads47 employ a genotype-phenotype mapping
between an (integer) string genome and trees that represent sentences in a given grammar.
According to Ryan et al. [1785], the idea of mapping string genotypes can very well be
compared to one of the natural prototypes of artificial embryogeny48: the translation of the
DNA into proteins. This process depends very much on the proteins already produced and
which are now present around the cellular facilities. If a certain piece of DNA has created a
protein X and is transcriped again, a molecule of protein type Y may result because of the
presence of X.

Although this is a nice analogy, it also bears an important weakness. Search spaces which
exhibit such effects usually suffer from weak causality49 [1382] and only the lord knows
why the DNA stuff works at all. Different from the aforementioned positional epistasis,
this embryogenic episasis interacts with the genotype-phenotype mapping and modifies the
phenotypic outcome. In Grammatical Evolution for example, a change in any gene in a
genotype g will likely also change the meaning of all alleles following after its locus. This
means that mutation and crossover will probably have very destructive impacts on the
individuals [1525]. Hence, even the smallest change in the genotype can modify the whole
structure and functionality of the phenotype. A valid solution can become infeasible after a
single reproduction operation.

Figure 4.27 outlines how the change of a single bit in a genotype (in hexadecimal notation)
may lead to a drastic modification in the tree structure when a string-to-tree mapping
is applied. The resulting phenotype in the example has more or less nothing in common
with its parent except maybe the type of its root node. Furthermore, the efficiency of the
reproduction operations of the mentioned approaches will likely decrease with a growing set
of non-terminal symbols and corresponding productions.

a3 cd 4c ...ff 16

GPM

genotypes
a3 ff 1 cd 4c ...7

GPM

¹

»

reproduction

phenotypes

Figure 4.27: Epistasis in a Grammatical Evolution-like approach.

45 See Section 4.5.6 on page 181, [1785]
46 See Section 4.5.8 on page 186, [521]
47 See Section 4.5.5 on page 179, [1620]
48 Find out more about artificial embryogeny in Section 3.8 on page 155.
49 The principles of causality and locality are discussed in Section 1.4.3 on page 61.
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The points discussed in this section do by no means indicate that the involved Genetic
Programming approaches are infeasible or deliver only inferior results. Most of them have
provided human-competitive solutions or performed even better. We just point out some
classes of problems that, if successfully solved, could even increase the utility of the GGGP
methods even further.

4.8.2 Algorithmic Chemistry

Algorithmic Chemistries were first discussed by Fontana [720] on basis of the λ-calculus. The
Algorithmic Chemistry approach by Lasarczyk and Banzhaf [1258]BL2005GPOAAC,LB2005GPOAAC,LB2005TSOA
represents one possible method to circumvent the positional epistasis discussed in Sec-
tion 4.8.1. To put it bluntly, this form of Algorithmic Chemistries is basically a variant
of linear Genetic Programming50 where the execution order of the single instructions is
defined by some random distribution instead of being fixed as in normal programs.

This can probably best be described by using a simple example. Therefore, let us define
the set of basic constructs which will make up the programs first. In both, [138] and [1259],
an assembler-like language is used where each instruction has three parameters: two input
and one output register addresses. Registers are the basic data stores, the variables, of this
language. Instructions with a behavior depending on a single input only simply ignore their
second parameter. In [138], Banzhaf and Lasarczyk use a language comprising the eight
instructions +, -, /, *, ^, and, or, and not. Furthermore, they provided eleven read-only
registers with evolved constants and thirty read-write registers, the so-called connection
registers.
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Fig. 4.28.a: Linear Genetic Program-
ming phenotype and execution.
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Fig. 4.28.b: Algorithmic Chemistry phenotype and
execution.

Figure 4.28: The difference between linear Genetic Programming and Algorithmic
Chemistries.

In Fig. 4.28.a we have illustrated the sequential structure of a normal program which
might have been evolved in a linear Genetic Programming experiment. Whenever it is exe-
cuted, be it for determining its fitness or later, as part of an application, the instructions are

50 The linear Genetic Programming approach is outlined in Section 4.6 on page 191.
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processed one after another, step by step. This execution scheme is common to all off-the-
shelf PCs where the CPU uses an internal register (the instruction pointer) which points to
the instruction to be executed next and which is incremented in this process.

Programs in the Algorithmic Chemistry representation can evolve essentially in the same
way as programs in linear Genetic Programming do. As genotypes, exactly the same se-
quences of instructions can be used. This similarity, however, stops at the phenotypic level51.
Here, the programs are considered as multisets which do not define any order on their el-
ements (the instructions), as sketched in Fig. 4.28.b. When such a program is executed, a
random sequencer draws one element from this set in each time step and executes it.52

This approach clearly leads to a θ-value of zero, since all positional dependencies amongst
the instructions have vanished. As trade-off, however, there are a number of interesting side
effects. Since programs no longer are sequences, there is, for example, no last instruction
anymore. Thus, the Algorithmic Chemistry programs also have no clear “end”. Therefore,
the randomized execution step is performed for a fixed number of iterations – five times the
number of instructions in [1258]. As pictured in Fig. 4.28.b, a certain instruction may occur
multiple times in a program, which increases its probability of being picked for execution.

The biggest drawback of this approach is that the programs are no longer deterministic
and their behavior and results may vary between two consecutive executions. Therefore,
multiple independent runs should always be performed and the median or mean return value
of them should be considered as the true result. Stripping the instructions of their order also
will make it harder for higher-level constructs like alternatives or loops to evolve, let alone
modules or functions. On the positive side, it also creates a large potential for parallelization
and distribution which could be beneficial especially in multi-processor systems.

4.8.3 Soft Assignment

Another approach for reducing the epistasis is the soft assignment method (memory with
memory) by McPhee and Poli [1385]. It implicitly targets semantic epistasis by weakening
the way values are assigned to variables.

In traditional programs, instructions like x=y or mov x, y will completely overwrite the
value of x with the value of y. McPhee and Poli replace this strict assignment semantic with

xt+1 = yt ≡ xt+1 ←− γyt + (1− γ)xt (4.3)

where xt+1 is the value that the variable x will have after and xt its value before the assign-
ment. yt is the value of an arbitrary expression which is to be stored in x. The parameter γ is
“a constant that indicates the assignment hardness” [1385]. For γ = 1, the assignments are
completely overwriting as in normal programming and for γ = 0, the values of the variables
cannot be changed. McPhee and Poli [1385] report that γ = 0.7 performed best (better than
γ = 1) when applied to different symbolic regression53 problems.

For mathematical or approximation problems, this approach is very beneficial. The draw-
back of programs using soft assignment is that, although they are deterministic, there are
situations where precise values are required which they may not be able to compute. Assume,
for instance, that an algorithm is to be evolved which returns the largest element max from
an input list l. This program could contain an instruction like if l[i]>max then max=l[i].
If a γ-value smaller than one is applied, the final value in max will most likely be no element
of the list.

51 Although we distinguish between genotype and phenotype, no genotype-phenotype mapping is
needed since the randomized execution can perfectly be performed on an array of instructions.

52 Banzhaf and Lasarczyk [138] use the same approach for introducing a new recombination operator
which creates an offspring by drawing instructions randomly from both parents.

53 See Section 23.1 on page 397 for more information on symbolic regression.
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4.8.4 Rule-based Genetic Programming

Besides the Algorithmic Chemistry approach of Lasarczyk and Banzhaf [1258, 1259] and soft
assignments, there exists one very general class of evolutionary algorithms that elegantly
circumvents positional epistasis54: the (Learning) Classifier Systems family [948, 946] which
you can find discussed in Chapter 7 on page 233.

In the Pittsburgh LCS approach associated with Spears and De Jong [1926], a population
of rule sets is evolved with a genetic algorithm [1912, 1926]. Each individual in this population
consists of multiple classifiers (the rules) that transform input signals into output signals.
The evaluation order of the rules in such a classifier system C plays absolutely no role except
maybe for rules concerning the same output bits, i. e., θ(C) ≈ 1.55

The basic idea behind the Rule-based Genetic Programming approach is to use this
knowledge to create a new program representation that retains high θ-values in order to
become more robust in terms of reproduction operations [2181]. With RBGP, the afore-
mentioned disadvantages (such as non-determinism) of Algorithmic Chemistries and soft
assignments are completely circumvented. RBGP may be considered as a high-level LCS
variant which introduces mightier concepts like mathematical operations. It furthermore ex-
hibits a certain amount of non-uniform neutrality which, as we believe, is likely to increase
the chance of finding better solutions.

We illustrate this new Genetic Programming method by using an example in Figure 4.29.
Like in Pitt-style Learning Classifier Systems, the depicted programs consist of arbitrary
many rules which can be encoded binary. A rule evaluates the values of the symbols in its
condition part (left of ⇒) and, in its action part, assigns a new value to one symbol or
may invoke any other procedure provided in its configuration. In its structure, the RBGP
language is similar to Dijkstra’s Guarded Command Language56 (GCL) [568].57

Genotype and Phenotype

Before the evolution in Rule-based Genetic Programming begins, the number of symbols
and their properties must be specified as well as the possible actions. Each symbol identifies
an integer variable which is either read-only or read-write. Some read-only symbols are
defined for constants like 0 and 1, for instance. The symbol start is only 1 during the first
application of the rule set and becomes 0 afterwards (but may be written to by the program).
Furthermore, a program can be provided with some general-purpose variables (a and b in
the example). Additional symbols with special meanings can be introduced. For evolving
distributed algorithms, for instance, an input symbol in where incoming messages will occur
and a variable out from which outgoing messages can be transmitted from could be added.
If messages should be allowed to contain more than one value, multiple such symbols have
to be defined. These out symbols may trigger message transmission directly when written
to as in Figure 4.29. Alternatively, a message can be sent by a special send action.

An action set containing mathematical operations like addition, subtraction, value as-
signment, and an equivalent to logical negation58 is sufficient for many problems but may
be extended arbitrarily. In conjunction with the constants 0 and 1 and the comparison
operation, the evolutionary process can build arbitrary complex logical expression.

From the initial symbol and action specifications, the system can determine how many
bits are needed to encode a single rule. A binary encoding where this is the size of the genes
in variable-length bit string genotypes can then be used. With such simple genotypes, any
possible nesting depth of condition statements and all possible logical operations can be

54 You can find positional epistasis discussed in Section 4.8.1 on page 202
55 θ as a measure for positional epistasis has been defined in Section 4.8.1 on page 202.
56 http://en.wikipedia.org/wiki/Guarded_Command_Language [accessed 2008-07-24]

57 I have to thank David R. White for this information – when devising Rule-based Genetic Pro-
gramming, I didn’t even know that the Guarded Command Language existed.

58 In order to emulate a logical not, we use the expression 1-x where x can be an arbitrary symbol.

http://en.wikipedia.org/wiki/Guarded_Command_Language
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Figure 4.29: Example for a genotype-phenotype mapping in Rule-based Genetic Program-
ming.

encoded. If needed, a tree-like program structure (as in Standard Genetic Programming)
can be constructed from the rule sets, since each rule corresponds to a single conditional
statement in a normal programming language.

There are similarities between our RBGP and some special types of LCSs, like the ab-
stracted LCS by Browne and Ioannides [295] and the S-expression-based LCS by Lanzi and
Perrucci [1250]. The two most fundamental differences lie in the semantics of both, the rules
and the approach: In RBGP, a rule may directly manipulate symbols and invoke external
procedures with (at most) two in/out-arguments. This includes mathematical operations
like multiplication and division which do not exist a priori in LCSs but would have to evolve
on basis of binary operations, which is, although possible, very unlikely. Furthermore, the
individuals in RBGP are not classifiers but programs. Classifiers are intended to be executed
once for a given situation, judge it, and decide upon an optimal output. A program, on the
other hand, runs independently, asynchronously performs a computation, and interacts with
its environment. Also, the syntax of RBGP is very extensible because the nature of the sym-
bols and actions is not bound to specific data types but can easily be adapted to floating
point computation, for instance.

Program Execution and Dimensions of Independence

The simplest method for executing a rule-based program is to loop over it in a cycle. Al-
though this approach is sufficient for simulation purposes, it would result in a waste of CPU
power on a real system. This consumption of computational power (and thus, energy) can
be reduced very much if the conditional parts of the rules are only evaluated when one of
the symbols that they access changes.
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Positional Independence

Changes in the values of the symbols can either be caused by data incoming from the outside,
like messages which are received (and stored in the in-symbols in our example) or by the
actions invoked by the program itself. In RBGP, actions do not directly modify the values
of the symbols but rather write their results to a temporary storage. After all actions have
been processed, the temporary storage is committed to the real memory, as sketched in
Figure 4.30. The symbols in the condition part and in the computation parts of the actions
are annotated with the index t and those in the assignment part of the actions are marked
with t+ 1 in order to illustrate this issue.

1:

2:

3:

4:

5:

6:

i = a;
p = 1;
while(i > 0) {
p = p * i;
i = i - 1;

}

start = 1

start = 0
commit temporary storage: t t+1®

ev
a
lu

a
te a

ll ru
les

Java Rule-based Genetic Programming Syntax

Figure 4.30: A program computing the faculty p of a natural number a in Java and RBGP
syntax.

This approach allows for a great amount of disarray in the rules since the only possible
positional dependencies left are those of rules which write to the same symbols. All other
rules can be freely permutated without any influence on the behavior of the program. Hence,
the positional epistasis in RBGP is very low.

Cardinality Independence

By excluding any explicit learning features (like the Bucket Brigade Algorithm59 used in
Learning Classifier Systems [942, 943]), we also gain insensitivity in terms of rule cardinality.
It is irrelevant whether a rule occurs once, twice, or even more often in a program. If triggered,
all occurrences of the rule use the same input data and thus, will write the same values to the
temporary variable representing their target symbol. Assuming that an additional objective
function which puts pressure into the direction of smaller programs is always imposed,
superfluous rules will be wiped out during the course of the evolution anyway.

Neutrality

The existence of neutral reproduction operations can have a positive as well as negative
influence on the evolutionary progress (see Section 1.4.5 on page 64). The positional and
cardinality independence are clear examples of phenotypic neutrality and redundancy in
RBGP. They allow a useful rule to be replicated arbitrarliy often in the same program
without decreasing its functional fitness. This is likely to happen during crossover. By doing
so, the conditional parts of the rule will (obviously) be copied too. Subsequent mutation
operations may now slightly modify the rule and lead to improved behavior, i. e., act as

59 The Bucket Brigade Algorithm is discussed in Section 7.3.8 on page 240.
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exploitation operations. Based on the discussion of neutrality, we expect this form of non-
uniform redundancy to have a rather positive effect on the evolution.

All these new degrees of freedom are achieved without most of the drawbacks that are
inherent in Algorithmic Chemistries. The program flow is fully deterministic and so are its
results. Like in Algorithmic Chemistries, it is harder to determine the number of steps needed
for program execution, although we can easily detect the termination of local algorithms as
the point where an execution does not lead to any change in the symbols.

Complex Statements

From the previous descriptions, it would seem that rule-based programs are strictly sequen-
tial, without branching or loops. This is not the case. Instead, a wide variety of complex
computations can be expressed with them. Here we will give some intuitive examples for
such program structures in RBGP syntax.

Complex Conditions

Assume that we have five variables a to e and want to express something like

1 if( (a<b) && (c>d) && (a<d) ) {

2 a += c;

3 c--; }

Listing 4.9: A complex conditional statement in a C-like language.

We can do this in RBGP with four rules:

1 true ∧ true ⇒ et+1 = 0

2 (at < bt) ∧ (ct > dt) ⇒ et+1 = 1

3 (at < dt) ∧ (et = 1) ⇒ at+1 = at + ct

4 (at < dt) ∧ (et = 1) ⇒ ct+1 = ct − 1

Listing 4.10: The RBGP version of Listing 4.9.

Although this does not look very elegant, it fulfills the task by storing the result of the
evaluation of the condition as logical value in the variable e. e will normally be 0 because of
line 1 and is only set to 1 by rule 2. Since both rules write to the same temporary variable,
the then-part of the condition in Listing 4.9 (lines 3 and 4 in Listing 4.10) will be reached in
the next round if a<d holds too. Notice that the only positional dependency in Listing 4.10
is that rule 2 must always occur after rule 1. All rule permutations that obey this statement
are equivalent (hence, θ = 0.5) and so is Listing 4.11:

1 (at < dt) ∧ (et = 1) ⇒ at+1 = at + ct

2 true ∧ true ⇒ et+1 = 0

3 (at < bt) ∧ (ct > dt) ⇒ et+1 = 1

4 (at < dt) ∧ (et = 1) ⇒ ct+1 = ct − 1

5 true ∧ true ⇒ et+1 = 0

6 (at < dt) ∧ (et = 1) ⇒ at+1 = at + ct

7 (at < bt) ∧ (ct > dt) ⇒ et+1 = 1

8 (at < dt) ∧ (et = 1) ⇒ ct+1 = ct − 1

Listing 4.11: An equivalent alternative version of Listing 4.10.

Loops

Loops in RBGP can be created in the very same fashion.

1 b = 1;

2 for(a=c; a>0; a--) {

3 b *= a;

4 }

Listing 4.12: A loop in a C-like language.
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The loop defined in Listing 4.12 can be expressed in RBGP as outlined in Listing 4.13,
where we use the start-symbol (line 1 and 2) to initialize a and b. As its name suggests,
start is only 1 at the very beginning of the program’s execution and 0 afterwards (unless
modified by an action).

1 (startt > 0) ∨ false ⇒ at+1 = ct

2 true ∧ (startt > 0) ⇒ bt+1 = 1

3 (at > 0) ∧ true ⇒ at+1 = at − 1

4 false ∨ (at > 0) ⇒ bt+1 = bt ∗ at

Listing 4.13: The RBGP-version of Listing 4.12.

Here, no positional or cardinality restrictions occur at all, so Listing 4.14 is equivalent
to Listing 4.13 and θ = 1.

1 false ∨ (at > 0) ⇒ bt+1 = bt ∗ at

2 true ∧ (startt > 0) ⇒ bt+1 = 1

3 (startt > 0) ∨ false ⇒ at+1 = ct

4 false ∨ (at > 0) ⇒ bt+1 = bt ∗ at

5 (at > 0) ∧ true ⇒ at+1 = at − 1

6 (startt > 0) ∨ false ⇒ at+1 = ct

Listing 4.14: An equivalent, alternative version of Listing 4.13.

Extended Rule-based Genetic Programming

We have shown that, although looking rather simple, the primitives of Rule-based Genetic
Programming are mighty enough to express many of the constructs known from high-level
programming languages. However, in the original RBGP approach, there are some inherent
limitations.

Its most obvious drawback is the lack of Turing completeness. In order to visualize this
problem, imagine the restriction that only simple types like integer variables and parameters
were allowed was imposed on the Java programming language. Then, no complex types like
arrays could be used. In this case, it would become hard to create programs which process
data structures like lists, since single variables for each and every of their elements would have
to be defined and accessed independently. Writing a method for sorting a list of arbitrary
length would even become impossible.

The same restrictions hold in Rule-based Genetic Programming as introduced in Sec-
tion 4.8.4 – the symbols there resemble plain integer variables. In Java, the problems stated
above are circumvented with arrays, a form of memory which can be accessed indirectly.
Adding indirect memory access to the programming language forming the basis of Rule-
based Genetic Programming would allow the evolution of more complex algorithms – mat-
ter of fact, this is the standard approach for creating Turing-complete representations. We
therefore define the notation [at]t, which stands for the value of the (at)th symbol at time
step t in the ordered list of all symbols. In this, it equals a simple pointer dereferentiation
(*a) in the C language.

With this extension alone, it becomes possible to use the RBGP language for defining list
sorting algorithms, for instance. Assume that the following symbols (i0, i1, .., in−1, l, a, b)
have been defined. The symbols i0 to in−1 constitute the memory which can be used to
store the list elements and l is initialized with the length of the list, i. e., the number of the
i-elements actually used (which has to be smaller or equal to n). a and b are multi-purpose
variables. In the symbol list, i0 is at position 0, l at position n, a at index n + 1 and so
on. With very little effort, Listing 4.15 can be defined which performs a variant of selection
sort60. Notice that, since writing to variables is not committed before all rules were applied,
no explicit temporary variable is required in the third and fourth rule.

60 http://en.wikipedia.org/wiki/Selection_sort [accessed 2008-05-09]

http://en.wikipedia.org/wiki/Selection_sort
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1 (startt > 0) ∧ true ⇒ at+1 = 0

2 (startt > 0) ∧ true ⇒ bt+1 = 0

3 (at < lt) ∧ ([at]t < [bt]t) ⇒ [at]t+1 = [bt]t

4 (at < lt) ∧ ([at]t < [bt]t) ⇒ [bt]t+1 = [at]t

5 (bt ≥ at) ∧ (at < lt) ⇒ at+1 = at + 1

6 (bt < at) ∧ true ⇒ bt+1 = bt + 1

7 (bt ≥ at) ∧ (at < lt) ⇒ bt+1 = 0

Listing 4.15: A simple selection sort algorithm written in the eRBGP language.

Listing 4.10, one of our previous examples shows another feature of RBGP which might
prove troublesome: The condition part of a rule always consists of two single conditions.
This is totally unimportant as long as a logical expression to be represented contains only
one or two conditions. (If it needs only one, the second condition of the rule may be set to
true and concatenated with an ∧-operator.) In Listing 4.10, however, we try to represent
the conditional statement from Listing 4.9 which consists of three conditions. In order to do
so, we needed to introduce the additional symbol e.

Here we can draw an analogy to the human memory61 which may be divided into pro-
cedural62 (implicit63) memory [848, 1715, 1818, 2229] storing, for instance, motor skills and
declarative64 (explicit65) memory [1145, 1155] holding facts and data. In comparison with
RBGP, we would find that the expressiveness of the equivalent of the procedural memory
in RBGP is rather limited, which needs to be mitigated by using more of it and storing
additional information in the declarative memory. We used this approach when translating
Listing 4.9 to Listing 4.10, for instance. This issue can be compared to a hypothetical situ-
ation in which we were not able to learn the complete motion of lifting a jar to our lips and
instead, could only learn how to lift a jar from the table and how to move an already lifted
jar to our mouth while needing to explicitly remember that both moves belong together.

Admittedly, this analogy may be a bit farfetched, but it illustrates that Rule-based Ge-
netic Programming could be forced to go through a seemingly complex learning process for
building a simple algorithm under some circumstances. We therefore extend its expressive-
ness by dropping the constraints on the structure of its rules which increases the number
of ways that RBGP can be utilized for representing complicated expressions. The ability
of using genetic algorithms with fixed-size genes for evolving rule-based programs, however,
has to be traded in in order to facilitate this extension. Additionally, this extension might
bring back some of the epistasis which we had previously successfully decreased.

1 ((at < bt) ∧ ((ct > dt) ∧ (at < dt))) ⇒ at+1 = (at + ct)

2 ((at < bt) ∧ ((ct > dt) ∧ (at < dt))) ⇒ ct+1 = (ct − 1)

Listing 4.16: The eRBGP version of Listing 4.9 and Listing 4.10.

1 (startt 6= 0) ⇒ bt+1 = 1

2 (startt 6= 0) ⇒ ct+1 = at

3 (at > 0) ⇒ at+1 = (at − 1)

4 (at > 0) ⇒ bt+1 = (bt ∗ at)

Listing 4.17: The eRBGP version of Listing 4.12 and Listing 4.13.

In Listing 4.16 and Listing 4.17, we repeat the RBGP examples Listing 4.10 and
Listing 4.13 – this time in eRBGP syntax. As already mentioned, we cannot use a sim-
ple genetic algorithm to evolve these programs since their structure does not map to a fixed
gene size anymore. However, tree-based Standard Genetic Programming as discussed in Sec-
tion 4.3 can perfectly fulfill this purpose. Listing 4.16, for instance, fits to the tree phenotype
depicted in Figure 4.31.

61 http://en.wikipedia.org/wiki/Memory [accessed 2008-05-08]

62 http://en.wikipedia.org/wiki/Procedural_memory [accessed 2008-05-08]

63 http://en.wikipedia.org/wiki/Implicit_memory [accessed 2008-05-08]

64 http://en.wikipedia.org/wiki/Declarative_memory [accessed 2008-05-08]

65 http://en.wikipedia.org/wiki/Explicit_memory [accessed 2008-05-08]

http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Procedural_memory
http://en.wikipedia.org/wiki/Implicit_memory
http://en.wikipedia.org/wiki/Declarative_memory
http://en.wikipedia.org/wiki/Explicit_memory
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Figure 4.31: The tree phenotype (and genotype) of Listing 4.16.

With these changes, Extended Rule-based Genetic Programming becomes much more
powerful in comparison with plain Rule-based Genetic Programming and is now able to
evolve arbitrary algorithms and data structures. Also, the proof for Turing completeness of
Genetic Programming languages with indexed memory by Teller [2012] can easily be adapted
to Extended Rule-based Genetic Programming (as well as the simpler strategy by Nordin
and Banzhaf [1543]).

4.9 Artificial Life and Artificial Chemistry

It is not hard to imagine what artificial life is. Matter of fact, I assume that everyone of us
has already seen numerous visualizations and simulations showing artificial creatures. Even
some examples from this book like the Artificial Ant may well be counted to that category.

Definition 4.4 (Artificial Life). Artificial life66, also abbreviated with ALife or AL, is
a field of research that studies the general properties of life by synthesizing and analyzing
life-like behavior [165].

Definition 4.5 (Artificial Chemistry). The area of artificial chemistries67 subsumes all
computational systems which are based on simulations of entities similar to molecules and
the reactions amongst them.

According to Dittrich et al. [575], an artificial chemistry is defined by a triple (S,R,A),
where S = {s1, s2, s3, . . . } is the set of possible molecules S, R is the set of reactions that
can occur between them, and A is an algorithm defining how the reactions are applied.

Artificial chemistry and artificial life strongly influence each other and often merge into
each other. The work of Hutton [977, 978, 979], for example, focuses on generating and
evolving self-replicating molecules and cells. There also exists real-world applications of ar-
tificial chemistry in many areas of chemistry, computer networking, economics, and sociology.
The Algorithmic Chemistries, which we have analyzed in Section 4.8.2 on page 205, are also
closely related to artificial chemistries, for instance. In this section, we will discuss some more
artificial life and artificial chemistry approaches in the context of Genetic Programming.

66 http://en.wikipedia.org/wiki/Artificial_life [accessed 2007-12-13]

67 http://en.wikipedia.org/wiki/Artificial_chemistry [accessed 2008-05-01]

http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Artificial_chemistry
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4.9.1 Push, PushGP, and Pushpop

In 1996, early research in self-modification or self-evolution of programs has been conducted
by Spector and Stoffel [1935] in form of the ontogenic extension of their HiGP system [1965].
Basically, they extended the programs evolved with linear Genetic Programming method
with the capabilities of shifting and copying segments of their code at runtime.

About half of a decade later, Spector [1930] developed Push, a stack-based programming
language especially suitable for evolutionary computation [1930, 1934, 1932]. Programs in
that language can be evolved by adapting existing Standard Genetic Programming systems
(as done in PushGP) or, more interestingly, by themselves in an autoconstructive manner,
which has been realized in the Pushpop system. Currently, the Push language is currently
available in its third release, Push3 [1938, 1939].

A Push program is either a single instruction, a literal, or a sequence of zero or more
Push programs inside parentheses.

1 program ::= instruction | literal | ( {program} )

An instruction may take zero or more arguments from the stack. If insufficient many
arguments are available, it acts as NOOP, i. e., does nothing. The same goes if the arguments
are invalid, like when a division by zero would occur.

In Push, there is a stack for each data type, including integers, Boolean values, floats,
name literals, and code itself. The instructions are usually named according to the scheme
<type>.<operation>, like INTEGER.+, BOOLEAN.DUP, and so on. One simple example for a Push
program borrowed from Spector [1932], Spector et al. [1938] is

1 ( 5 1.23 INTEGER .+ ( 4 ) INTEGER.- 5.67 FLOAT .* )

2 Which will leave the stacks in the following states:

3 FLOAT STACK : (6.9741)

4 CODE STACK : ( ( 5 1.23 INTEGER .+ ( 4 ) INTEGER.- 5.67

5 FLOAT .* ) )

6 INTEGER STACK: (1)

Listing 4.18: A first, simple example for a Push program.

Since all operations take their arguments from the corresponding stacks, the initial
INTEGER.+ does nothing because only one integer, 5, is available on the INTEGER stack. INTEGER
.- subtracts the value on the top of INTEGER stack (4) from the one beneath it (5) and leaves
the result (1) there. On the float stack, the result of the multiplication FLOAT.* of 1.23 and 5

.67 is left while the whole program itself resides on the CODE stack.

Code Manipulation

One of the most interesting features of Push is that we can easily express new forms of
control flow or self-modifying code with it. Here, the CODE stack and, since Push3, the EXEC

stack play an important role. Let us take the following example from [1930, 1938]:

1 (CODE.QUOTE (2 3 INTEGER .+) CODE.DO)

Listing 4.19: An example for the usage of the CODE stack.

The instruction CODE.QUOTE leads to the next piece of code ((2 3 INTEGER.+) in this case)
being pushed onto the CODE stack. CODE.DO then invokes the interpreter on whatever is on
the top of this stack. Hence, 2 and 3 will land on the INTEGER stack as arguments for the
following addition. In other words, Listing 4.19 is just a complicated way to add 2 + 3 = 5.

1 (CODE.QUOTE

2 (CODE.QUOTE (INTEGER.POP 1)

3 CODE.QUOTE (CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO INTEGER .*)

4 INTEGER.DUP 2 INTEGER.< CODE.IF)
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5 CODE.DO)

Listing 4.20: Another example for the usage of the CODE stack.

Listing 4.20 outlines a Push program using a similar mechanism to compute the factorial
of an input provided on the INTEGER stack. It first places the whole program on the CODE

stack and executes it (with the CODE.DO at its end). This in turn leads on the code in lines 2
and 3 being placed on the code stack. The INTEGER.DUP instruction now duplicates the top
of the INTEGER stack. Then, 2 is pushed and the following INTEGER.< performs a comparison
of the top two elements on the INTEGER stack, leaving the result (true or false) on the
BOOLEAN stack. The instruction CODE.IF executes one of the top two items of the CODE stack,
depending on the value it finds on the BOOLEAN stack and removes all three elements. So
in case that the input element was smaller than 2, the top element of the INTEGER stack
will be removed and 1 will be pushed into its place. Otherwise, the next instruction CODE

.DUP duplicates the whole program on the CODE stack (remember, that everything else has
already been removed from the stack when CODE.IF was executed). INTEGER.DUP copies the
top of the INTEGER stack, 1 is stored and then subtracted from this duplicate. The result is
then multiplied with the original value, leaving the product on the stack. So, Listing 4.20
realizes a recursive method to compute the factorial of a given number.

Name Binding

As previously mentioned, there is also a NAME stack in the Push language. It enables us
to bind arbitrary constructs to names, allowing for the creation of named procedures and
variables.

1 ( DOUBLE CODE.QUOTE ( INTEGER.DUP INTEGER .+ ) CODE.DEFINE )

Listing 4.21: An example for the creation of procedures.

In Listing 4.21, we first define the literal DOUBLE which will be pushed onto the NAME stack.
This definition is followed by the instruction CODE.QUOTE, which will place code for adding
an integer number to itself on the CODE stack. This code is then assigned to the name on top
of the NAME stack (DOUBLE in our case) by CODE.DEFINE. From there on, DOUBLE can be used as
a procedure.

The EXEC Stack

Many control flow constructs of Push programs up to version 2 of the language are executed
by similar statements in the interpreter. Beginning with Push3, all instructions are pushed
onto the new EXEC stack prior their invocation. Now, now additional state information or
flags are required in the interpreter except from the stacks and name bindings. Furthermore,
the EXEC stack supports similar manipulation mechanisms like the CODE stack.

1 ( DOUBLE EXEC.DEFINE ( INTEGER.DUP INTEGER .+ ) )

Listing 4.22: An example for the creation of procedures similar to Listing 4.21.

The EXEC stack is very similar to the CODE stack, except that its elements are pushed in
the inverse order. The program in Listing 4.22 is similar to Listing 4.21 [1938].

Autoconstructive Evolution

Push3 programs can be considered as tree structures and hence be evolved using standard
Genetic Programming. This approach has been exercised with the PushGP system [1930,
1934, 1933, 463, 1745]. However, the programs can also be equipped with the means to create
their own offspring. This idea has been realized in a software called Pushpop [1930, 1934,
1931]. In Pushpop, whatever is left on top of the CODE stack after a programs execution is
regarded as its child. Programs may use the above mentioned code manipulation facilities
to create their descendants and can also access a variety of additional functions, like
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1. CODE.RAND pushes newly created random code onto the CODE stack.
2. NEIGHBOR takes an integer n and returns the code of the individual in distance n. The

population is defined as a linear list where siblings are grouped together.
3. ELDER performs a tournament between n individuals of the previous generation and

returns the winner.
4. OTHER performs a tournament between n individuals of the current generation, comparing

individuals according to their parents fitness, and returns the winner.

After the first individuals able to reproduce have been evolved the system can be used
to derive programs solving a given problem. The only external influence on the system is a
selection mechanism required to prevent uncontrolled growth of the population by allowing
only the children of fit parents to survive.

4.9.2 Fraglets

In his seminal work, Tschudin [2058] introduced Fraglets68, a new artificial chemistry suitable
for the development and even evolution of network protocols. Fraglets represent an execution
model for communication protocols which resembles chemical reactions.

How do Fraglets work?

From the theoretical point of view, the Fraglet approach is an instance of Post’s string rewrit-
ing systems69 [1672] and Gamma systems [127, 131, 128, 129, 130]. Fraglets are symbolic
strings of the form [s1 : s2 : . . . : sn]. The symbols si either represent control information
or payload. Each node in the network has a Fraglet store which corresponds to a reaction
vessel in chemistry. Such vessels usually contain equal molecules multiple times and the
same goes for Fraglet stores which can be implemented as multisets keeping track on the
multiplicity of the Fraglets they contain.

Tschudin [2058] defines a simple prefix programming language with a fixed instruction
set comprising transformation and reaction rules for Fraglets. Transformations like dup and
nop modify a single Fraglet whereas reactions such as match and matchP combine two Fraglets.
For the definition of these rules in Table 4.2, we will use the syntax [s1 : s2 : . . . : tail]
where si is a symbol and tail is a possibly empty sequence of symbols.70

Obviously, the structure of Fraglets is very different from other program representations.
There are no distinguishable modules or functions, no control flow statements such as jumps
or function invocations, and no distinction exists between memory and code. Nevertheless,
the Fraglet system is powerful, has a good expressiveness, and there are indications that it
is likely Turing-complete [571].

Examples

After defining the basics of the Fraglet approach, let us now take a look on a few simple
examples.

Election

Election in a distributed system means to select one node in the network and to ensure
that all nodes receive knowledge of the ID of the selected one. One way to perform such an
election is to determine the maximum ID of all nodes, which is what we will do here.

68 See http://en.wikipedia.org/wiki/Fraglets [accessed 2008-05-02] and http://www.fraglets.net/

[accessed 2008-05-02] for more information.
69 http://en.wikipedia.org/wiki/Post_canonical_system [accessed 2008-05-02]

70 See http://www.fraglets.net/frag-instrset-20070924.txt [accessed 2008-05-02] for the full in-
struction set as of 2007-09-24.

http://en.wikipedia.org/wiki/Fraglets
http://www.fraglets.net/
http://en.wikipedia.org/wiki/Post_canonical_system
http://www.fraglets.net/frag-instrset-20070924.txt
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tag transformation/reaction

� basic transformations
dup [dup : t : a : tail] −→ [t : a : a : tail]

duplicate a single symbol
exch [exch : t : a : b : tail] −→ [t : b : a : tail]

swap two tags
fork [fork : a : b : tail] −→ [a : tail] , [b : tail]

copy Fraglet and prepend different header symbols
nop [nop : tail] −→ [tail]

does nothing (except consuming the instruction tag)
null [null : tail] −→ ∅

destroy a Fraglet
pop2 [pop2 : h : t : a : tail] −→ [h : a] , [t : tail]

pop head element a out of a list [a : b : tail]
split [split : tail1 : ∗ : tail2] −→ [tail1] , [tail2]

break a Fraglet into two at the first occurrence of ∗
� arithmetic transformations
sum [sum : t : {m} : {n} : tail] −→ [t : {m+ n} : tail]

an operation comparing two numbers

lt [lt : yes : no : {a} : {b} : tail] −→
{

[yes : {a} : {b} : tail] if a < b
[no : {a} : {b} : tail] otherwise

a logic operation comparing two numbers a and b

� communication primitives
broadcast [broadcast : tail] −→ n[tail]

broadcast tail to all nodes n in the network N
send [send : dest : tail] −→ dest[tail]

send tail to a single node dest
node n[node : t : tail] −→ n[t : {id(n)} : tail]

obtain the ID id(n) of the current node n

� reactions
match [match : a : tail1] , [a : tail2] −→ [tail1 : tail2]

two Fraglets react, their tails are concatenated
matchP [matchP : a : tail1] , [a : tail2] −→ [matchP : a : tail1] , [tail1 : tail2]

“catalytic match”, i. e., the matchp rule persists

Table 4.2: Some Fraglet instructions (from [2058] and http://www.fraglets.net/ (2008-
05-02)).

First of all, we define five additional symbols A, B, C, L, and R. These symbols do not
react on their own behalf, i. e., [A : tail] −→ [A : tail]. After a bootstrap reaction, each
node in the network will contain a Fraglet of the form [L : {id}] containing the identifier id
of the node that it thinks has won/currently leads in the election. It broadcasts this informa-
tion to its neighbors, which will receive it in the form of the Fraglet [R : {id}]. A, B, and
C have no further meaning. The election algorithm is constituted by six Fraglets [node : L]
which creates the first L-type Fraglet at bootstrap, [matchP : L : fork : L : A] and
[matchP : A : broadcast : R] which are used to transmit the highest node ID currently
known in a R-type Fraglet, [matchP : R : match : L : lt : B : C] which initiates a com-
parison with incoming Fraglets of that type, and [matchP : B : pop2 : null : L] and
[matchP : B : pop2 : L : null] evaluating the outcome of this comparison and produc-
ing a new L-type Fraglet. Figure 4.32 shows the flow of reactions in this system, which will
finally lead to all nodes knowing the highest node ID in the network.

http://www.fraglets.net/
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[fork:L:A:{id1}]

[L:{id1}] [A:{id1}]

[matchP:A:broadcast:R]

[broadcast:R:{id1}]

[R:{id2}][matchP:R:match:L:lt:B:C]

[lt:B:C:{id2}:{id1}]

[B:{id2}:{id1}] [C:{id2}:{id1}]

[matchP:B:pop2:L:null] [matchP:C:pop2:null:L]

[pop2:L:null:{id1}:{id2}] [pop2:null:L:{id1}:{id2}]

[null:{id2}][L:{id1}] [null:{id1}] [L:{id2}]

[matchP:L:fork:L:A]

[match:L:lt:B:C:{id2}]

[node:L] [L:{id1}]

(id2 id1)< (id2 id1)³

Fraglet store of one node

Network

bootstrap

Figure 4.32: A Fraglet-based election algorithm

Quines

Definition 4.6 (Quine). A quine71 is a computer program which produces a copy of itself
(or its source code) as output.

From Kleene’s second recursion theorem72 [1148], it follows that quines can be defined in
each Turing-complete language. Yamamoto et al. [2276, 1399] have introduced quine Fraglets
like the one in Figure 4.33 as vehicle for self-replicating and self-modifying programs.

Fraglets as a program representation are predestined for evolutionary protocol synthesis.
Indeed, they have a low positional epistasis (see Section 4.8.1 on page 202), since the order
of the Fraglets in the Fraglet store plays no role. The order of the single commands inside a
Fraglet, however, is significant. In Section 23.2.2 on page 404, we discuss the application of

71 http://en.wikipedia.org/wiki/Quine_%28computing%29 [accessed 2008-05-04]

72 http://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem [accessed 2008-05-04]

http://en.wikipedia.org/wiki/Quine_%28computing%29 
http://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem
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[fork:nop:x:match:x:fork:nop:x]

bootstrap

[nop:match:x:fork:nop:x]

[x:match:x:fork:nop:x][match:x:fork:nop:x]

Figure 4.33: A simple quine Fraglet (borrowed from [2276])

Fraglets for protocol evolution based on the work by Tschudin [2058] and in Section 23.2.2 on
page 404, the joint work of Yamamoto and Tschudin [2275] on online adaptation of Fraglet
protocols is outlined.

4.10 Problems Inherent in the Evolution of Algorithms

Genetic Programming can be utilized to breed programs or algorithms and programs suitable
for a given problem class. In order to guide such an evolutionary process, these programs
bred have to be evaluated. They are assessed in terms of functional and non-functional
requirements. The functional properties comprise all features regarding how good the algo-
rithm solves the specified problem and the non-functional aspects are concerned with, for
example, its size and memory consumption. Normally, a set F = {f1, .., fn} of objective
functions is specified in order to map these attributes to the subsets Y1, .., Yn of the real
numbers R.

4.10.1 Correctness of the Evolved Algorithms

Introduction

Genetic Programming can be utilized to breed programs or algorithms suitable for a given
problem class. In order to guide such an evolutionary process, the synthesized programs
have to be evaluated, i. e., assessed in terms of functional and non-functional requirements.
The functional properties comprise all features regarding how good a program solves the
specified problem and the non-functional aspects are concerned with, for example, its size
and memory consumption. Often, a set F = {f1, .., fn} of objective functions is specified in
order to map these attributes to the real numbers.

The Problems

In Genetic Programming, some of the non-functional objective values such as the size of
the evolved programs can easily be computed. Determining their functional utility, how-
ever, cannot be achieved by any arithmetically closed function or algorithm – at least if a
Turing-complete representation is chosen – since this would be an instance of the Entschei-
dungsproblem73 [496] as well as of the Halting Problem74 [1894].

73 http://en.wikipedia.org/wiki/Entscheidungsproblem [accessed 2007-07-03]

74 http://en.wikipedia.org/wiki/Halting_problem [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/Halting_problem
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Entscheidungsproblem

The Entscheidungsproblem, formulated by David Hilbert [926, 927], asks for an algorithm
that, if provided with a description of a formal language and a statement in that language,
can decide whether or not the statement holds [2219]. In the case of Genetic Programming,
the formal language is the language in which the programs are evolved, i. e., the problem
space, and the statements are the programs themselves. Church [407, 408] and Turing [2065,
2066] both proved that an algorithm solving the Entscheidungsproblem cannot exist.

No Exhaustive Testing

It is not possible to use some kind algorithm in order to determine whether the evolved
programs will provide correct results. Thus, training cases, (simulation) scenarios in which
a program is executed test-wise, must be used to find out whether it is suitable for the
given problem. Software Testing is a very important field in software engineering [168, 664,
784, 1090]. The core problem of testing programs for their functionality and performance is
the size of the input space. Assume that we pursued the evolution of a program that takes
two integer numbers (32 bit) as input and computes another one as output. For testing
this program with all possible inputs, 232 ∗ 232 = 264 = 18 446 744 073 709 551 616 single
tests would be required. Even if each test run took only 1µs, exhaustive testing would take
approximately 584 542 years. In most practical applications, the input space is much larger.
Exhaustive testing of the evolved algorithms is thus not feasible in virtuall all cases.

Instead, we can only pick a very small fraction of the possible test scenarios for training
and hope that they will provide significant results. The probability that this will happen
depends very much on the method with which the training cases are selected.

Most often, one cannot be sure whether evolved behavioral patterns (or algorithms) are
perfect and free from errors in all possible situations. Here, nature indeed has the same
problem as the noble-minded scientists who apply Genetic Programming, as the following
small analogy75 will show.

The Monkey and the Orange Consider a certain scheme in the behavior of monkeys. If a
monkey sees or smells something delicious in, for example, a crevice, it sticks its hand in,
grabs the item of desire and pulls it out. This simple behavior itself is quite optimal and has
served the monkeys well for generations. With the occurrence of homo sapiens, the situation
changed. African hunters still use this behavior against the monkeys by creating a situation
that was never relevant during its “evolutionary testing period”: They slice a coconut in half
and put a hole in one side just big enough for a monkey’s hand to fit through. Now they
place an orange between the two coconut halves, tie them closely together and secure the
trap with a rope to a tree. Sooner or later, a monkey will smell the orange, find the coconut
with the hole, stick its hand inside and grab the fruit. However, with the orange in its fist, it
cannot pull the hand out anymore. The hunter can now easily catch the monkey, to whom
it never occurs that it could let go the fruit and save its life.

In other words, although evolutionary algorithms like Genetic Programming may provide
good solutions for many problems, their results still need to be analyzed and interpreted by
somebody at least a bit more cunning than an average monkey.

This implies that the solutions need to be delivered in a human-readable way. In some
optimization problems, we may, however, choose a representation for the solution candidates
which is very hard to understand for human beings but more suitable for evolution. Hence,
it is not always possible to perform a sanity check on the evolved programs by hand.

75 It is hard to find references confirming this story. It occurred in one scene of the movie Animals
are beautiful people by Uys [2085], roughly resembles one of Aesop’s fables [14], and is men-
tioned on the Wikipedia [2219] page on coconuts from 2007-07-21 (http://en.wikipedia.org/
w/index.php?title=Coconut&oldid=146038518) where they had the same problem and eventu-
ally removed the corresponding text. But regardless whether it is just an urban legend or not –
it is a nice story.

http://en.wikipedia.org/w/index.php?title=Coconut&oldid=146038518
http://en.wikipedia.org/w/index.php?title=Coconut&oldid=146038518
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Halting Problem

The Halting Problem is basically an instance of the Entscheidungsproblem and asks for an
algorithm that decides whether another algorithm will terminate at some point in time or
runs forever if provided with a certain, finite input. Again, Turing [2065, 2066] proved that
a general algorithm solving the Halting Problem cannot exist in general. One possible way
to show this is to use a simple counter-example: Assume that a correct algorithm doesHalt
exists (as presumed in Algorithm 4.2) which takes a program algo as input and determines
whether it will terminate or not. It is now possible to specify a program trouble which, in
turn, uses doesHalt to determine if it will halt at some point in time. If doesHalt returns
true, trouble loops forever. Otherwise it halts immediately. In other words, doesHalt cannot
return the correct result for trouble and hence, cannot be applied universally. Thus, it is
not possible to solve the Halting Problem algorithmically for Turing-complete programs in
a Turing-complete representation. One consequence of this fact is that there are no means
to determine when an evolved program will terminate or whether it will do so at all (if
its representation allows infinite execution, that is) [2011, 2254]. Langdon and Poli [1243]
have shown that in Turing-complete linear Genetic Programming systems, most synthesized
programs loop forever and the fraction of halting programs of size length is proportional to√
length, i. e., small.

Algorithm 4.2: Halting Problem: reductio ad absurdum

begin1

doesHalt(algo) ∈ {true, false}2

begin3

. . .4

end5

Subalgorithm trouble()6

begin7

if doesHalt(trouble) then8

while true do9

. . .10

end11

end12

Countermeasures

Against the Entscheidungsproblem

For general, Turing-complete program representations, neither exhaustive testing nor algo-
rithmic detection of correctness is possible.

Model Checking Model checking76 techniques [413, 1483] have made great advance since
the 1980s. According to Clarke and Emerson [412], “Model checking is an automated tech-
nique that, given a finite-state model of a system and a logical property, systematically checks
whether this property holds for (a given initial state in) that model.” The result of the check-
ing process is either a confirmation of the correctness of the checked model, a counterexample
in which it fails to obey its specification, or failure, i. e., a situation in which no conclusion
could be reached.

Hence, in the context of Genetic Programming, a model checker can be utilized as a
Boolean function ϕ : X 7→ B which maps the evolved programs to correct (≡ true) or

76 http://en.wikipedia.org/wiki/Model_checking [accessed 2008-10-02]

http://en.wikipedia.org/wiki/Model_checking
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incorrect (≡ false). As objective function, ϕ therefore is rather infeasible, since it would
lead directly to the all-or-nothing problem discussed in Section 4.10.2.77

Still, model checkers can be an interesting way to define termination criteria for the
evolution or to verify its results. This may require a reduction of the expressiveness of the
GP approaches utilized in order to make them compliant with the input languages of the
model checkers. Then again, there are very powerful model checkers such as SPIN78 [955,
176, 256], which processes systems written in the Promela79 (the Process Meta Language)
with which asynchronous distributed algorithms can be specified [175]. If such a system was
used, no reduction of the expressiveness of the program representation would be needed at
all. Nevertheless, a formal transformation of the GP representation to these languages must
be provided in any circumstance. Creating such a transformation is complicated and requires
a formal proof of correctness – checking a model without having shown the correctness of
the model representation first is, basically, nonsense.80

The idea of using model checkers like SPIN is very tempting. One important drawback
of this method is the unforeseeable runtime of the checking process which spans from almost
instantaneous return up to almost half an hour [2031]. In the same series of experiments
([2031]), the checking process also failed in a fraction of cases (≈ 18%) depending on the
problem to be verified. Especially the unpredictable runtime for general problems led us to
the decision to not use SPIN in our own works yet, since in the worst case, a few thousand
program verifications could be required per generation in the GP system. Still, it is an
interesting idea to evolve programs in Promela language and we will reconsider it in our
future work and evaluate the utility and applicability of SPIN for the said purposes in
detail.

Functional Adequacy In the face of this situation where we cannot automatically determine
whether an evolved algorithm is correct, overfitted, or oversimplified, a notation for which
solutions are acceptable and which are not is required. One definition which fits perfectly in
this context is the idea of functional adequacy provided by Camps et al. [327], Gleizes et al.
[809]:

Definition 4.7 (Functional Adequacy). When a system has the “right” behavior –
judged by an external observer knowing the environment – we say that it is functionally
adequate [809].

In the context of Genetic Programming, the external observer is represented by the
objective functions which evaluate the behavior of the programs in the simulation environ-
ments. According to Gleizes et al. [809], functional adequacy also subsumes non-functional
criteria such as memory consumption or response time if they become crucial in a certain en-
vironment, i. e., influence the functionality. For optimizing such criteria, different additional
approaches are provided in Section 4.10.3.

Against The Halting Problem

In order to circumvent the Halting Problem, the evolved programs can be executed in sim-
ulations which allow limiting their runtime [2254, 1027]. Programs which have not finished
until the time limit has elapsed are terminated automatically. Especially in linear Genetic
Programming approaches, it is easy to do so by simply defining an upper bound for the
number of instructions being executed. For tree-based representations, this is slightly more
complicated.

Teller [2011] suggests to apply time-limiting approaches too, but also the use of so-called
anytime algorithms, i. e., algorithms that store their best guess of the result in a certain

77 One approach to circumvent this problem would be to check for several properties separately.
78 http://en.wikipedia.org/wiki/SPIN_model_checker [accessed 2008-10-02]

79 http://en.wikipedia.org/wiki/Promela [accessed 2008-10-02]

80 Thanks to Hendrik Skubch for discussing this issue with me.

http://en.wikipedia.org/wiki/SPIN_model_checker
http://en.wikipedia.org/wiki/Promela
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memory cell and update it during their run. Anytime algorithms can be stopped at any
time, since the result is always there, although it would have been refined in the future
course of the algorithm.

Another way to deal with this problem is to prohibit the evolution of infinite loops or
recursions from the start by restricting the structural elements in the programming language.
If there are no loops, there surely cannot be infinite ones either. Imposing such limitations,
however, also restricts the programs that can evolve: A representation which does not allow
infinite loops cannot be Turing-complete either.

A B
X

X

Y

Figure 4.34: A sketch of an infinite message loop.

Often it is not sufficient to restrict just the programming language. An interesting ex-
ample for this issue is the evolution of distributed algorithms. Here, the possible network
situations and the reactions to them would also need to be limited. One would need to
exclude situations like the one illustrated in Figure 4.34 where

1. node A sends message X to node B which
2. triggers an action there, leading to a response message Y from B back to node A which,

in turn,
3. causes an action on A that includes sending X to B again
4. and so on. . .

Preventing such a situation is even more complicated and will, most likely, also prevent the
evolution of useful solutions.

4.10.2 All-Or-Nothing?

The evolution of algorithms often proves as a special instance of the needle-in-a-haystack
problem. From a näıve and, at the same time, mathematically precise point of view, an
algorithm computing the greatest common divisor of two numbers, for instance, is either
correct or wrong. Approaching this problem straightforwardly leads to the application of a
single objective function which can take on only two values, provoking the all-or-nothing
problem in Genetic Programming. In such a fitness landscape, a few steep spikes of equal
height represent the correct algorithms and are distributed over a large plane of infeasible
solution candidates with equally bad fitness.

The negative influence of all-or-nothing problems have been reported from many areas
of Genetic Programming, such as the evolution of distributed protocols [2058] (see Sec-
tion 23.2.2), quantum algorithms [1932], expression parsers [1027], and mathematical algo-
rithms (such as the GCD).

In Section 21.3.2, we show how to some means to mitigate this problem for the GCD
evolution. However, like those mentioned in some of the previously cited works, such methods
are normally application dependent and often cannot be transferred to other problems in a
simple manner.

Countermeasures

There are two direct countermeasures against the all-or-nothing problem in GP. The first
one is to devise objective functions which can take on as many values as possible, i. e., which
also reward partial solutions.
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The second countermeasure is using as many test cases as possible and applying the
objective functions to all of them, setting the final objective values to be the average of the
results. Testing with ten training cases will transform a binary objective function to one
which (theoretically) can take on eleven values, for instance: 1.0 if all training cases were
processed correctly, 0.9 if one training case failed while nine worked out properly, . . . , and
0.0 if the evolved algorithm was unable to behave adequately in any of the training cases.
Using multiple training cases has, of course, the drawback that the time needed for the
objective function evaluation will increase (linearly).

Vaguely related to these two measures is another approach, the utilization of Lamarck-
ian evolution [522, 2215] or the Baldwin effect [123, 929, 930, 2215] (see Section 15.2 and
Section 15.3, respectively). As already pointed out in Section 1.4.3, they incorporate a local
search into the optimization process which may further help to smoothen out the fitness
landscape [864].

In our experiments reported in [2177], an approach similar to Lamarckian evolution was
incorporated. Although providing good results, the runtime of the approaches increased to
a degree rendering it unfeasible for large-scale.81

4.10.3 Non-Functional Features of Algorithms

Besides evaluating an algorithm in terms of its functionality, there always exists a set of non-
functional features that should be regarded too. For most non-functional aspects (such as
code size, runtime requirements, and memory consumption) and the parsimony82 principle
holds: less is better. In this section, we will discuss various reasons for applying parsimony
pressure in Genetic Programming.

Code Size

In Section 30.1.1 on page 547, we define what algorithms are: compositions of atomic in-
structions that, if executed, solve some kind of problem or a class of problems. Without
specifying any closer what atomic instructions are, we can define the following:

Definition 4.8 (Code Size). The code size of an algorithm or program is the number of
atomic instructions it is composed of.

The atomic instructions cannot be broken down into smaller pieces. Therefore, the code
size is a positive integer number in N0. Since algorithms are statically finite per definition
(see Definition 30.9 on page 550), the code size is always finite.

Code Bloat

Definition 4.9 (Bloat). In Genetic Programming, bloat is the uncontrolled growth in size
of the individuals during the course of the evolution [1318, 229, 140, 1196, 1241].

The term code bloat is often used in conjunction with code introns, which are regions
inside programs that do not contribute to the functional objective values (because they
can never be reached, for instance; see Definition 3.2 on page 146). Limiting the code size
and increasing the code efficiency by reducing the number of introns is an important task
in Genetic Programming since disproportionate program growth has many bad side effects
like:

1. The evolving programs become unnecessarily big while elegant solutions should always
be as small and simple as possible.

81 These issues were not the subject of the paper and thus, not discussed there.
82 http://en.wikipedia.org/wiki/Parsimony [accessed 2008-10-14]

http://en.wikipedia.org/wiki/Parsimony
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2. Mutation and recombination operators always have to select the point in an individual
where they will apply their changes. If there are many points that do not contribute
to functionality, the probability of selecting such a point for modification is high. The
generated offspring will then have exactly the same functionality as its parents and the
genetic operation performed was literarily useless.

3. Bloat slows down both, the evaluation [872] and the breeding process of new solution
candidates.

4. Furthermore, it leads to increased memory consumption of the Genetic Programming
system.

There are many theories about how code bloat emerges [1318], some of them are:

1. Unnecessary code hitchhikes with good individuals. If it is part of a fit solution candidate
that creates many offspring, it is likely to be part of many new individuals. According
to Tackett [1994], high selection pressure is thus likely to cause code growth. This idea
is supported by the research of Langdon and Poli [1241], Smith and Harries [1906], and
Gustafson et al. [872].

2. As already stated, unnecessary code makes it harder for genetic operations to alter the
functionality of an individual. In most cases, genetic operators yield offspring with worse
fitness than its parents. If a solution candidate has good objective values, unnecessary
code can be one defense method against recombination and mutation. If the genetic
operators are neutralized, the offspring will have the same fitness as its parent. This idea
has been suggested in many sources, such as [229, 228, 1544, 1384, 1756, 140, 1244, 1906].
From this point of view, introns are a “bad” form of neutrality83. By the way, the
reduction of the destructive effect of recombination on the fitness may also have positive
effects, as pointed out by Nordin et al. [1546, 1547], since it may lead to a more durable
evolution.

3. Luke [1318] defines a theory for tree growth based on the fact that recombination is
likely to destroy the functionality of an individual. However, the deeper the crossover
point is located in the tree, the smaller is its influence because fewer instructions are
removed. If only a few instructions are replaced from a functionally adequate program,
they are likely to be exchanged by a larger sub-tree. A new offspring that retains the
functionality of its parents therefore tends to be larger.

4. Similar to the last two theories, the idea of removal bias by Soule and Foster [1922]
states that removing code from an individual will preserve the individual’s functionality
if the code removed is non-functional. Since the portion of useless code inside a program
is finite, there also exists an upper limit of the amount of code that can be removed
without altering the functionality of the program. For the size of new sub-trees that
could be inserted instead (due to mutation or crossover), no such limit exists. Therefore,
programs tend to grow [1922, 1244].

5. According to the diffusion theory of Langdon et al. [1244], the number of large pro-
grams in the problem space that are functionally adequate is higher than the number
of small adequate programs. Thus, code bloat could correspond to the movement of the
population into the direction of equilibrium [1318].

6. Another theory considers the invalidators that make code unreachable or dysfunctional.
In the formula 4+0∗(4−x) for example, the multiplication with 0 makes the whole part
(4 − x) inviable. Luke [1318] argues that the influence of invalidators would be higher
in large trees than in small trees. If programs grow while the fraction of invalidators
remains constant and those inherited from the parents stay in place, their chance to occur
proportionally closer to the root increases. Then, the amount of unnecessary instructions
would increase too and naturally approach 100%.

7. Instead of being real solutions, programs that grow uncontrolled also tend to be some
sort of decision tables. This phenomenon is called overfitting and has already discussed

83 You can find the topic of neutrality discussed in Section 1.4.5 on page 64.
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in Section 1.4.8 on page 72 and Section 23.1.3 on page 399 in detail. The problem is that
overfitted programs tend to have marvelous good fitness for the training cases/sample
data, but are normally useless for any other input.

8. Like Tackett [1994], Gustafson et al. [872] link code growth to high selection pressure
but also to loss of diversity in general. In populations with less diversity, recombination
will frequently be applied to very similar individuals, which often yields slightly larger
offspring.

Some approaches for fighting bloat are discussed in Section 4.10.3.

Runtime and Memory Consumption

Another aspect subject to minimization is generally the runtime of the algorithms grown.
The amount of steps needed to solve a given task, i. e., the time complexity, is only loosely
related to the code size. Although large programs with many instructions tend to run longer
than small programs with few instructions, the existence of loops and recursion invalidates
a direct relation.

Like the complexity in time, the complexity in memory space of the evolved solutions
often is minimized, too. The number of variables and memory cells needed by program in
order to perform its work should be as small as possible. Section 30.1.3 on page 550 provides
some additional definitions and discussion about the complexity of algorithms.

Errors

An example for an application where the non-functional errors that can occur should be min-
imized is symbolic regression. Therefore, the property of closure specified in Definition 4.1 on
page 178 is usually ensured. Then, the division operator div is re-defined in order to prevent
division-by-zero errors. Therefore, such a division could either be rendered to a nop (i. e.,
does nothing) or yields 1 or the dividend as result. However, the number of such arithmetical
errors could also be counted and made the subject to minimization too.

Transmission Count

If evolving distributed algorithms, the number of messages required to solve a problem
should be as low as possible since transmissions are especially costly and time-consuming
operations.

Optimizing Non-Functional Aspects

Optimizing the non-functional aspects of the individuals evolved is a topic of scientific in-
terest.

1. One of the simplest means of doing so is to define additional objective functions which
minimize the program size and to perform a multi-objective optimization. Successful
and promising experiments by Bleuler et al. [227], de Jong et al. [510], and Ekárt and
Németh [626] showed that this is a viable countermeasure for code bloat, for instance.

2. Another method is limiting the aspect of choice. A very simple measure to limit code
bloat, for example, is to prohibit the evolution of trees with a depth surpassing a certain
limit [1320].

3. Poli [1660] furthermore suggests that the fitness of a certain portion of the population
with above-average code size should simply be set to the worst possible value. These
artificial fitness holes will repel the individuals from becoming too large and hence,
reduce the code bloat.
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Evolution Strategy

5.1 Introduction

Evolution Strategies1 (ES) introduced by Rechenberg [1712, 1713, 1714] are a heuristic
optimization technique based in the ideas of adaptation and evolution, a special form of
evolutionary algorithms [1712, 1713, 1714, 103, 200, 1841, 198, 916]. Evolution Strategies
have the following features:

1. They usually use vectors of real numbers as solution candidates, i. e., G = X = Rn. In
other words, both the search and the problem space are fixed-length strings of floating
point numbers, similar to the real-encoded genetic algorithms mentioned in Section 3.3
on page 145.

2. Mutation and selection are the primary operators and recombination is less common.
3. Mutation most often changes the elements x[i] of the solution candidate vector x

to a number drawn from a normal distribution N
(
x[i], σ2

i

)
. For reference, you can

check Equation 11.1 on page 259 in the text about Random Optimization.
4. Then, the values σi are governed by self-adaptation [891, 1400, 1214] such as covariance

matrix adaptation [888, 889, 890, 1041].
5. In all other aspects, they perform exactly like basic evolutionary algorithms as defined

in Algorithm 2.1 on page 99.

5.2 General Information

5.2.1 Areas Of Application

Some example areas of application of Evolution Strategy are:

Application References

Data Mining and Data Analysisanalysis [445]
Scheduling [971]
Chemistry, Chemical Engineering [1755, 470, 632]
Ressource Minimization, Environment Surveillance/Pro-
tection

[1556]

Combinatorial Optimization [1536, 193, 197]
Geometry and Physics [1122, 2173]
Optics and Image Processing [859, 860, 101, 2218, 2217, 1279]

1 http://en.wikipedia.org/wiki/Evolution_strategy [accessed 2007-07-03], http://www.

scholarpedia.org/article/Evolution_Strategies [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Evolution_strategy
http://www.scholarpedia.org/article/Evolution_Strategies
http://www.scholarpedia.org/article/Evolution_Strategies
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5.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Evolution Strategy are:

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

see Section 2.2.2 on page 106

5.2.3 Books

Some books about (or including significant information about) Evolution Strategy are:

Schwefel [1841]: Evolution and Optimum Seeking: The Sixth Generation
Rechenberg [1713]: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution
Rechenberg [1714]: Evolutionsstrategie ’94
Beyer [198]: The theory of evolution strategies
Schwefel [1840]: Numerical Optimization of Computer Models
Schöneburg, Heinzmann, and Feddersen [1831]: Genetische Algorithmen und Evolution-
sstrategien
Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms

5.3 Populations in Evolution Strategy

Evolution Strategies usually combine truncation selection (as introduced in Section 2.4.2 on
page 122) with one of the following population strategies. These strategies listed below have
partly been borrowed from German Wikipedia [2219] site for Evolution Strategy2.

5.3.1 (1 + 1)-ES

The population only consists of a single individual which is reproduced. From the elder and
the offspring, the better individual will survive and form the next population. This scheme
is very close to hill climbing which will be introduced in Chapter 10 on page 253.

5.3.2 (µ + 1)-ES

Here, the population contains µ individuals from which one is drawn randomly. This indi-
vidual is reproduced from the joint set of its offspring and the current population, the least
fit individual is removed.

5.3.3 (µ + λ)-ES

Using the reproduction operations, from µ parent individuals λ ≥ µ offspring are created.
From the joint set of offspring and parents, only the µ fittest ones are kept [936].

2 http://de.wikipedia.org/wiki/Evolutionsstrategie [accessed 2007-07-03]

http://de.wikipedia.org/wiki/Evolutionsstrategie
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5.3.4 (µ, λ)-ES

In (µ, λ) Evolution Strategies, introduced by Schwefel [1840], again λ ≥ µ children are
created from µ parents. The parents are subsequently deleted and from the λ offspring
individuals, only the µ fittest are retained [1840, 196].

5.3.5 (µ/ρ, λ)-ES

Evolution Strategies named (µ/ρ, λ) are basically (µ, λ) strategies. The additional parameter
ρ is added, denoting the number of parent individuals of one offspring. As already said,
normally, we only use mutation (ρ = 1). If recombination is also used as in other evolutionary
algorithms, ρ = 2 holds. A special case of (µ/ρ, λ) algorithms is the (µ/µ, λ) Evolution
Strategy [1369].

5.3.6 (µ/ρ + λ)-ES

Analogously to (µ/ρ, λ)-Evolution Strategies, the (µ/ρ + λ)-Evolution Strategies are (µ, λ)
approaches where ρ denotes the number of parents of an offspring individual.

5.3.7 (µ′, λ′(µ, λ)γ)-ES

Geyer et al. [791, 792, 793] have developed nested Evolution Strategies where λ′ offspring
are created and isolated for γ generations from a population of the size µ′. In each of the
γ generations, λ children are created from which the fittest µ are passed on to the next
generation. After the γ generations, the best individuals from each of the γ isolated solution
candidates propagated back to the top-level population, i. e., selected. Then, the cycle starts
again with λ′ new child individuals. This nested Evolution Strategy can be more efficient than
the other approaches when applied to complex multimodal fitness environments [1714, 793].

5.4 One-Fifth Rule

The 1
5 success rule defined by Rechenberg [1713] states that the quotient of the number of

successful mutations (i. e., those which lead to fitness improvements) to the total number
of mutations should be approximately 1

5 . If the quotient is bigger, the σ-values should be
increased and with that, the scatter of the mutation. If it is lower, σ should be decreased
and thus, the mutations are narrowed down.

5.5 Differential Evolution

5.5.1 Introduction

Differential Evolution3 (DE, DES) is a method for mathematical optimization of multidi-
mensional functions that belongs to the group of evolution strategies [1676, 653, 1404, 288,
1234, 1391, 189]. Developed by Storn and Price [1974], the DE technique has been invented
in order to solve the Chebyshev polynomial fitting problem. It has proven to be a very reli-
able optimization strategy for many different tasks where parameters that can be encoded
in real vectors.

The essential idea behind Differential Evolution is the way the (ternary) recombination
operator “deRecombination” is defined for creating new solution candidates. The difference

3 http://en.wikipedia.org/wiki/Differential_evolution [accessed 2007-07-03], http://www.icsi.
berkeley.edu/~storn/code.html [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Differential_evolution
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
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x1−x2 of two vectors x1 and x2 in X is weighted with a weight w ∈ R and added to a third
vector x3 in the population.

x = deRecombination(x1,x2,x3)⇒ x = x3 + w (x1 − x2) (5.1)

Except for determining w, no additional probability distribution has to be used and the Dif-
ferential Evolution scheme is completely self-organizing. This classical reproduction strategy
has been complemented with new ideas like triangle mutation and alternations with weighted
directed strategies.

Gao and Wang [770] emphasize the close similarities between the reproduction operators
of Differential Evolution and the search step of the downhill simplex. Thus, it is only logical
to combine or to compare the two methods (see Section 16.4 on page 286). Further improve-
ments to the basic Differential Evolution scheme have been contributed, for instance, by
Kaelo and Ali. Their DERL and DELB algorithms outperformed [1078, 1079, 1077] stan-
dard DE on the test benchmark from Ali et al. [38].

5.5.2 General Information

Areas Of Application

Some example areas of application of Differential Evolution are:

Application References

Engineering, Structural Optimization, and Design [1233, 1506]
Chemistry, Chemical Engineering [2148, 1846, 2052, 399]
Scheduling [1289]
Function Optimization [1972]
Electrical Engineering and Circuit Design [1971, 1973]

Journals

Some journals that deal (at least partially) with Differential Evolution are:

Journal of Heuristics (see Section 1.6.3 on page 91)

Books

Some books about (or including significant information about) Differential Evolution are:

Price, Storn, and Lampinen [1676]: Differential Evolution – A Practical Approach to Global
Optimization
Feoktistov [653]: Differential Evolution – In Search of Solutions
Corne, Dorigo, Glover, Dasgupta, Moscato, Poli, and Price [448]: New Ideas in Optimisation
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Evolutionary Programming

6.1 Introduction

Different from the other major types of evolutionary algorithms introduced, there exists
no clear specification or algorithmic variant for evolutionary programming1 (EP) to the
knowledge of the author. There is though a semantic difference: while single individuals of a
species are the biological metaphor for solution candidates in other evolutionary algorithms,
in evolutionary programming, a solution candidate is thought of as a species itself.2 Hence,
mutation and selection are the only operators used in EP and recombination is usually not
applied. The selection scheme utilized in evolutionary programming is normally quite similar
to the (µ+ λ) method in Evolution Strategies.

Evolutionary programming was pioneered by Fogel [705] in his PhD thesis back in 1964.
Fogel et al. [708] experimented with the evolution of finite state machines as predictors for
data streams [623]. Evolutionary programming is also the research area of his son David
Fogel [697, 699, 700] with whom he also published joint work [707, 1671].

Generally, it is hard to distinguish evolutionary programming from Genetic Program-
ming, genetic algorithms, and Evolution Strategy. Although there are semantic differences
(as already mentioned), the author thinks that the many aspects of the evolutionary pro-
gramming approach have merged into these other research areas.

6.2 General Information

6.2.1 Areas Of Application

Some example areas of application of evolutionary programming are:

Application References

Machine Learning [697]

Cellular Automata and Finite State Machines [708]
Evolving Behaviors, e.g., for Agents or Game Players [699, 700]
Machine Learning [1671]
Chemistry, Chemical Engineering and Biochemistry [779, 609, 778]
Electrical Engineering and Circuit Design [1135, 1518]
Data Mining and Data Analysis [1802]

Robotics [1136]

1 http://en.wikipedia.org/wiki/Evolutionary_programming [accessed 2007-07-03]

2 In this aspect it is very similar to the much newer Extremal Optimization approach which will
be discussed in Chapter 13.

http://en.wikipedia.org/wiki/Evolutionary_programming
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6.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolutionary programming are:

EP: International Conference on Evolutionary Programming
now part of CEC, see Section 2.2.2 on page 105
History: 1998: San Diego, California, USA, see [1670]

1997: Indianapolis, Indiana, USA, see [68]
1996: San Diego, California, USA, see [709]
1995: San Diego, California, USA, see [1380]
1994: see [1849]
1993: see [702]
1992: see [701]

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

see Section 2.2.2 on page 106

6.2.3 Books

Some books about (or including significant information about) evolutionary programming
are:

Fogel, Owens, and Walsh [708]: Artificial Intelligence through Simulated Evolution
Fogel [706]: Intelligence Through Simulated Evolution: Forty Years of Evolutionary Program-
ming
Fogel [697]: System Identification through Simulated Evolution: A Machine Learning Ap-
proach to Modeling
Fogel [700]: Blondie24: playing at the edge of AI
Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms
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Learning Classifier Systems

7.1 Introduction

In the late 1970s, Holland, the father of genetic algorithms, also invented the concept of
classifier systems (CS) [948, 941, 946]. These systems are a special case of production systems
[497, 498] and consist of four major parts:

1. a set of interacting production rules, called classifiers,
2. a performance algorithm which directs the actions of the system in the environment,
3. a learning algorithm which keeps track on the success of each classifier and distributes

rewards, and
4. a genetic algorithm which modifies the set of classifiers so that variants of good classifiers

persist and new, potentially better ones are created in an efficient manner [947].

By time, classifier systems have undergone some name changes. In 1986, reinforcement
learning was added to the approach and the name changed to Learning Classifier Systems1

(LCS) [916, 1909]. Learning Classifier Systems are sometimes subsumed under a machine
learning paradigm called evolutionary reinforcement learning (ERL) [916] or Evolutionary
Algorithms for Reinforcement Learning (EARLs) [1460].

7.2 General Information

7.2.1 Areas Of Application

Some example areas of application of Learning Classifier Systems are:

Application References

Data Mining and Data Analysisg [768, 92, 479, 444, 2178]

Grammar Induction [2073, 2074, 472]

Medicine [951]
Image Processing [1287, 1376]
Sequence Prediction [1736]

7.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Learning Classifier Systems are:

1 http://en.wikipedia.org/wiki/Learning_classifier_system [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Learning_classifier_system


234 7 Learning Classifier Systems

IWLCS: International Workshop on Learning Classifier Systems
Nowadays often co-located with GECCO (see Section 2.2.2 on page 107).
History: 2007: London, England, see [1946]

2006: Seattle, WA, USA, see [1847]
2005: Washington DC, USA, see [2157, 1181]
2004: Seattle, Washington, USA, see [1848, 1181]
2003: Chicago, IL, USA, see [2022, 1181]
2002: Granada, Spain, see [1254]
2001: San Francisco, CA, USA, see [1944]
2000: Paris, France, see [1253]
1999: Orlando, Florida, USA, see [1585]
1992: Houston, Texas, USA, see [1501]

7.2.3 Books

Some books about (or including significant information about) Learning Classifier Systems
are:

Bull [301]: Applications Of Learning Classifier Systems
Bull and Kovacs [303]: Foundations of Learning Classifier Systems
Butz [314]: Anticipatory Learning Classifier Systems
Butz [315]: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to
LCS Analysis and Design
Lanzi, Stolzmann, and Wilson [1252]: Learning Classifier Systems, From Foundations to
Applications

7.3 The Basic Idea of Learning Classifier Systems

Figure 7.1 illustrates the structure of a Michigan-style Learning Classifier System. A classifier
system is connected via detectors (b) and effectors (c) to its environment (a). The input
in the system (coming from the detectors) is encoded in form of binary messages that are
written into a message list (d). On this list, simple if-then rules (e), the so-called classifiers,
are applied. The result of a classification is again encoded as a message and written to the
message list. These new messages may now trigger other rules or are signals for the effectors
[507]. The payoff of the performed actions is distributed by the credit apportionment system
(f) to the rules. Additionally, a rule discovery system (g) is responsible for finding new rules
and adding them to the classifier population [794].

Classifier systems are special instances of production systems, which were shown to be
Turing-complete by Post [1672] and Minsky [1427, 1426]. Thus, Learning Classifier Systems
are as powerful as any other Turing-equivalent programming language and can be pictured
as something like computer programs where the rules play the role of the instructions and
the messages are the memory.

7.3.1 A Small Example

In order to describe how rules and messages are structured in a basic classifier systems, we
borrow a simple example from Heitkötter and Beasley [916]. We will orient our explanation
at the syntax described by Geyer-Schulz [794]. You should, however, be aware that there
are many different forms of classifier system and take this as an example for how it could be
done rather than as the way it is to be done.

So let us imagine that we want to find a classifier system that is able to control the
behavior of a frog. Our frog likes to eat nutritious flies. Therefore, it can detect small,
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(a) Environment

(b) Detectors (c) Effectors

(d) Message List

(e) Rule Base

(f) Apportionment of
Credit System

(e.g. Bucket Brigade)

(g) Rule Discovery
System

(e.g. Genetic Algorithm)

Learning Classifier System

information action

payoff

Non-Learning Classifier System,
Production System

Figure 7.1: The structure of a Michigan style Learning Classifier System according to Geyer-
Schulz [794].

flying objects and eat them if they are right in front of it. The frog also has a sense of
direction and can distinguish between objects which are in front, to the left, or to the right
of it and may also turn into any of these directions. It can furthermore distinguish objects
with stripes from those without. Flying objects with stripes are most likely bees or wasps,
eating of which would probably result in being stung. The frog can also sense large, looming
objects far above: birds, which should be avoided by jumping away quickly. We can compile
a corresponding behavior into the form of simple if-then rules which are listed in Table 7.1.

No. premise (if-part) conclusion (then-part)

1 small, flying object with no stripes to the left send a
2 small, flying object with no stripes to the right send b
3 small, flying object with no stripes to the front send c
4 large, looming object send d
5 a and not d turn left
6 b and not d turn right
7 c and not d eat
8 d move away rapidly

Table 7.1: if-then rules for frogs
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7.3.2 Messages

Z F DD S MMM TT J E

size
0=
1=

small
large

0=
1=

flying
looming

type

0=
1=

without
with

stripes

01=
10=
11=

left
center
right

direction

eat
0
1
=no
=yes

turn
00
01
10

=don t turn
=left
=right

’

memory
001
010
011
100

=a
=b
=c
=d

detector input actions

jump0
1
=no
=yes

Figure 7.2: One possible encoding of messages for a frog classifier system

In Figure 7.2, we demonstrate how the messages in a classifier system that drives such a
frog can be encoded. Here, input information as well as action commands (the conclusions
of the rules) are compiled in one message type. Also, three bits are assigned for encoding
the internal messages a to d. Two bits would not suffice, since 00 occurs in all “original”
input messages. At the beginning of a classification process, the input messages are written
to the message list. They contain information only at the positions reserved for detections
and have zeros in the bits for memory or actions. The classifiers transform them to internal
messages which normally have only the bits marked as “memory” set. These messages are
finally transformed to output messages by setting some action bits. In our frog system, a
message is in total k = 12 bits long, i. e., len(m) = 12 ∀message m.

7.3.3 Conditions

Rules in classifier systems consist of a condition part and an action part. The conditions
have the same length k as the messages. Instead of being binary encoded strings, a ternary
system consisting of the symbols 0, 1, and * is used. In a condition,

1. 0 means that the corresponding bit in the message must be 0,
2. 1 means that the corresponding bit in the message must be 1, and
3. * means don’t care, i. e., the corresponding bit in the message may be 0 as well as 1 for

the condition to match.

Definition 7.1 (match). A message m matches to a condition c if match(m, c) evaluates
to true.

match(m, c) = ∀0 ≤ i < |m| ⇒ m[i] = c[i] ∨ c[i] = ∗ (7.1)

The conditional part of a rule may consist of multiple conditions which are implicitly
concatenated with logical and (∧). A classifier is satisfied if all its conditions are satisfied
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by at least one message in the current message list. It is allowed that each of the conditions
of a classifier may match to different messages.

We can precede each single condition c with an additional ternary digit which defines
if it should be negated or not: * stands for the negation c and 0 as well as 1 denotes c.
Here we deviate from the syntax described in Geyer-Schulz [794] because the definition of
the “conditionSpecifity” (see Definition 7.2) becomes more beautiful this way. A negated
condition evaluates to true if no message exists that matches it. By combining and and not,
we get nands with which we can build all other logic operations and, hence, whole computers
[2045]. Algorithm 7.1 illustrates how the condition part C is matched against the message
list M . If the matching is successful, it returns the list S of messages that satisfied the
conditions. Otherwise, the output will be the empty list ().

Algorithm 7.1: S ←− matchesConditions(M,C)

Input: M : the message list
Input: C: the condition part of a classifier
Input: [implicit] k: the length of the messages m ∈M and the single conditions c ∈ C
Input: [implicit] havePrefix: true if and only if the single conditions have a prefix which

determines whether or not they are negated, false if no such prefixes are used
Data: i: a counter variable
Data: c: a condition
Data: neg: should the condition be negated?
Data: m: a single message from M
Data: b: a Boolean variable
Output: S: the messages that match the condition part C, or () if none such message exists

begin1

S ←− ()2

b←− true3

i←− 04

while (i < len(C)) ∧ b do5

if havePrefix then6

neg ←− (C [i] = ∗)7

i←− i+ 18

else neg ←− false9

c←− subList(C, i, k)10

i←− i+ k11

if ∃m ∈M : match(m, c) then12

b←− neg13

if b then S ←− addListItem(S,m)14

else15

b←− neg16

if b then S ←− addListItem(S, createList(k, 0))17

if b then return S18

else return ()19

end20

Definition 7.2 (Condition Specificity). The condition specificity conditionSpecifity(x)
of a classifier x is the number of non-* symbols in its condition part C(x).

conditionSpecifity(x) = | {∀i : C(x) [i] 6= ∗} | (7.2)

A classifier (rule) x1 with a higher condition specificity is more specific than an-
other rule x2 with a lower condition specificity. On the other hand, a rule x2 with
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conditionSpecifity(x1) > conditionSpecifity(x2) is more general than the rule x1. We can
use this information if two rules match to one message, and only one should be allowed to
post a message. Preferring the more specific rule in such situations leads to default hierar-
chies [949, 1737, 1739, 1908] which allows general classifications to “delegate” special cases
to specialized classifiers. Even more specialized classifiers can then represent exceptions to
these refined rules.

7.3.4 Actions

The action part of a rule has normally exactly the same length as a message. It can be
represented by a string of either binary or ternary symbols. In the first case, the action part
of a rule is simple copied to the message list if the classifier is satisfied. In the latter case,
some sort of merging needs to be performed. Here,

1. a 0 in the action part will lead to a 0 in the corresponding message bit,
2. a 1 in the action part will lead to a 1 in the corresponding message bit,
3. and for a * in the action part, we copy the corresponding bit from the (first) message

that matched the classifier’s condition to the newly created message.

Definition 7.3 (mergeAction). The function “mergeAction” computes a new message n
as product of an action a. If the alphabet the action is based on is ternary and may contain *-
symbols, mergeAction needs access to the message m which has satisfied the first condition of
the classifier to which a belongs. If the classifier contains negation symbols and the first con-
dition was negated, m is assumed to be a string of zeros (m = createList(len(a) , 0)). Notice
that we do not explicitly distinguish between binary and ternary encoding in mergeAction,
since * cannot occur in actions based on a binary alphabet and Equation 7.3 stays valid.

n = mergeAction(a,m)⇔ (len(n) = len(a)) ∧
(n[i] = a[i] ∀i ∈ 0..len(a)− 1 : a[i] 6= ∗) ∧
(n[i] = m[i] ∀i ∈ 0..len(a)− 1 : a[i] = ∗) (7.3)

7.3.5 Classifiers

So we know that a rule x consists of a condition part C(x) and an action part a(x). C
is a list of r ∈ N conditions ci, and we distinguish between representations with (C =
(n1, c1, n2, c2, . . . , nr, cr)) and without negation symbol (C = (c1, c2, . . . , cr)). Let us now
go back to our frog example. Based on the encoding scheme defined in Figure 7.2, we can
translate Table 7.1 into a set of classifiers. We therefore compose the condition parts of two
conditions c1 and c2 with the negation symbols n1 and n2, i. e., r = 2. Table 7.2 contains

No. n1 c1 n2 c2 a

1 0 0 0 01 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 001 00 0 0

2 0 0 0 11 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 010 00 0 0

3 0 0 0 10 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 011 00 0 0

4 0 1 1 ** * *** ** * * 0 * * ** * *** ** * * 0 0 00 0 100 00 0 0

5 0 * * ** * 001 ** * * * * * ** * 100 ** * * 0 0 00 0 000 01 0 0

6 0 * * ** * 010 ** * * * * * ** * 100 ** * * 0 0 00 0 000 10 0 0

7 0 * * ** * 011 ** * * * * * ** * 100 ** * * 0 0 00 0 000 00 0 1

8 0 * * ** * 100 ** * * 0 * * ** * *** ** * * 0 0 00 0 000 00 1 0

Table 7.2: The encoded form of the if-then rules for frogs from Table 7.1.

the result of this encoding. We can apply this classifier to a situation in the life of our frog
where it detects
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1. a fly to its left,
2. a bee to its right, and
3. a stork left in the air.

How will it react? The input sensors will generate three messages and insert them into the
message list M1 = (m1,m2,m3):

1. m1 = (000100000000) for the fly,
2. m2 = (001110000000) for the bee, and
3. m3 = (110100000000) for the stork.

The first message triggers rule 1 and the third message triggers rule 4 whereas no condition
fits to the second message. As a result, the new message list M2 contains two messages, m4

and m5, produced by the corresponding actions.

1. m4 = (000000010000) from rule 1 and
2. m5 = (000001000000) from rule 4.

m4 could trigger rule 5 but is inhibited by the negated second condition c2 because of message
m5. m5 matches to classifier 8 which finally produces message m6 = (000000000010) which
forces the frog to jump away. No further classifiers become satisfied with the new message
list M3 = (m6) and the classification process is terminated.

7.3.6 Non-Learning Classifier Systems

So far, we have described a non-learning classifier system. Algorithm 7.2 defines the behavior
of such a system which we also could observe in the example. It still lacks the credit ap-
portionment and the rule discovery systems (see (f) and (g) in Figure 7.1). A non-learning
classifier is able to operate correctly on a fixed set of situations. It is sufficient for all ap-
plications where we are able to determine this set beforehand and no further adaptation is
required. If this is the case, we can use genetic algorithms to evolve the classifier systems
offline, for instance.

Algorithm 7.2 illustrates how a classifier system works. No optimization or approximation
of a solution is done; this is a complete control system in action. Therefore we do not need
a termination criterion but run an infinite loop.

7.3.7 Learning Classifier Systems

In order to convert this non-learning classifier system to Learning Classifier System as pro-
posed by Holland [943] and sketched in Algorithm 7.3, we have to add the aforementioned
missing components. Heitkötter and Beasley [916] suggest two ways for doing so:

1. Currently, the activation of a classifier x results solely from the message-matching pro-
cess. If a message matches the condition(s) C(x), the classifier may perform its action
a(x). We can change this mechanism by making it also dependent on an additional pa-
rameter v(x) – a strength value, which can be modified as a result of experience, i. e., by
reinforcement from the environment. Therefore, we have to solve the credit assignment
problem first defined by Minsky [1425, 1428], since chains of multiple classifiers can cause
a certain action.

2. Furthermore (or instead), we may also modify the set of classifiers P by adding, remov-
ing, or combining condition/action parts of existing classifiers.

A Learning Classifier System hence is a control system which is able to learn while
actually running and performing its work. Usually, a training phase will precede any actual
deployment. Afterwards, the learning may even be deactivated, which turns the LCS into
an ordinary classifier system or the learning rate is decreased.
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Algorithm 7.2: nonLearningClassifierSystem(P )

Input: P : the list of rules xi that determine the behavior of the classifier system
Input: [implicit] readDetectors: a function which creates a new message list containing only the

input messages from the detectors
Input: [implicit] sendEffectors: a function which translates all messages concerning effectors to

signals for the output interface
Input: [implicit] tmax ∈ N: the maximum number of iterations for the internal loop, avoids

endless loops
Data: t: a counter the internal loop
Data: M,N,S: the message lists
Data: x: a single classifier

begin1

while true do2

M ←− readDetectors()3

t←− 04

repeat5

N ←− ()6

foreach x ∈ P do7

S ←− matchesConditions(M,C(x))8

if len(S) > 0 then9

N ←− addListItem(N,mergeAction(a(x) , S[0]))10

M ←− N11

t←− t+ 112

until (len(M) = 0) ∨ (t > tmax)13

if len(M) > 0 then sendEffectors(M)14

end15

7.3.8 The Bucket Brigade Algorithm

The Bucket Brigade Algorithm has been developed by Holland [942, 943] as one method
of solving the credit assignment problem in Learning Classifier Systems. Research work
concerning this approach and its possible extensions has been conducted by Westerdale
[2195, 2196, 2197], Antonisse [74], Huang [969], Riolo [1738, 1737], Dorigo [579], Spiessens
[1942], Wilson [2234], Holland and Burks [946], and Hewahi and Bharadwaj [922] and has
neatly been summarized by Hewahi [920, 921]. In the following, we will outline this approach
with the notation of de Boer [507].

The Bucket Brigade Algorithm selects the classifiers from the match set X that are
allowed to post a message (i. e., becoming member in the activated set U) by an auction.
Therefore, each matching classifier x places a bid B(x) which is the product of a linear
function ϑ of the condition specificity of x, a constant 0 < β ≤ 1 that determines the fraction
of the strength of xshould be used and its strength v(x) itself. In practical applications, values
like 1

8 or 1
16 are often chosen for β.

B(x) = ϑ(x) ∗ β ∗ v(x) + randomn

(
0, σ2

)
(7.4)

Sometimes, a normal distributed random number is added to each bid in order to make the
decisions of the system less deterministic, as done in Equation 7.4.

The condition specificity is included in the bid calculation because it gives a higher value
to rules with fewer *-symbols in their conditions. These rules match to fewer messages and
can be considered more relevant in the cases they do match. For ϑ, the quotient of the
number non-*-symbols and the condition length plus some constant 0 < α determining the
importance of the specificity of the classifier is often used [507].

ϑ(x) =
conditionSpecifity(x)

len(C(x))
+ α (7.5)
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Algorithm 7.3: learningClassifierSystem()

Input: P : the list of rules xi that determine the behavior of the classifier system
Input: [implicit] generateClassifiers: a function which creates randomly a population P of

classifiers
Input: [implicit] readDetectors: a function which creates a new message list containing only the

input messages from the detectors
Input: [implicit] sendEffectors: a function which translates all messages concerning effectors to

signals for the output interface
Input: [implicit] selectMatchingClassifiers: a function that determines at most k classifiers from

the matching set that are allowed to trigger their actions
Input: [implicit] generationCriterion: a criterion that becomes true if new classifiers should be

created
Input: [implicit] updateRules: a function that finds new rules and deletes old ones
Input: [implicit] tmax ∈ N: the maximum number of iterations for the internal loop, avoids

endless loops
Data: t, i: counter variables
Data: M,N,S: the message lists
Data: X: a list of tuples containing classifiers and the (first) messages that satisfied their

conditions
Data: v: the strength values
Data: x: a single classifier

begin1

P ←− generateClassifiers(s)2

foreach x ∈ P do v(x)←− 13

while true do4

M ←− readDetectors()5

t←− 06

repeat7

X ←− ()8

foreach x ∈ P do9

S ←− matchesConditions(M,C(x))10

if len(S) > 0 then11

X ←− addListItem(X, (x, S[0]))12

N ←− ()13

if len(X) > 0 then14

(X, v)←− selectMatchingClassifiers(X, v)15

for i←− 0 up to len(X)− 1 do16

x←− X [i,0]17

N ←− addListItem(N,mergeAction(a(x) , X [i,1]))18

M ←− N19

t←− t+ 120

until (len(M) = 0) ∨ (t > tmax)21

if len(M) > 0 then22

sendEffectors(M)23

// distribute Payoffs

if generationCriterion() then P ←− updateRules(P, v)24

end25
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The bucket brigade version of the selectMatchingClassifiers-function introduced in
Algorithm 7.3 then picks the k classifiers with the highest bids and allows them to write
their messages into the new message list. They are charged with the payment part P (x) of
their bids. The payment does not contain the condition specificity-dependent part and also
not the possible random addend. It is added as reward R(y) to the strength of classifier y
that wrote the message which allowed them to become active. In the case that this was an
input message, it is simple thrown away. The payment of classifiers that are not activated
is null.

P (x) = β ∗ v(x) (7.6)

In some Learning Classifier Systems, a life-tax T (x) is collected from all classifiers in
each cycle. It is computed as a small fraction τ of their strength.

T (x) = τ ∗ v(x) (7.7)

Those classifiers that successfully triggered an action of the effectors receive a reward
R(x) from the environment which is added to their strength. Together with the payment
method, all rules that are involved in a successful action receive some of the reward which
is handed down stepwise – similar to how water is transported by a bucket brigade. For all
classifiers that do not produce output to the effectors and also do not receive payment from
other classifier they have triggered, this reward is null.

In total, the new strength vt+1(x) of a classifier x is composed of its old strength, its
payment P (x), the life-tax T (x), and the reward R(x).

vt+1(x) = vt(x)− P (x)− T (x) +R(x) (7.8)

Instead of the Bucket Brigade Algorithm, it is also possible to use Q-Learning in Learning
Classifier Systems, as shown by Wilson [2235]. Dorigo and Bersini [580] have shown that
both concepts are roughly equivalent [916].

7.3.9 Applying the Genetic Algorithm

With the credit assignment alone, no new rules can be discovered – only the initial, randomly
create rule set P is rated. At some certain points in time, a genetic algorithm (see Chapter 3
on page 141) replaces old rules by new ones. In Learning Classifier Systems we apply steady-
state genetic algorithms which are discussed in Section 2.1.6 on page 102. They will retain
most of the classifier population and only replace the weakest rules. Therefore, the strength
v(x) of a rule x is directly used as its fitness and is subject to maximization.

For mutation and crossover, the well known reproduction operations for fixed-length
string chromosomes discussed in Section 3.4 on page 147 are employed.

7.4 Families of Learning Classifier Systems

The exact definition of Learning Classifier Systems [1180, 950, 1909, 1251] still seems con-
tentious and there exist many different implementations. There are, for example, versions
without message list where the action part of the rules does not encode messages but direct
output signals. The importance of the role of genetic algorithms in conjunction with the re-
inforcement learning component is also not quite clear. There are scientists who emphasize
more the role of the learning components [2239] and others who tend to grant the genetic
algorithms a higher weight [466, 948]. The families of Learning Classifier Systems have been
listed and discussed by Brownlee [296] elaborately. Here we will just summarize their differ-
ences in short. De Jong [514, 513] and Grefenstette [852] divide Learning Classifier Systems
into two main types, depending on how the genetic algorithm acts: The Pitt approach orig-
inated at the University of Pittsburgh with the LS-1 system developed by Smith [1912].
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It was then developed further and applied by Spears and De Jong [1926], De Jong and
Spears [516], De Jong et al. [517], Bacardit i Peñarroya [92, 93], and Bacardit i Peñarroya
and Krasnogor [94]. Pittsburgh-style Learning Classifier Systems work on a population of
separate classifier systems, which are combined and reproduced by the genetic algorithm.

The original idea of Holland and Reitman [948] were Michigan-style LCSs, where the
whole population itself is considered as classifier system. They focus on selecting the best
rules in this rule set [820, 507, 1297].

Wilson [2235, 2236] developed two subtypes of Michigan-style LCS:

1. In ZCS systems, there is no message list use fitness sharing [2235, 418, 302, 300] for a
Q-learning-like reinforcement learning approach called QBB.

2. ZCS have later been somewhat superseded by XCS systems in which the Bucket Brigade
Algorithm has fully been replaced by Q-learning. Furthermore, the credit assignment is
based on the accuracy (usefulness) of the classifiers. The genetic algorithm is applied
to sub-populations containing only classifiers which apply to the same situations. [2236,
1179, 2237, 2238, 1256]
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Ant Colony Optimization

8.1 Introduction

Inspired by the research done by Deneubourg et al. [554], [553, 839] on real ants and probably
by the simulation experiments by Stickland et al. [1964], Dorigo et al. [584] developed the
Ant Colony Optimization1 (ACO) Algorithm for problems that can be reduced to finding
optimal paths in graphs in 1996. [581, 585, 1352, 1355, 593] Ant Colony Optimization is based
on the metaphor of ants seeking food. In order to do so, an ant will leave the anthill and
begin to wander into a random direction. While the little insect paces around, it lays a trail
of pheromone. Thus, after the ant has found some food, it can track its way back. By doing
so, it distributes another layer of pheromone on the path. An ant that senses the pheromone
will follow its trail with a certain probability. Each ant that finds the food will excrete some
pheromone on the path. By time, the pheromone density of the path will increase and more
and more ants will follow it to the food and back. The higher the pheromone density, the
more likely will an ant stay on a trail. However, the pheromones vaporize after some time.
If all the food is collected, they will no longer be renewed and the path will disappear after
a while. Now, the ants will head to new, random locations.

This process of distributing and tracking pheromones is one form of stigmergy2 and was
first described by Grassé [849]. Today, we subsume many different ways of communication
by modifying the environment under this term, which can be divided into two groups:
sematectonic and sign-based [1833]. According to Wilson [2231], we call modifications in the
environment due to a task-related action which leads other entities involved in this task to
change their behavior sematectonic stigmergy. If an ant drops a ball of mud somewhere, this
may cause other ants to place mud balls at the same location. Step by step, these effects can
cumulatively lead to the growth of complex structures. Sematectonic stigmergy has been
simulated on computer systems by, for instance, Théraulaz and Bonabeau [2032] and with
robotic systems by Werfel and Nagpal [2192, 1837, 2193].

The second form, sign-based stigmergy, is not directly task-related. It has been attained
evolutionary by social insects which use a wide range of pheromones and hormones for
communication. Computer simulations for sign-based stigmergy were first performed by
Stickland et al. [1964] in 1992.

The sign-based stigmergy is copied by Ant Colony Optimization [584], where optimiza-
tion problems are visualized as (directed) graphs. First, a set of ants performs random-
ized walks through the graphs. Proportional to the goodness of the solutions denoted by
the paths, pheromones are laid out, i. e., the probability to walk into the direction of the
paths is shifted. The ants run again through the graph, following the previously distributed
pheromone. However, they will not exactly follow these paths. Instead, they may deviate

1 http://en.wikipedia.org/wiki/Ant_colony_optimization [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Stigmergy [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Stigmergy
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from these routes by taking other turns at junctions, since their walk is still randomized.
The pheromones modify the probability distributions.

It is interesting to note that even real vector optimizations can be mapped to a graph
problem, as introduced by Korošec and Šilc [1176]. Thanks to such ideas, the applicability
of Ant Colony Optimization is greatly increased.

8.2 General Information

8.2.1 Areas Of Application

Some example areas of application of Ant Colony Optimization are:

Application References

Combinatorial Optimization
[763, 582, 869, 765, 764, 304,
305, 577]

Scheduling [1392]

Networking and Communication
[1833, 1832, 2033, 1880, 725,
1281, 559, 561, 245]
see Section 23.2 on page 401

Combinatorial Optimization [1509]

8.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Ant Colony Optimization are:

ANTS: International Conference on Ant Colony Optimization and Swarm Intelligence
http://iridia.ulb.ac.be/~ants/ [accessed 2008-08-20]

History: 2008: Brussels, Belgium, see [1947]
2006: Brussels, Belgium, see [594]
2004: Brussels, Belgium, see [592]
2002: Brussels, Belgium, see [590]
2000: Brussels, Belgium, see [589]
1998: Brussels, Belgium, see [588]

BIOMA: International Conference on Bioinspired Optimization Methods and their Appli-
cations

see Section 2.2.2 on page 105
CEC: Congress on Evolutionary Computation

see Section 2.2.2 on page 105
GECCO: Genetic and Evolutionary Computation Conference

see Section 2.2.2 on page 107
ICNC: International Conference on Advances in Natural Computation

see Section 1.6.2 on page 89

8.2.3 Journals

Some journals that deal (at least partially) with Ant Colony Optimization are:

http://iridia.ulb.ac.be/~ants/


8.3 River Formation Dynamics 247

Adaptive Behavior , ISSN: Online: 1741-2633, Print: 1059-7123, appears quaterly, editor(s):
Peter M. Todd, publisher: Sage Publications, http://www.isab.org/journal/ [accessed 2007-

09-16], http://adb.sagepub.com/ [accessed 2007-09-16]

Artificial Life, ISSN: 1064-5462, appears quaterly, editor(s): Mark A. Bedau, publisher: MIT
Press, http://www.mitpressjournals.org/loi/artl [accessed 2007-09-16]

IEEE Transactions on Evolutionary Computation (see Section 2.2.3 on page 108)
The Journal of the Operational Research Society (see Section 1.6.3 on page 91)

8.2.4 Online Resources

Some general, online available ressources on Ant Colony Optimization are:

http://iridia.ulb.ac.be/~mdorigo/ACO/ [accessed 2007-09-13]

Last update: up-to-date
Description: Repository of books, publications, people, jobs, and software about ACO.

http://uk.geocities.com/markcsinclair/aco.html [accessed 2007-09-13]

Last update: 2006-11-17

Description:
Small intro to ACO, some references, and a nice applet demonstrating its
application to the travelling salesman problem [1263, 78].

8.2.5 Books

Some books about (or including significant information about) Ant Colony Optimization
are:

Chan and Tiwari [372]: Swarm Intelligence – Focus on Ant and Particle Swarm Optimization
Dorigo and Stützle [583]: Ant Colony Optimization
Engelbrecht [633]: Fundamentals of Computational Swarm Intelligence
Nedjah and de Macedo Mourelle [1509]: Systems Engineering using Particle Swarm Optimi-
sation
Bonabeau, Dorigo, and Theraulaz [245]: Swarm Intelligence: From Natural to Artificial Sys-
tems

8.3 River Formation Dynamics

River Formation Dynamics (RFD) is a heuristic optimization method recently developed
by Rabanal Basalo et al. [1689, 1690]. It is inspired by the way water forms rivers by
eroding the ground and depositing sediments. In its structure, it is very close to Ant Colony
Optimization. In Ant Colony Optimization, paths through a graph are searched by attaching
attributes (the pheromones) to its edges. The pheromones are laid out by ants (+) and
vaporize as time goes by (-). In River Formation Dynamics, the heights above sea level are
the attributes of the vertexes of the graph. On this landscape, rain begins to fall. Forced
by gravity, the drops flow downhill and try to reach the sea. The altitudes of the points
in the graph are decreased by erosion (-) when water flows over them and increased by
sedimentation (+) if drops end up in a dead end, vaporize, and leave the material which
they have eroded somewhere else behind. Sedimentation punishes inefficient paths: If drops
reaching a node surrounded only by nodes of higher altitudes will increase height more

http://www.isab.org/journal/
http://adb.sagepub.com/
http://www.mitpressjournals.org/loi/artl
http://iridia.ulb.ac.be/~mdorigo/ACO/
http://uk.geocities.com/markcsinclair/aco.html
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and more until it reaches the level of its neighbors and is not a dead end anymore. While
flowing over the map, the probability that a drop takes a certain edge depends on gradient
of the down slope. This gradient, in turn, depends on the difference in altitude of the nodes
it connects and their distance (i. e., the cost function). Initially, all nodes have the same
altitude except for the destination node which is a hole. New drops are inserted in the origin
node and flow over the landscape, reinforce promising paths, and either reach the destination
or vaporize in dead ends.

Different from ACO, cycles cannot occur in RFD because the water always flows downhill.
Of course, rivers in nature may fork and reunite, too. But, unlike ACO, River Formation
Dynamics implicitly creates direction information in its resulting graphs. If this information
is considered to be part of the solution, then cycles are impossible. If it is stripped away,
cycles may occur.
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Particle Swarm Optimization

9.1 Introduction

Particle Swarm Optimization1 (PSO), developed by Eberhart and Kennedy [615, 1124] in
1995, is a form of swarm intelligence in which the behavior of a biological social system like
a flock of birds or a school of fish [1616] is simulated. When a swarm looks for food, its
individuals will spread in the environment and move around independently. Each individual
has a degree of freedom or randomness in its movements which enables it to find food
accumulations. So, sooner or later, one of them will find something digestible and, being
social, announces this to its neighbors. These can then approach the source of food, too.
Particle Swarm Optimization has been discussed, improved, and refined by many researchers
such as Venter and Sobieszczanski-Sobieski [2113], Cai et al. [324], Gao and Duan [771], and
Gao and Ren [772]. Comparisons with other evolutionary approaches have been provided by
Eberhart and Shi [616] and Angeline [64].

With Particle Swarm Optimization, a swarm of particles (individuals) in a n-dimensional
search space G is simulated, where each particle p has a position p.g ∈ G ⊆ Rn and a velocity
p.v ∈ Rn. The position p.g corresponds to the genotypes, and, in most cases, also to the
solution candidates, i. e., p.x = p.g, since most often the problem space X is also the Rn

and X = G. However, this is not necessarily the case and generally, we can introduce any
form of genotype-phenotype mapping in Particle Swarm Optimization. The velocity vector
p.v of an individual p determines in which direction the search will continue and if it has an
explorative (high velocity) or an exploitive (low velocity) character.

In the initialization phase of Particle Swarm Optimization, the positions and velocities
of all individuals are randomly initialized. In each step, first the velocity of a particle is
updated and then its position. Therefore, each particle p has a memory holding its best
position best(p) ∈ G. In order to realize the social component, the particle furthermore
knows a set of topological neighbors N(p). This set could be defined to contain adjacent
particles within a specific perimeter, i. e., all individuals which are no further away from p.g
than a given distance δ according to a certain distance measure2 dist. Using the Euclidian
distance measure disteucl specified in Definition 29.8 on page 538 we get:

∀ p, q ∈ Pop : q ∈ N(p)⇔ disteucl(p.g, q.g) ≤ δ (9.1)

Each particle can communicate with its neighbors, so the best position found so far by any
element in N(p) is known to all of them as best(N(p)). The best position ever visited by
any individual in the population (which the optimization algorithm always keeps track of)
is best(Pop).

The PSO algorithm may make use of either best(N(p)) or best(Pop) for adjusting the
velocity of the particle p. If it relies on the global best position, the algorithm will converge

1 http://en.wikipedia.org/wiki/Particle_swarm_optimization [accessed 2007-07-03]

2 See Section 29.1 on page 537 for more information on distance measures.

http://en.wikipedia.org/wiki/Particle_swarm_optimization
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fast but may find the global optimum less probably. If, on the other hand, neighborhood
communication is used, the convergence speed drops but the global optimum is found more
likely.

Definition 9.1 (psoUpdate). The search operation q = psoUpdate(p,Pop) applied in Par-
ticle Swarm Optimization creates a new particles q to replace an existing one (p) by incor-
porating its genotype p.g, its velocity p.v. We distinguish local updating (Equation 9.3) and
global updating (Equation 9.2), which additionally uses the data from the whole population
Pop. psoUpdate thus fulfills one of these two equations and Equation 9.4, showing how the
ith components of the corresponding vectors are computed.

q.vi = p.vi + (randomu(0, ci) ∗ (best(p) .gi − p.gi)) +
(randomu(0,di) ∗ (best(Pop) .gi − p.gi))

(9.2)

q.vi = p.vi + (randomu(0, ci) ∗ (best(p) .gi − p.gi)) +
(randomu(0,di) ∗ (best(N(p)) .gi − p.gi))

(9.3)

q.gi = p.gi + p.vi (9.4)

The learning rate vectors c and d have strong influence of the convergence speed of Par-
ticle Swarm Optimization. The search space G (and thus, also the values of p.g) is normally
confined by minimum and maximum boundaries. For the absolute values of the velocity,
normally maximum thresholds also exist. Thus, real implementations of “psoUpdate” have
to check and refine their results before the utility of the solution candidates is evaluated.

Algorithm 9.1 illustrates the native form of the Particle Swarm Optimization using the
update procedure from Definition 9.1. Like hill climbing, this algorithm can easily be gener-
alized for multi-objective optimization and for returning sets of optimal solutions (compare
with Section 10.3 on page 254).

Algorithm 9.1: x⋆ ←− psoOptimizerfps

Input: f : the function to optimize
Input: ps: the population size
Data: Pop: the particle population
Data: i: a counter variable
Output: x⋆: the best value found

begin1

Pop←− createPop(ps)2

while terminationCriterion() do3

for i←− 0 up to len(Pop)− 1 do4

Pop[i]←− psoUpdate(Pop[i],Pop)5

return best(Pop) .x6

end7

9.2 General Information

9.2.1 Areas Of Application

Some example areas of application of particle swarm optimization are:
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Application References

Machine Learning [1124, 1386, 1708]
Function Optimization [1124, 1617]
Geometry and Physics [2263]
Operations Research [125]
Chemistry, Chemical Engineering [356, 1864]
Electrical Engineering and Circuit Design [1509]

9.2.2 Online Resources

Some general, online available ressources on particle swarm optimization are:

http://www.swarmintelligence.org/ [accessed 2007-08-26]

Last update: up-to-date
Description: Particle Swarm Optimization Website by Xiaohui Hu

http://www.red3d.com/cwr/boids/ [accessed 2007-08-26]

Last update: up-to-date
Description: Boids – Background and Update by Craig Reynolds

http://www.projectcomputing.com/resources/psovis/ [accessed 2007-08-26]

Last update: 2004

Description: Particle Swarm Optimization (PSO) Visualisation (or “PSO Visualization”)

http://www.engr.iupui.edu/~eberhart/ [accessed 2007-08-26]

Last update: 2003
Description: Russ Eberhart’s Home Page

http://www.cis.syr.edu/~mohan/pso/ [accessed 2007-08-26]

Last update: 1999
Description: Particle Swarm Optimization Homepage

http://tracer.uc3m.es/tws/pso/ [accessed 2007-11-06]

Last update: up-to-date
Description: Website on Particle Swarm Optimization

9.2.3 Conferences, Workshops, etc.

Some conferences, workshops and such and such on particle swarm optimization are:

GECCO: Genetic and Evolutionary Computation Conference
see Section 2.2.2 on page 107

ICNC: International Conference on Advances in Natural Computation
see Section 1.6.2 on page 89

SIS: IEEE Swarm Intelligence Symposium
http://www.computelligence.org/sis/ [accessed 2007-08-26]

History: 2007: Honolulu, Hawaii, USA, see [1867]
2006: Indianapolis, IN, USA, see [1022]
2005: Pasadena, CA, USA, see [1021]
2003: Indianapolis, IN, USA, see [1020]

9.2.4 Books

Some books about (or including significant information about) particle swarm optimization
are:

http://www.swarmintelligence.org/
mailto:xhu@ieee.org
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/index.html
http://www.projectcomputing.com/resources/psovis/
http://www.engr.iupui.edu/~eberhart/
http://www.cis.syr.edu/~mohan/pso/
http://tracer.uc3m.es/tws/pso/
http://www.computelligence.org/sis/
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Nedjah and de Macedo Mourelle [1508]: Swarm Intelligent Systems
Chan and Tiwari [372]: Swarm Intelligence – Focus on Ant and Particle Swarm Optimization
Clerc [415]: Particle Swarm Optimization
Bui and Alam [299]: Multi-Objective Optimization in Computational Intelligence: Theory
and Practice
Engelbrecht [633]: Fundamentals of Computational Swarm Intelligence
Kennedy, Eberhart, and Shi [1125]: Swarm Intelligence: Collective, Adaptive
Nedjah and de Macedo Mourelle [1509]: Systems Engineering using Particle Swarm Optimi-
sation
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Hill Climbing

10.1 Introduction

Hill climbing1 (HC) [1780] is a very old and simple search and optimization algorithm for
single objective functions f . In principle, hill climbing algorithms perform a loop in which
the currently known best solution individual p⋆ is used to produce one offspring pnew. If this
new individual is better than its parent, it replaces it. Then, the cycle starts all over again. In
this sense, it is similar to an evolutionary algorithm with a population size psof 1. Although
the search space G and the problem space X are most often the same in hill climbing, we
distinguish them in Algorithm 10.1 for the sake of generality. Hill climbing furthermore
normally uses a parameterless search operation to create the first solution candidate and,
from there on, unary operations to produce the offspring. Without loss of generality, we
will thus make use of the reproduction operations from evolutionary algorithms defined
in Section 2.5 on page 137, i. e., set Op = {create,mutate}.

The major problem of hill climbing is premature convergence, i.e., it gets easily stuck on a
local optimum. It always uses the best known solution candidate x⋆ to find new points in the
problem space X. Hill climbing utilizes a unary reproduction operation similar to mutation
in evolutionary algorithms. It should be noted that hill climbing can be implemented in a
deterministic manner if the neighbor sets in search space G, which here most often equals
the problem space X, are always finite and can be iterated over.

1 http://en.wikipedia.org/wiki/Hill_climbing [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Hill_climbing


254 10 Hill Climbing

Algorithm 10.1: x⋆ ←− hillClimber(f)

Input: f : the objective function subject to minization
Data: pnew: the new element created
Data: p⋆: the (currently) best individual
Output: x⋆: the best element found

begin1

p⋆.g ←− create()2

// Implicitly: p⋆.x←− gpm(p⋆.g)

while terminationCriterion() do3

pnew.g ←− mutate(p⋆.g)4

// Implicitly: pnew.x←− gpm(pnew.g)
if f(pnew.x) < f(p⋆.x) then p⋆ ←− pnew5

return p⋆.x6

end7

10.2 General Information

10.2.1 Areas Of Application

Some example areas of application of hill climbing are:

Application References

Networking and Communication [2268]
see Section 23.2 on page 401

Robotics [790]
Data Mining and Data Analysis [646]
Evolving Behaviors, e.g., for Agents or Game Players [2017]
Combinatorial Optimization [953, 347]

10.3 Multi-Objective Hill Climbing

As illustrated in Algorithm 10.2 on the next page, we can easily extend hill climbing al-
gorithms with a support for multi-objective optimization by using some of the methods
of evolutionary algorithms. This extended approach will then return a set X⋆ of the best
solutions found instead of a single individual x⋆ as done in Algorithm 10.1. The set of
currently known best individuals Arc may contain more than one element. Therefore, we
employ a selection scheme in order to determine which of these individuals should be used
as parent for the next offspring in the multi-objective hill climbing algorithm. The selection
algorithm applied must not solely rely on the prevalence comparison, since no element in
Arc prevails any other. Thus, we also copy the idea of fitness assignment from evolutionary
algorithms. For maintaining the optimal set, we apply the updating and pruning methods
defined in Chapter 19 on page 307.
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Algorithm 10.2: x⋆ ←− hillClimberMO(cmpF , a)

Input: cmpF : the prevalence comparator
Input: as: the maximum archive size
Data: pnew: the new individual generated
Data: Arc: the set of best individuals known
Output: X⋆: the set of the best elements found

begin1

Arc←− ()2

pnew.g ←− create()3

// Implicitly: pnew.x←− gpm(pnew.g)

while terminationCriterion() do4

Arc←− updateOptimalSet(Arc, pnew)5

Arc←− pruneOptimalSet(Arc, as)6

v ←− assignFitness(Arc, cmpF )7

pnew ←− select(Arc, v, 1) [0]8

pnew.g ←− mutate(pnew.g)9

// Implicitly: pnew.x←− gpm(pnew.g)

return extractPhenotypes(Arc)10

end11

10.4 Problems in Hill Climbing

Both versions of the algorithm are still very likely to get stuck on local optima. They will
only follow a path of solution candidates if it is monotonously2 improving the objective
function(s). Hill climbing in this form is a local search rather than global optimization
algorithm. By making a few slight modifications to the algorithm however, it can become a
valuable global optimization technique:

1. A tabu-list which stores the elements recently evaluated can be added. By preventing
the algorithm from visiting them again, a better exploration of the problem space X can
be enforced. This technique is used in Tabu Search which is discussed in Chapter 14 on
page 273.

2. Another way of preventing premature convergence is to not always transcend to the
better solution candidate in each step. Simulated Annealing introduces a heuristic based
on the physical model the cooling down molten metal to decide whether a superior
offspring should replace its parent or not. This approach is described in Chapter 12 on
page 263.

3. The Dynamic Hill Climbing approach by Yuret and de la Maza [2303] uses the last two
visited points to compute unit vectors. With this technique, the directions are adjusted
according to the structure of the problem space and a new coordinate frame is created
which points more likely into the right direction.

4. Randomly restarting the search after so-and-so many steps is a crude but efficient method
to explore wide ranges of the problem space with hill climbing. You can find it outlined
in Section 10.5.

5. Using a reproduction scheme that not necessarily generates solution candidates directly
neighboring x⋆, as done in Random Optimization, an optimization approach defined
in Chapter 11 on page 259, may prove even more efficient.

2 http://en.wikipedia.org/wiki/Monotonicity [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Monotonicity
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10.5 Hill Climbing with Random Restarts

Hill climbing with random restarts is also called Stochastic Hill Climbing (SH) or Stochastic
gradient descent3 [1923, 605]. We have mentioned it as a measure for preventing premature
convergence; here we want to take a deeper look on this approach.

Let us further combine it directly with the multi-objective hill climbing approach defined
in Algorithm 10.2. The new algorithm incorporates two archives for optimal solutions: Arc1,
the overall optimal set, and Arc2 the set of the best individuals in the current run. We
additionally define the criterion shouldRestart() which is evaluated in every iteration and
determines whether or not the algorithm should be restarted. shouldRestart() therefore
could, for example, count the iterations performed or check if any improvement was produced
in the last ten iterations. After each single run, Arc2 is incorporated into Arc1, from which
we extract and return the problem space elements at the end of the hill climbing process,
as defined in Algorithm 10.3.

Algorithm 10.3: X⋆ ←− hillClimberMO RR(cmpF , a)

Input: cmpF : the prevalence comparator
Input: as: the maximum archive size
Data: pnew: the new individual generated
Data: Arc1,Arc2: the sets of best individuals known
Output: X⋆: the set of the best elements found

begin1

Arc1 ←− ()2

while terminationCriterion() do3

Arc2 ←− ()4

pnew.g ←− create()5

// Implicitly: pnew.x←− gpm(pnew.g)

while terminationCriterion() ∨ shouldRestart() do6

Arc2 ←− updateOptimalSet(Arc2, pnew)7

Arc2 ←− pruneOptimalSet(Arc2, as)8

v ←− assignFitness(Arc2, cmpF )9

pnew ←− select(Arc2, v, 1) [0]10

pnew.g ←− mutate(pnew.g)11

// Implicitly: pnew.x←− gpm(pnew.g)

Arc1 ←− updateOptimalSetN(Arc1,Arc2)12

Arc1 ←− pruneOptimalSet(Arc1, as)13

return extractPhenotypes(Arc1)14

end15

10.6 GRASP

Greedy Randomized Adaptive Search Procedures (GRASPs) [663, 652, 1648, 1722] are meta-
heuristics which repeatedly create new starting points and refine these with a local search
algorithm until a termination criterion is met. In this, they are similar to hill climbing with
random restarts.

The initial construction phase of each iteration, however, may be much more complicated
than just randomly picking a new point in the search space. Feo and Resende [652] describe
it as an iterative construction process where one element [gene] is “added” at a time where

3 http://en.wikipedia.org/wiki/Stochastic_gradient_descent [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Stochastic_gradient_descent
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the element to be added is chosen with respect to a greedy function. Here, not necessarily
the best possible allele is set, but one of the top candidates is picked randomly.

After the initial solution is generated this way, a local search is applied to refine it.
Therefore, hill climbing, for instance, could be used as well as a deterministic search such as
a IDDFS (see Section 17.3.4) or a greedy approach (see Section 17.4.1). Feo and Resende [652]
argue that the efficiency and quality of the solutions produced by such GRASP processes
are often much better than those of local searches started at random points.

10.6.1 General Information

Areas Of Application

Some example areas of application of GRASP are:

Application References

Combinatorial Optimization [651, 652, 1288]
Scheduling [650]

Online Resources

Some general, online available ressources on GRASP are:

http://www.graspheuristic.org/ [accessed 2008-10-20]

Last update: 2004-02-29
Description: A website leading to a lage annontated bibliography on GRASP.

10.7 Raindrop Method

Only three years ago, Bettinger and Zhu [191, 2322] contributed a new search heuristic
for constrained optimization, the Raindrop Method, which they used for forest planning
problems. In the original description of the algorithm, the search and problem space are
identical (G = X). The algorithm is based on precise knowledge of the components of the
solution candidates and on how their interaction influences the validity of the constraints.
It works as follows:

1. The Raindrop Method starts out with a single, valid solution candidate x⋆ (i.e., one that
violates none of the constraints). This candidate may be found with a random search
process or may be provided created by a human operator.

2. Create a copy x of x⋆. Set the iteration counter t to a user-defined maximum value T of
iterations of modifying and correcting x that are allowed without improvements before
reverting to x⋆.

3. Perturb x by randomly modifying one of its components. Let us refer to this randomly
selected component as s. This modification may lead to constraint violations.

4. If no constraint was violated, continue at step 11, otherwise proceed as follows.
5. Set a distance value d to 0.
6. Create a list L of the components of x that lead to constraint violations. Here we make

use the knowledge of the interaction of components and constraints.

http://www.graspheuristic.org/
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7. From L, we pick the component c physically closest to s, that is, the component with
the minimum distance dist(c, s). In the original application of the Raindrop Method,
physically close was properly defined due to the fact that the solution candidates were
basically two-dimensional maps. For applications different from forest planning, appro-
priate definitions for the distance measure have to be supplied.

8. Set d = dist(c, s).
9. Find the next best value for c which does not induce any new constraint violations in

components f which are at least as close to s, i. e., with dist(f, s) ≤ dist(c, s). This
change may, however, cause constraints violations in components farther away from s.
If no such change is possible, go to point 13. Otherwise, modify the component c in x.

10. Go back to step 4.
11. If x is better than x⋆, that is, x≻x⋆, set x⋆ = x. Otherwise, decrease the iteration counter

t.
12. If the termination criterion has not yet been met, go back to step 3 if t > 0 and to 2 if

t = 0.
13. Return x⋆ to the user.

The iteration counter t here is used to allow the search to explore solutions more dis-
tance from the current optimum x⋆. The higher the initial value T specified user, the more
iterations without improvement are allowed before reverting x to x⋆. By the way, the name
Raindrop Method comes from the fact that the constraint violations caused by the pertur-
bation of the valid solution radiate away from the modified component s like waves on a
water surface radiate away from the point where a raindrop hits.
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Random Optimization

11.1 Introduction

The Random Optimization1 method for single-objective, numerical problems, i. e., G = Rn

and |F | = 1, was first proposed by Rastrigin [1709] in the early 1960s. It was studied
thoroughly by Gurin and Rastrigin [870], Schumer [1838] and further improved by Schumer
and Steiglitz [1839] [2206]. A different Random Optimization approach has been introduced
by Matyas [1371, 1372] around the same time. Matyas gave theorems about the convergence
properties of his approach for unimodal optimization. Baba [91] then showed theoretically
that the global optimum of an optimization problem can even be found if the objective
function is multimodal.

There are, however, three important differences between the two approaches:

1. In traditional hill climbing, the new solution candidates are created from a good individ-
ual are always very close neighbors of it. In Random Optimization, this is not necessary
but only probably.

2. In Random Optimization, the unary search operation explicitly uses random numbers
whereas the unary search operations of hill climbing may be deterministic or randomized.

3. In Random Optimization, the search space G is always the Rn, the space of n-dimensional
real vectors.

4. In Random Optimization, we explicitly distinguish between objective functions f ∈ F
and constraints c ∈ C.

Random Optimization introduces a new search operation “roReproduce” specialized for
the numerical search space similar to mutation in Evolution Strategies. This operation is
constructed in a way that all points in the search space G = Rn can be reached in one step
when starting out from every other point. In other words, the operator “roReproduce” is
complete in the sense of Definition 1.27.

roReproduce(g) = g + r : r =
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 (11.1)

Equation 11.1 illustrates one approach to realize such a complete search operation. To
the (genotype) of the best solution candidate discovered so far, we add a vector r ∈ Rn.
Each component r[i] of this vector is normally distributed around a value µi. Hence, the
probability density function underlying the components of this vector is greater than zero
for all real numbers. The µi are the expected values and the σi the standard deviations of the

1 http://en.wikipedia.org/wiki/Random_optimization [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Random_optimization


260 11 Random Optimization

normal distributions, as introduced in Section 28.5.2 on page 486. The µi define a general
direction for the search, i. e., if µi > 0, randomn

(
µi, σ

2
i

)
will likely also be greater zero and

for µi < 0, it will probably be smaller than zero, too (given that |σi| ≪ |expectedV alueMi|).
The σi can be imagined as the range in which the random numbers are distributed around
the µi and denote a step width of the random numbers. If we choose the absolute values of
both, µi and σi, very small, we can exploit a local optimum whereas larger values lead to
a rougher exploration of search space. If the µs are set to 0, the probability distribution of
random numbers will be “centered” around the genotype it is applied to. Since the normal
distribution is generally unbounded, it is possible that the random elements in r can become
very large, even for small σi ≈ 0. Therefore, local optima can be left again even with bad
settings of µ and σ.

Equation 11.1 is only one way to realize the completeness of the “roReproduce”-
operation. Instead of the normal distribution, any other probability distribution with
fX(y) > 0 ∀y ∈ R would do. Good properties can, for instance, be attributed to the bell-
shaped distribution used by Worakul et al. [2255, 2256] and discussed in Section 28.9.3 on
page 530 in this book.

In order to respect the idea of constraint optimization in Random Optimization as in-
troduced in [91], we define a set of constraint functions C. A constraint c ∈ C is satisfied by
a solution candidate x ∈ X, if c(x) ≤ 0 holds.

Algorithm 11.1 illustrates how random optimization works, clearly showing connatural
traits in comparison with the hill climbing approach Algorithm 10.1 on page 254.

Algorithm 11.1: x⋆ ←− randomOptimizerf

Input: f : the objective function subject to minization
Data: pnew: the new element created
Data: p⋆: the (currently) best individual
Output: x⋆: the best element found

begin1

p⋆.g ←− create()2

// Implicitly: p⋆.x←− gpm(p⋆.g)

while terminationCriterion() do3

pnew.g ←− roReproduce(p⋆.g)4

// Implicitly: pnew.x←− gpm(pnew.g)
if c(pnew.x) ≤ 0 ∀c ∈ C then5

if f(pnew.x) < f(p⋆.x) then p⋆ ←− pnew6

return p⋆.x7

end8

Setting the values of µ and σ adaptively can lead to large improvements in convergence
speed. The Heuristic Random Optimization (HRO) algorithm introduced by Li and Rhine-
hart [1277] and its successor method Random Optimization II developed by Chandran and
Rhinehart [373] for example update them by utilizing gradient information or reinforcement
learning.

11.2 General Information

11.2.1 Areas Of Application

Some example areas of application of (heuristic) Random Optimization are:
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Application References

Medicine [2255, 2256]
Biology and Medicine [558]
Machine Learning [1249]
Function Optimization [1277, 1917]
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Simulated Annealing

12.1 Introduction

In 1953, Metropolis et al. [1396] developed a Monte Carlo method for “calculating the
properties of any substance which may be considered as composed of interacting individual
molecules”. With this so-called “Metropolis” procedure stemming from statistical mechan-
ics, the manner in which metal crystals reconfigure and reach equilibria in the process of
annealing can be simulated. This inspired Kirkpatrick et al. [1142] to develop the Simulated
Annealing1 (SA) algorithm for global optimization in the early 1980s and to apply it to var-
ious combinatorial optimization problems. Independently, Černý [363] employed a similar
approach to the travelling salesman problem [1263, 78]. Simulated Annealing is an optimiza-
tion method that can be applied to arbitrary search and problem spaces. Like simple hill
climbing algorithms, Simulated Annealing only needs a single initial individual as starting
point and a unary search operation.

In metallurgy and material science, annealing2 is a heat treatment of material with the
goal of altering its properties such as hardness. Metal crystals have small defects, dislocations
of ions which weaken the overall structure. By heating the metal, the energy of the ions
and, thus, their diffusion rate is increased. Then, the dislocations can be destroyed and the
structure of the crystal is reformed as the material cools down and approaches its equilibrium
state. When annealing metal, the initial temperature must not be too low and the cooling
must be done sufficiently slowly so as to avoid the system getting stuck in a meta-stable,
non-crystalline, state representing a local minimum of energy.

In physics, each set of positions of all atoms of a system pos is weighted by its

Boltzmann probability factor e
−E(pos)

kBT where E(pos) is the energy of the configuration
pos, T is the temperature measured in Kelvin, and kB is the Boltzmann’s constant3

kB = 1.380 650 524 · 10−23J/K.
The Metropolis procedure was an exact copy of this physical process which could be used

to simulate a collection of atoms in thermodynamic equilibrium at a given temperature. A
new nearby geometry posi+1 was generated as a random displacement from the current
geometry posi of an atom in each iteration. The energy of the resulting new geometry is
computed and ∆E, the energetic difference between the current and the new geometry,
was determined. The probability that this new geometry is accepted, P (∆E) is defined in
Equation 12.2.

1 http://en.wikipedia.org/wiki/Simulated_annealing [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Annealing_(metallurgy) [accessed 2008-09-19]

3 http://en.wikipedia.org/wiki/Boltzmann%27s_constant [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Annealing_(metallurgy)
http://en.wikipedia.org/wiki/Boltzmann%27s_constant
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∆E = E(posi+1)− E(posi) (12.1)

P (∆E) =

{
e
− ∆E

kBT if ∆E > 0
1 otherwise

(12.2)

Thus, if the new nearby geometry has a lower energy level, the transition is accepted.
Otherwise, a uniformly distributed random number r = randomu() ∈ [0, 1) is drawn and the
step will only be accepted in the simulation if it is less or equal the Boltzmann probability
factor, i. e., r ≤ P (∆E). At high temperatures T , this factor is very close to 1, leading to the
acceptance of many uphill steps. As the temperature falls, the proportion of steps accepted
which would increase the energy level decreases. Now the system will not escape local regions
anymore and (hopefully) comes to a rest in the global minimum at temperature T = 0K.

The abstraction of this method in order to allow arbitrary problem spaces is straightfor-
ward – the energy computation E(posi) is replaced by an objective function f or even by
the result v of a fitness assignment process. Algorithm 12.1 illustrates the basic course of
Simulated Annealing. Without loss of generality, we reuse the definitions from evolutionary
algorithms for the search operations and set Op = {create,mutate}.

Algorithm 12.1: x⋆ ←− simulatedAnnealing(f)

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated in problem space
Data: p⋆: the best individual found so far
Data: T: the temperature of the system which is decreased over time
Data: t: the current time index
Data: ∆E: the enery difference of the xnew and xcur

Output: x⋆: the best element found

begin1

pnew.g ←− create()2

// Implicitly: pnew.x←− gpm(pnew.g)
pcur ←− pnew3

p⋆ ←− pnew4

t←− 05

while terminationCriterion() do6

∆E ←− f(pnew.x)− f(pcur.x)7

if ∆E ≤ 0 then8

pcur ←− pnew9

if f(pcur.x) < f(p⋆.x) then p⋆ ←− pcur10

else11

T←− getTemperature(t)12

if randomu() < e
− ∆E

kBT then pcur ←− pnew13

pnew.g ←− mutate(pcur.g)14

// Implicitly: pnew.x←− gpm(pnew.g)
t←− t+ 115

return p⋆.x16

end17

It has been shown that Simulated Annealing algorithms with appropriate cooling strate-
gies will asymptotically converge to the global optimum. Nolte and Schrader [1540] and van
Laarhoven and Aarts [2095] provide lists of the most important works showing that Sim-
ulated Annealing will converge to the global optimum if t → ∞ iterations are performed,
including the studies of Hajek [879]. Nolte and Schrader [1540] further list research pro-
viding deterministic, non-infinite boundaries for the asymptotic convergence by Anily and
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Federgruen [70], Gidas [804], Nolte and Schrader [1539], and Mitra et al. [1437]. In the
same paper, they introduce a significantly lower bound, which, however, still states that
Simulated Annealing is probably in an optimal configuration after the number of iterations
exceeds the cardinality of the problem space – which is, well, slow [1017]. In other words,
it would be faster to enumerate all possible solution candidates in order to find the global
optimum with absolute certainty than applying Simulated Annealing. This does not mean
that Simulated Annealing is always slow. It only needs that much time if we persist on
the optimality. Speeding up the cooling process will result in a faster search, but voids the
guaranteed convergence on the other hand. Such speeded-up algorithms are called Simulated
Quenching (SQ) [1014, 1813, 808].

12.2 General Information

12.2.1 Areas Of Application

Some example areas of application of Simulated Annealing are:

Application References

Combinatorial Optimization [363, 1142, 298, 286, 473]
Function Optimization [818]
Chemistry, Chemical Engineering [1292, 297, 1075, 1401]
Image Processing [1982, 2246, 2287, 298]

Economics and Finance [1015, 1016]
Electrical Engineering and Circuit Design [1781, 298]
Machine Learning [1366, 1349, 298, 2070]
Geometry and Physics [1367, 298, 1368, 1853]
Networking and Communication [1683]

see Section 23.2 on page 401

For more information see also [2095].

12.2.2 Books

Some books about (or including significant information about) Simulated Annealing are:

van Laarhoven and Aarts [2095]: Simulated Annealing: Theory and Applications
Tan [2001]: Simulated Annealing
Badiru [113]: Handbook of Industrial and Systems Engineering
Davis [494]: Genetic Algorithms and Simulated Annealing

12.3 Temperature Scheduling

The temperature schedule defines how the temperature in Simulated Annealing is decreased.
As already mentioned, this has major influence on whether the Simulated Annealing algo-
rithm will succeeded, on whether how long it will take to find the global optimum, and on
whether or not it will degenerate to simulated quenching. For the later use in the Simulated
Annealing algorithm, let us define the new operator getTemperature(t) which computes the
temperature to be used at iteration t in the optimization process. For “getTemperature”, a
few general rules hold. All schedules start with a temperature Tstart which is greater than
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zero. If the number of iterations t approaches infinity, the temperature must become 0K.
This is a very weak statement, since we have shown that there exist finite boundaries after
which Simulated Annealing is most likely to have converged. So there will be a finite tend in
all practical realizations after which the temperature drops to 0K, as shown in Equation 12.6.

T ∈ R+, t ∈ N0 ∀ T = getTemperature(t) (12.3)

Tstart = getTemperature(0) > 0 (12.4)

lim
t→∞

getTemperature(t) = 0K (12.5)

∃tend ∈ N : getTemperature(t) = 0K ∀t ≥ tend (12.6)

There exists a wide range of methods to determine this temperature schedule. Miki et al.
[1414], for example, used genetic algorithms for this purpose. We will introduce only the
three simple variants here given by Press et al. [1675].

1. Reduce T to (1− ǫ)T after every m iterations, where the exact values of 0 < ǫ < 1 and
m > 0 are determined by experiment.

2. Grant a total of K iterations, and reduce T after every m steps to a value T =
Tstart

(
1− t

K

)α
where t is the inted of the current iteration and α is a constant, maybe

1, 2, or 4. α depends on the positions of the relative minima. Large values of α will
spend more iterations at lower temperature.

3. After every m moves, set T to β times ∆Ec = f(xcur) − f(x⋆), where β is an experi-
mentally determined constant, f(xcur) is the objective value of the currently examined
solution candidate xcur, and f(x⋆) is the objective value of the best phenotype x⋆ found
so far. Since ∆Ec may be 0, we limit the temperature change to a maximum of T ∗ γ
with 0 < γ < 1.

If we let the temperature sink fast, we will lose the property of guaranteed convergence.
In order to avoid getting stuck at local optima, we can then apply random restarting, which
already has been discussed in the context of hill climbing in Section 10.5 on page 256.

12.4 Multi-Objective Simulated Annealing

Again, we want to combine this algorithm with multi-objective optimization and also enable
it to return a set of optimal solutions. This can be done even simpler than in multi-objective
hill climbing. Basically, we just need to replace the single objective function f with the fitness
values v computed by a fitness assignment process on basis of the set of currently known best
solutions (Arc), the currently investigated individual (pcur), and the newly created points
in the search space (pnew).
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Algorithm 12.2: x⋆ ←− simulatedAnnealingMO(cmpF , a)

Input: f : the objective function to be minimized
Input: as: the maximum number of individuals allowed to be stored in the archive
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated in problem space
Data: Arc: the set of best individuals found so far
Data: T: the temperature of the system which is decreased over time
Data: t: the current time index
Data: ∆E: the enery difference of the xnew and xcur

Output: x⋆: the best element found

begin1

pnew.g ←− create()2

// Implicitly: pnew.x←− gpm(pnew.g)
pcur ←− pnew3

Arc←− createList(1, pcur)4

t←− 05

while terminationCriterion() do6

v ←− assignFitness(Arc ∪ {pnew, pcur} , cmpF )7

∆E ←− v(pnew.x)− v(pcur.x)8

if ∆E ≤ 0 then9

pcur ←− pnew10

else11

T←− getTemperature(t)12

if randomu() < e
− ∆E

kBT then pcur ←− pnew13

Arc←− updateOptimalSet(Arc, pnew)14

Arc←− pruneOptimalSet(Arc, as)15

pnew.g ←− mutate(pcur.g)16

// Implicitly: pnew.x←− gpm(pnew.g)
t←− t+ 117

return extractPhenotypes(Arc)18

end19
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Extremal Optimization

13.1 Introduction

13.1.1 Self-Organized Criticality

Different from Simulated Annealing, is a optimization method based on the metaphor of
thermal equilibria from physics, the Extremal Optimization1 (EO) algorithm of Boettcher
and Percus [237, 238, 239, 240, 236] is inspired by ideas of non-equilibrium physics. Especially
important in this context is the property of self-organized criticality2 (SOC) [119, 1049]. The
theory of SOC states that large interactive systems evolve to a state where a change in one
single of their elements may lead to avalanches or domino effects that can reach any other
element in the system. The probability distribution of the number of elements n involved
in these avalanches is proportional to n−τ (τ > 0). Hence, mass changes involving only few
elements are most likely, but even avalanches involving the whole system are possible with
a non-zero probability. [526]

13.1.2 The Bak-Sneppens model of Evolution

The Bak-Sneppens model of evolution [118] exhibits self-organizing criticality and was the
inspiration for Extremal Optimization. Rather than focusing on single species, this model
considers a whole ecosystem and the co-evolution of many different species.

In the model, each species is represented only by a real fitness value between 0 and 1. In
each iteration, the species with the lowest fitness is mutated. The model does not include any
representation for genomes, instead, mutation changes the fitness of the species directly by
replacing it with a random value uniformly distributed in [0, 1]. In nature, this corresponds
to the process where one species has developed further or was replaced by another one.

So far, mutation (i. e., development) would become less likely the more the fitness
increases. Fitness can also be viewed as a barrier: New characteristics must be at least as
fit as the current ones to proliferate. In an ecosystem however, no species lives alone but
depends on others, on its successors and predecessors in the food chain, for instance. Bak
and Sneppen [118] consider this by arranging the species in a one dimensional line. If one
species is mutated, the fitness values of its successor and predecessor in that line are also
set to random values. In nature, the development of one species can foster the development
of others and this way, even highly fit species may become able to (re-)adapt.

After a certain amount of iterations, the species in simulations based on this model reach
a highly-correlated state of self-organized critically where all of them have a fitness above
a certain threshold. This state is very similar to the idea of punctuated equilibria from
evolutionary biology and groups of species enter a state of passivity lasting multiple cycles.

1 http://en.wikipedia.org/wiki/Extremal_optimization [accessed 2008-08-24]

2 http://en.wikipedia.org/wiki/Self-organized_criticality [accessed 2008-08-23]

http://en.wikipedia.org/wiki/Extremal_optimization
http://en.wikipedia.org/wiki/Self-organized_criticality
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Sooner or later, this state is interrupted because mutations occurring nearby undermine
their fitness. The resulting fluctuations may propagate like avalanches through the whole
ecosystem. Thus, such non-equilibrium systems exhibit a state of high adaptability without
limiting the scale of change towards better states [236].

13.2 Extremal Optimization and Generalized Extremal
Optimization

Boettcher and Percus [237] want to utilize this phenomenology to obtain near-optimal solu-
tions for optimization problems. In Extremal Optimization, the search spaces G are always
spaces of structured tuples g = (g[1], g[2], . . . , g[n]). Extremal Optimization works on a single
individual and requires some means to determine the contributions of its genes to the overall
fitness.

Extremal Optimization was originally applied to a graph bi-partitioning problem [237],
were the n points of a graph had to be divided into two groups, each of size n/2. The objective
was to minimize the number of edges connecting the two groups. Search and problem space
can be considered as identical and a solution candidate x = gpm(g) = g consisted of n
genes, each of which standing for one point of the graph and denoting the Boolean decision
to which set it belongs. Analogously to the Bak-Sneppens model, each such gene g[i] had an
own fitness contribution λ(g[i]), the ratio of its outgoing edges connected to nodes from the
same set in relation to its total edge number. The higher this value, the better, but notice
that f(x = g) 6= ∑n

i=1 λ(g[i]), since f(g) corresponds to the number of edges crossing the
cut. In general, the Extremal Optimization algorithm proceeds as follows:

1. Create an initial individual p with a random genotype p.g and set the currently best
known solution candidate x⋆ to its phenotype: x⋆ = p.x.

2. Sort all genes p.g[i] of p.g in a list in ascending order according to their fitness contri-
bution λ(p.g[i]).

3. Then, the gene p.g[i] with the lowest fitness contribution is selected from this list and
modified randomly, leading to a new individual p and a new solution candidate x =
p.x = gpm(p.g).

4. If p.x is better that x⋆, i. e., p.x≻x⋆, set x⋆ = p.x.
5. If the termination criterion has not yet been met, continue at step 2.

Instead of always picking the weakest part of g, Boettcher and Percus [238] selected the
gene(s) to be modified randomly in order to prevent the method from getting stuck in local
optima. In their work, the probability of a gene at list index j for being drawn is proportional
to j−τ . This variation was called τ -EO and showed superior performance compared to the
simple Extremal Optimization. In the graph partitioning problem on which Boettcher and
Percus [238] have worked, two genes from different sets needed to be drawn this way in each
step, since always two nodes had to be swapped in order to keep the size of the sub-graphs
constant. Values of τ in 1.3 . . . 1.6 have been reported to produce good results [238].

The major problem a user is confronted with in Extremal Optimization is how to de-
termine the fitness contributions λ(p.g[i]) of the elements p.g[i] of the genotypes p.g of the
solution candidates p.x. Boettcher and Percus [239] point out themselves that the “drawback
to EO is that a general definition of fitness for individual variables may prove ambiguous
or even impossible” [526]. de Sousa and Ramos [524, 525, 526] therefore propose and exten-
sion to EO, called the Generalized Extremal Optimization (GEO) for fixed-length binary
genomes G = Bn. Each gene (bit) p.g[i] in the element p.g of the search space currently
examined, the following procedure is performed:

1. Create a copy g′ of p.g.
2. Toggle bit i in g′.
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3. Set λ(p.g[i]) to −f(gpm(g′)) for maximization and to f(gpm(g′)) in case of minimiza-
tion.3

By doing so, λ(p.g[i]) becomes a measure for how adapted the gene is. If f is subject to
maximization, high positive values of f(gpm(g′)) (corresponding to low λ(p.g[i])) indicate
that gene i should be mutated and has a low fitness. For minimization, low f(gpm(g′))
indicated the mutating gene i would yield high improvements in the objective value.

13.3 General Information

13.3.1 Areas Of Application

Some example areas of application of Extremal Optimization are:

Application References

Combinatorial Optimization [1363, 237, 238, 236]
Engineering, Structural Optimization, and Design [526, 762, 1753]
Networking and Communication [1363]

see Section 23.2 on page 401
Function Optimization [524]

3 In the original work of de Sousa et al. [526], f(x⋆) is subtracted from this value. Since we rank
the genes, this has basically no influence and is omitted here.
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Tabu Search

14.1 Introduction

Tabu Search1 (TS) has been developed by Glover [810] in the mid 1980s [816]. Some of the
basic ideas were introduced by Hansen [892] and further contributions in terms of formal-
izing this method have been made by Glover [811, 812], and de Werra and Hertz [529] (as
summarized by Hertz et al. [919] in their tutorial on Tabu Search) as well as by Battiti and
Tecchiolli [158] and Cvijović and Klinowski [471].

The word “tabu”2 stems from Polynesia and describes a sacred place or object. Things
that are tabu must be left alone and may not be visited or touched. Tabu Search extends hill
climbing by this concept – it declares solution candidates which have already been visited as
tabu. Hence, they must not be visited again and the optimization process is less likely to get
stuck on a local optimum. The simplest realization of this approach is to use a list tabu which
stores all solution candidates that have already been tested. If a newly created phenotype
can be found in this list, it is not investigated but rejected right away. Of course, the list
cannot grow infinitely but has a finite maximum length n. If the n+ 1st solution candidate
is added, the first one must be removed. Alternatively, this list could also be reduced with
clustering. If some distance measure in the problem space X is available, a certain perimeter
around the listed solution candidates can be declared as tabu. More complex approaches will
store specific properties of the individuals instead of the phenotypes themselves in the list.
This will not only lead to more complicated algorithms, but may also reject new solutions
which actually are very good. Therefore, aspiration criteria can be defined which override
the tabu list and allow certain individuals.

1 http://en.wikipedia.org/wiki/Tabu_search [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Tapu_%28Polynesian_culture%29 [accessed 2008-03-27]

http://en.wikipedia.org/wiki/Tabu_search
http://en.wikipedia.org/wiki/Tapu_%28Polynesian_culture%29
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Algorithm 14.1: x⋆ ←− tabuSearch(f, n)

Input: f : the objective function subject to minization
Input: n: the maximum length of the tabu list (n > 0)
Data: pnew: the new element created
Data: p⋆: the (currently) best individual
Data: tabu: the tabu list
Output: x⋆: the best element found

begin1

p⋆.g ←− create()2

// Implicitly: p⋆.x←− gpm(p⋆.g)
tabu←− createList(1, p⋆.x)3

while terminationCriterion() do4

pnew.g ←− mutate(p⋆.g)5

// Implicitly: pnew.x←− gpm(pnew.g)
if searchItemu(pnew.x, tabu) < 0 then6

if f(pnew.x) < f(p⋆.x) then p⋆ ←− pnew7

if len(tabu) ≥ n then tabu←− deleteListItem(tabu, 0)8

tabu←− addListItem(tabu, pnew.x)9

return p⋆.x10

end11

14.2 General Information

14.2.1 Areas Of Application

Some example areas of application of Tabu Search are:

Application References

Combinatorial Optimization
[336, 1829, 1010, 815, 814, 983,
2049, 1612, 47, 112, 285]

Machine Learning [1855, 529]
Biochemistry [1989]
Operations Research [674]
Networking and Communication [1641, 1643, 1642, 1683, 1953]

see Section 23.2 on page 401

14.2.2 Books

Some books about (or including significant information about) Tabu Search are:

Pardalos and Du [1612]: Handbook of Combinatorial Optimization
Badiru [113]: Handbook of Industrial and Systems Engineering
Reeves [1716]: Modern Heuristic Techniques for Combinatorial Problems
Jaziri [1045]: Local Search Techniques: Focus on Tabu Search

14.3 Multi-Objective Tabu Search

The simple Tabu Search is very similar to hill climbing and Simulated Annealing, as you
can see when comparing it with Chapter 10 on page 253 and Chapter 12 on page 263). With
Algorithm 14.2, we thus can define a multi-objective variant for Tabu Search in a manner
very similar to the multi-objective hill climbing or multi-objective Simulated Annealing.
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Algorithm 14.2: x⋆ ←− tabuSearchMO(cmpF , n, a)

Input: cmpF : the prevalence comparator
Input: n: the maximum length of the tabu list (n > 0)
Input: as: the maximum archive size
Data: tabu: the tabu list
Data: pnew: the new individual generated
Data: Arc: the set of best individuals known
Output: X⋆: the set of the best elements found

begin1

Arc←− ()2

pnew.x←− create()3

// Implicitly: pnew.x←− gpm(pnew.g)
tabu←− ()4

while terminationCriterion() do5

if searchItemu(pnew.x, tabu ∪Arc) < 0 then6

Arc←− updateOptimalSet(Arc, pnew)7

Arc←− pruneOptimalSet(Arc, as)8

v ←− assignFitness(Arc, cmpF )9

if len(tabu) ≥ n then tabu←− deleteListItem(tabu, 0)10

tabu←− addListItem(tabu, pnew.x)11

pnew ←− select(Arc, v, 1) [0]12

pnew.g ←− mutate(pnew.g)13

// Implicitly: pnew.x←− gpm(pnew.g)

return extractPhenotypes(Arc)14

end15
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Memetic and Hybrid Algorithms

Starting with the research contributed by Bosworth et al. [257] (1972), Bethke [190] (1980),
and Brady [268] (1985), there is a long tradition of hybridizing evolutionary algorithms with
other optimization methods such as hill climbing, Simulated Annealing, or Tabu Search
[1893]. A comprehensive review on this topic has been provided by Grosan and Abra-
ham [861, 862]. Such approaches are not limited to GAs as “basis”, in Section 16.4 for
example, we have already listed a wide variety of approaches to combine the downhill sim-
plex with population-based optimization methods spanning from genetic algorithms to Dif-
ferential Evolution and Particle Swarm Optimization. Today, many of these approaches can
be subsumed under the umbrella term Memetic Algorithms1 (MAs).

15.1 Memetic Algorithms

The principle of genetic algorithms is to simulate the natural evolution (where phenotypic
features are encoded in genes) in order to solve optimization problems. The term Memetic
Algorithm was coined by Moscato [1468, 1469] as allegory for simulating a social evolution
(where behavioral patterns are passed on in memes2) for the same purpose. The concept
meme has been defined by Dawkins [501] as “unit of imitation in cultural transmission”.

Moscato [1468] uses the example of Chinese martial art Kung-Fu which has developed
over many generations of masters teaching their students certain sequences of movements,
the so-called forms. Each form is composed of a set of elementary aggressive and defensive
patterns. These undecomposable sub-movements can be interpreted as memes. New memes
are rarely introduced and only few amongst the masters of the art have the ability to do
so. Being far from random, such modifications involve a lot of problem-specific knowledge
and almost always result in improvements. Furthermore, only the best of the population
of Kung-Fu practitioners can become masters and teach decibels. Kung-Fu fighters can
determine their fitness by evaluating their performance or by competing with each other in
tournaments.

Based on this analogon, Moscato [1468] creates an example for the travelling salesman
problem [1263, 78] involving the three principles of

1. intelligent improvement based on local search with problem-specific operators,
2. competition in form of a selection procedure, and
3. cooperation in form of a problem-specific crossover operator.

Further research work directly focusing on Memetic Algorithms has been contributed by
Moscato et al. [1468, 1551, 952, 307, 220, 1470], Radcliffe and Surry [1693], Digalakis and
Margaritis [565, 566], and Krasnogor and Smith [1215]. Other contributors of early work

1 http://en.wikipedia.org/wiki/Memetic_algorithm [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Meme [accessed 2008-09-10]

http://en.wikipedia.org/wiki/Memetic_algorithm
http://en.wikipedia.org/wiki/Meme
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on genetic algorithm hybridization are Ackley [12] (1987), Goldberg [821] (1989), Gorges-
Schleuter [835] (1989), Mühlenbein [1476, 1477, 1479] (1989), Brown et al. [294] (1989) and
Davis [495] (1991).

The definition of Memetic Algorithms given by Moscato [1468] is relatively general and
encompass many different approaches. Even though Memetic Algorithms are a metaphor
based on social evolution, there also exist two theories in natural evolution which fit to
the same idea of hybridizing evolutionary algorithms with other search methods [1598].
Lamarckism and the Baldwin effect are both concerned with phenotypic changes in living
creatures and their influence on the fitness and adaptation of species.

15.2 Lamarckian Evolution

Lamarckian evolution3 is a model of evolution accepted by science before the discovery of
genetics. Superseding early the ideas of Erasmus Darwin [486] (the grandfather of Charles
Darwin), de Lamarck [522] laid the foundations of the theory later known as Lamarckism
with his book Philosophie Zoologique published in 1809. Lamarckism has two basic principles:

1. Individuals can attain new, beneficial characteristics during their lifetime and lose unused
abilities.

2. They inherit their traits (also those acquired during their life) to their offspring.

While the first concept is obviously correct, the second one contradicts the state of knowledge
in modern biology. This does not decrease the merits of de Lamarck, who provided an early
idea about how evolution could proceed. In his era, things like genes and the DNA simply
had not been discovered yet. Weismann [2189] was the first to argue that the heredity
information of higher organisms is separated from the somatic cells and, thus, could not be
influenced by them [2067]. In nature, no phenotype-genotype mapping can take place.

Lamarckian evolution can be “included” in evolutionary algorithms by performing a lo-
cal search starting with each new individual resulting from applications of the reproduction
operations. This search can be thought of as training or learning and its results are coded
back into the genotypes g ∈ G [2215]. Therefore, this local optimization usually works di-
rectly in the search space G. Here, algorithms such as greedy search hill climbing, Simulated
Annealing, or Tabu Search can be utilized, but simply modifying the genotypes randomly
and remembering the best results is also possible.

15.3 Baldwin Effect

The Baldwin effect4, [1883, 2129, 2130] first proposed by Baldwin [123, 124], Morgan [1451,
1452], and Osborn [1586] in 1896, is a evolution theory which remains controversial until
today [511, 1646]. Suzuki and Arita [1985] describe it as a “possible scenario of interactions
between evolution and learning caused by balances between benefit and cost of learning”
[2163]. Learning is a rather local phenomenon, normally involving only single individuals,
whereas evolution usually takes place in the global scale of a population. The Baldwin effect
combines both in two steps [2067]:

1. First, the lifetime learning gives the individuals the chance to adapt to their environment
or even to change their phenotype. This phenotypic plasticity5 may help the creatures to
increase their fitness and, hence, their probability to produce more offspring. Different
from Lamarckian evolution, the abilities attained this way do not influence the genotypes
nor are inherited.

3 http://en.wikipedia.org/wiki/Lamarckism [accessed 2008-09-10]

4 http://en.wikipedia.org/wiki/Baldwin_effect [accessed 2008-09-10]

5 http://en.wikipedia.org/wiki/Phenotypic_plasticity [accessed 2008-09-10]

http://en.wikipedia.org/wiki/Lamarckism
http://en.wikipedia.org/wiki/Baldwin_effect
http://en.wikipedia.org/wiki/Phenotypic_plasticity
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2. In the second phase, evolution step by step generates individuals which can learn these
abilities faster and easier and, finally, will have encoded them in their genome. Geno-
typical traits then replace the learning (or phenotypic adaptation) process and serve as
an energy-saving shortcut to the beneficial traits. This process is called genetic assimi-
lation6 [2128, 2129, 2130, 2131].

g GÎ

f(gpm(g))

with learning

without learning

Fig. 15.1.a: The influence of learning capabilities of individuals on the
fitness landscape according to [929, 930].

g GÎ

f(gpm(g))

with learning

without learning

Case 1:
increased
gradient

b

Case 2:
decreased
gradient

DgDg

Fig. 15.1.b: The positive and negative influence of learning capabilities
of individuals on the fitness landscape as in [1985].

Figure 15.1: The Baldwin effect.

Hinton and Nowlan [929, 930] were the first scientists performing experiments on the
Baldwin effect with genetic algorithms [169, 904]. They found that the evolutionary inter-
action with learning smoothens the fitness landscape [864] and illustrated this effect on
the example of a needle-in-a-haystack problem similar to Fig. 15.1.a. Mayley [1374] used
experiments on Kauffman’s NK fitness landscapes [1100] (see Section 21.2.1) to show that
the Baldwin effect can also have negative influence: Whereas learning adds gradient infor-
mation in regions of the search space which are distant from local or global optima (case
1 in Fig. 15.1.b), it decreases the information in their near proximity (called hiding effect
[1374, 1062], case 2 in Fig. 15.1.b). One interpretation of this issue is that learning capabil-
ities help individuals to survive in adverse conditions since they may find good abilities by
learning and phenotypic adaptation. On the other hand, it makes not much of a difference

6 http://en.wikipedia.org/wiki/Genetic_assimilation [accessed 2008-09-10]

http://en.wikipedia.org/wiki/Genetic_assimilation
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whether an individual learns certain abilities or whether it was already born with them when
it can exercise them at the same level of perfection. Thus, the selection pressure furthering
the inclusion of good traits in the heredity information decreases if a life form can learn or
adapt its phenotypes.

Suzuki and Arita [1985] found that the Baldwin effect decreases the evolution speed in
their rugged experimental fitness landscape, but also led to significantly better results in the
long term. By the way, Suzuki maintains a very nice bibliography on the Baldwin effect at
http://www.alife.cs.is.nagoya-u.ac.jp/~reiji/baldwin/ [accessed 2008-09-10].

Like Lamarckian evolution, the Baldwin effect can also be added to evolutionary algo-
rithms by performing a local search starting at each new offspring individual. Different from
Lamarckism, the abilities and characteristics attained by this process only influence the ob-
jective values of an individual and are not coded back to the genotypes. Hence, it plays no
role whether the search takes place in the search space G or in the problem space X. The
best objective values F (p′.x) found in a search around individual p become its own objective
values, but the modified variant p′ of p actually scoring them is discarded [2215]. Never-
theless, the implementer will store these individuals somewhere else if they were the best
solution candidates ever found. She must furthermore ensure that the user will be provided
with the correct objective values of the final set of solution candidates resulting from the
optimization process (F (p.x), not F (p′.x)).

15.4 Summary on Lamarckian and Baldwinian Evolution

Whitley et al. [2215] showed that both, Lamarckian and Baldwinian evolution, can improve
the performance of a genetic algorithm. In their experiments, the Lamarckian strategies were
generally faster but the Baldwin effect could provide better solution in some cases. Sasaki
and Tokoro [1808] furthermore showed that Lamarckian search is better if the environment
(i.e., the objective functions) is static whereas Baldwinian evolution leads to better results in
dynamic landscapes. This is only logical since in the Lamarckian case, the configurations with
the best objective values are directly encoded in the genome and we have highly specialized
genotypes. When applying the Baldwin effect, on the other hand, the genotypes can remain
general and only the phenotypes are adapted. The work of Paenke et al. [1598] on the
influence of phenotypic plasticity on the genotype diversity further substantiates the positive
effects of the Baldwin effect in dynamic environments.

15.5 General Information

15.5.1 Areas Of Application

Some example areas of application of Memetic Algorithms are:

Application References

Combinatorial Optimization [220, 307, 1395, 901, 2043]
Engineering, Structural Optimization, and Design [901]
Biochemistry [901]
Networking and Communication [2286, 1685]

see Section 23.2 on page 401
Scheduling [901]
Operations Research [886]

http://www.alife.cs.is.nagoya-u.ac.jp/~reiji/baldwin/
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Function Optimization [2042]

15.5.2 Online Resources

Some general, online available ressources on Memetic Algorithms are:

http://www.densis.fee.unicamp.br/~moscato/memetic_home.html [accessed 2008-04-03]

Last update: 2002-08-16
Description: The Memetic Algorithms’ Home Page by Pablo Moscato

15.5.3 Books

Some books about (or including significant information about) Memetic Algorithms are:

Hart, Krasnogor, and Smith [901]: Recent Advances in Memetic Algorithms
Corne, Dorigo, Glover, Dasgupta, Moscato, Poli, and Price [448]: New Ideas in Optimisation
Glover and Kochenberger [813]: Handbook of Metaheuristics
Grosan, Abraham, and Ishibuchi [862]: Hybrid Evolutionary Algorithms

http://www.densis.fee.unicamp.br/~moscato/memetic_home.html
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Downhill Simplex (Nelder and Mead)

16.1 Introduction

The downhill simplex1 (or Nelder-Mead method or amoeba algorithm2) published by Nelder
and Mead [1517] in 1965 is an single-objective optimization approach for searching the space
of n-dimensional real vectors (G ⊆ Rn) [1561, 1230]. Historically, it is closely related to the
simplex extension by Spendley et al. [1941] to the Evolutionary Operation method mentioned
in Section 2.1.6 on page 101 [1276]. Since it only uses the values of the objective functions
without any derivative information (explicit or implicit), it falls into the general class of
direct search methods [2260, 2054], as most of the optimization approaches discussed in this
book do.

Downhill simplex optimization uses n+1 points in the Rn. These points form a polytope3,
a generalization of a polygone, in the n-dimensional space – a line segment in R1, a triangle
in R2, a tetrahedron in R3, and so on. Nondegenerated simplexes, i.e., those where the set of
edges adjacent to any vertex form a basis in the Rn, have one important festure: The result
of replacing a vertex with its reflection through the opposite face is again, a nondegenerated
simplex (see Fig. 16.1.a). The goal of downhill simplex optimization is to replace the best
vertex of the simplex with an even better one or to ascertain that it is a candidate for
the global optimum [1276]. Therefore, its other points are constantly flipped around in an
intelligent manner as we will outline in Section 16.3.

Like hill climbing approaches, the downhill simplex may not converge to the global
minimum and can get stuck at local optima [1230, 1383, 2046]. Random restarts (as in Hill
Climbing with Random Restarts discussed in Section 10.5 on page 256) can be helpful here.

16.2 General Information

16.2.1 Areas Of Application

Some example areas of application of downhill simplex are:
1 http://en.wikipedia.org/wiki/Nelder-Mead_method [accessed 2008-06-14]

2 In the book Numerical Recipes in C++ by Press et al. [1675], this optimization method is called
“amoeba algorithm”.

3 http://en.wikipedia.org/wiki/Polytope [accessed 2008-06-14]

http://en.wikipedia.org/wiki/Nelder-Mead_method
http://en.wikipedia.org/wiki/Polytope
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Application References

Chemistry, Chemical Engineering [2142, 1401, 2127, 145]

Robotics [371]
Physics [1604, 1493]
Biochemistry [2293]
Data Mining and Data Analysis [1812]

16.2.2 Online Resources

Some general, online available ressources on downhill simplex are:

http://math.fullerton.edu/mathews/n2003/NelderMeadMod.html [accessed 2008-06-14]

Last update: 2004-07-22
Description: Nelder-Mead Search for a Minimum
http://www.boomer.org/c/p3/c11/c1106.html [accessed 2008-06-14]

Last update: 2003

Description: Nelder-Mead (Simplex) Method

16.2.3 Books

Some books about (or including significant information about) downhill simplex are:

Avriel [89]: Nonlinear Programming: Analysis and Methods
Walters, Morgan, Parker, Jr., and Deming [2142]: Sequential Simplex Optimization: A Tech-
nique for Improving Quality and Productivity in Research, Development, and Manufacturing
Press, Teukolsky, Vettering, and Flannery [1675]: Numerical Recipes in C++. Example Book.
The Art of Scientific Computing

16.3 The Downhill Simplex Algorithm

In Algorithm 16.1, we define the downhill simplex optimization approach. For simplification
purposes we set both, the problem and the search space, to the n-dimensional real vectors,
i. e., X ⊆ G ⊆ Rn. In the actual implementation, we can use any set as problem space,
given that a genotype-phenotype mapping gpm : Rn 7→ X is provided. Furthermore, notice
that we optimize only a single objective function f . We can easily extend this algorithm
for multi-objective optimization by using a comparator function cmpF based on a set of
objective functions F instead of comparing the values of f . In Algorithm 10.2, we have
created a multi-objective hill climbing method with the same approach.

For visualization purposes, we apply the downhill simplex method exemplarily to an
optimization problem with G = X = R2, where the simplex S consists of three points, in
Figure 16.1.

The optimization process described by Algorithm 16.1 starts with creating a sample of
n+1 random points in the search space in line 2. Here, the createPop operation must ensure
that these samples form a nondegenerated simplex. Notice that apart from the creation of
the initial simplex, all further steps are deterministic and do not involve random numbers.

In each search step, the points in the simplex S are arranged in ascending order according
to their corresponding objective values (line 4). Hence, the best solution candidate is S[0]

and the worst is S[n]. We then compute the center m of the n best points in line 5 and then

http://math.fullerton.edu/mathews/n2003/NelderMeadMod.html
http://www.boomer.org/c/p3/c11/c1106.html
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Algorithm 16.1: x⋆ ←− downhillSimplex(f)

Input: f : the objective function subject to minimization
Input: [implicit] n: the dimension of the search space
Input: [implicit] α, ρ, γ, σ: the reflection, the expansion, the contraction, and the shrink

coefficent
Data: S: the simplex
Data: m: the centroid of the simplex
Data: r: the reflexion
Data: e: the expansion
Data: c: the contraction
Data: i: a counter variable
Output: x⋆: the best solution candidate found

begin1

S ←− createPop(n+ 1)2

while terminationCriterion() do3

S ←− sortLista(S, f)4

m←− 1
n

∑n−1
i=0 S[i]5

// Reflection: reflect the worst point over m
r←−m + α (m− S[n])6

if f(S[0]) < f(r) < f(S[n]) then7

S[n]←− r8

else9

if f(r) < f(S[0]) then10

// Expansion: try to search farther in this direction

e←− r + γ (r−m)11

if f(e) < f(r) then S[n]←− e12

else S[n]←− r13

else14

b←− true15

if f(r) ≥ f(S[n−1]) then16

// Contraction: a test point between r and m
c←− ρr + (1− ρ)m17

if f(c) ≤ f(r) then18

S[n]←− c19

b←− false20

if b then21

// Shrink towards the best solution candidate S[0]

for i←− n down to 1 do22

S[i]←− S[0] + σ (S[i]− S[0])23

return S[0]24

end25

reflect the worst solution candidate S[n] through this point in line 6, obtaining the new point
r as also illustrated in Fig. 16.1.a. The reflection parameter α is usually set to 1.

In the case that r is somewhere in between of the points in the current simplex, i. e.,
neither better than S[0] nor as worse as S[n], we directly replace S[n] with it. This simple
move was already present in the first simplex algorithm defined by Spendley et al. [1941]. The
contribution of Nelder and Mead [1517] was to turn the simplex search into an optimization
algorithm by adding new options. These special operators were designed for speeding up
the optimization process by deforming the simplex in way that they suggested would better
adapt to the objective functions [1276].
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Fig. 16.1.a: Reflec-
tion
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Fig. 16.1.b: Expansion
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Fig. 16.1.d: Shrink-
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Figure 16.1: One possible step of the downhill simplex algorithm applied to a problem in
R2.

If r is better than the best solution candidate S[0], one of these operators is to expand
the simplex further into this promising direction (line 11). As sketched in Fig. 16.1.b, we
obtain the point e with the expansion parameter γ set to 1. We now choose the better one
of these two points in order to replace S[n].

If r was no better than S[n], we the simplex is contracted by creating a point c somewhere
in between of r and m in line 17. In Fig. 16.1.c, the contraction parameter ρ was set to 1

2 .
We substitute S[n] with c only if c is better than r,.

When everything else fails, we shrink the whole simplex in line 23 by moving all points
(except S[0]) into the direction of the current optimum S[0]. The shrinking parameter σ
normally has the value 1

2 , as is the case in the example outlined in Fig. 16.1.d.

16.4 Hybridizing with the Downhill Simplex

Interestingly, there are some similarities between evolutionary algorithms and the downhill
simplex. Takahama and Sakai [1999], for instance, argue that the downhill simplex can be
considered as an evolutionary algorithm with special selection and reproduction operators.
Each search step of Nelder and Mead’s algorithm could be regarded as an n-ary reproduction
operation for search spaces that are subsets the Rn. Also, there are vague similarities between
search operations of Differential Evolution (described in Section 5.5 on page 229), Particle
Swarm Optimization (introduced in Chapter 9 on page 249), and the reflection operator
of downhill simplex. The joint work of Jakumeit et al. [1038] and Barth et al. [155], for
example, goes into the direction of utilizing these similarities.

The research of Wang and Qiu [2144, 2146, 2145, 2147, 1680] focuses on the Hybrid
Simplex Method PSO (HSMPSO), which, as the name says, is hybridization of Particle
Swarm Optimization with Nelder and Mead’s algorithm. In this approach, the downhill
simplex operator is applied to each particle after a definite interval of iterations. Similar
ideas of combining PSO with simplex methods are pursued by Fan et al. [643, 642].

Gao and Wang [770] emphasize the close similarities between the reproduction operators
of Differential Evolution and the search step of the downhill simplex. Thus, it seems only
logical to combine the two methods in form of a new Memetic Algorithm. The Low Dimen-
sional Simplex Evolution (LDSE) of Luo and Yu [1333] incorporates the single search steps
of the downhill simplex applied to a number m of points which is lower than the actual
dimensionality of the problem n. Luo and Yu [1333, 1332] reported that this method is able
to outperform Differential Evolution when applied to the test function set of Ali et al. [38].

There exist various other methods of hybridizing real-coded genetic algorithms with
downhill simplex algorithm. Renders and Bersini [1719], for example, divide the population
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into groups of n + 1 genotypes and allow the genetic algorithm to choose the Nelder-Mead
simplex as additional reproduction operation besides crossover and simple averaging. The
concurrent simplex of Yen et al. [2293, 2294], [2292] uses a probabilistic simplex method with
n+Ω points instead of one, where the n best points are used to compute the centroid and
the other Ω > 1 points are reflected over it. They apply this idea to the top S individuals
in the population, obtain S − n children, and copy the best n individuals into the next
generation. The remaining (ps− S) genotypes (where ps is the population size) are created
according to the conventional genetic algorithm reproduction scheme.

Barbosa et al. [145] also use the downhill simplex as reproduction operator in a real-
coded genetic algorithm. Their operator performs up to a given number of simplex search
steps (20 in their work) and leads to improved results. Again, this idea goes more into
the direction of Memetic Algorithms. Further approaches for hybridizing genetic algorithms
with the downhill simplex have been contributed by Musil et al. [1493], Zhang et al. [2314],
[2313], and Satapathy et al. [1812].

The simplex crossover operator (SPX4) by Tsutsui et al. [2063], [925, 2061] also uses
a simplex structure based on n + 1 real vectors for n dimensional problem spaces. It is,
however, not directly related to the downhill simplex search.

4 This abbreviation is also used for single-point crossover, see Section 3.4.4.
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State Space Search

17.1 Introduction

State space search strategies1 are not directly counted to the optimization algorithms. In
global optimization, objective functions f ∈ F are optimized. Normally, all elements of the
problem space X are valid and only differ in their utility as solution. Optimization is about
to find the elements with the best utility. State space search is instead based on a criterion
isGoal : X 7→ B which determines whether an element of the problem space is a valid solution
or not. The purpose of the search process is to find elements x from the solution space S ⊆ X,
i. e., those for which isGoal(x) is true. [1780, 446, 569]

Definition 17.1 (isGoal). The function isGoal : X 7→ B is the target predicate of state
space search algorithms which states whether a given state x ∈ X is a valid solution (by
returning true), i. e., the goal state, or not (by returning false). isGoal thus corresponds
to membership in the solution space S defined in Definition 1.20 on page 42.

x ∈ S⇔ isGoal(x) = true (17.1)

We will be able to apply state space search strategies for global optimization if we
can define a threshold y̌i for each objective function fi ∈ F . If we assume minimization,
isGoal(x) becomes true if and only if the values of all objective functions for x drop below
given thresholds, and thus, we can define isGoal according to Equation 17.2.

isGoal(x) =

{
true if fi(x) ≤ y̌i ∀i ∈ 1.. |F |
false otherwise

(17.2)

In state space search algorithms, the search space G and the problem space X are often
identical. Most state space search can only be applied if the search space is enumerable.
One feature of the search algorithms introduced here is that they all are deterministic. This
means that they will yield the same results in each run (when applied to the same problem,
that is).

One additional operator needs to be defined for state space search algorithms: the
“expand” function which helps enumerating the search space.

Definition 17.2 (expand). The operator expand : G 7→ P(G) receives one element g from
the search space G as input and computes a set G of elements which can be reached from
it.

“expand” is the exploration operation of state space search algorithms. Different from
the mutation operator of evolutionary algorithms, it is strictly deterministic and returns a
set instead of single individual. Applying it to the same element g values will thus always

1 http://en.wikipedia.org/wiki/State_space_search [accessed 2007-08-06]

http://en.wikipedia.org/wiki/State_space_search
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yield the same set G. We can consider expand(g) to return the set of all possible results that
we could obtain with a unary search operation like mutation.

The realization of expand has severe impact on the performance of search algorithms. An
efficient implementation, for example, should not include states that have already been vis-
ited in the returned set. If the same elements are returned, the same solution candidates and
all of their children will be evaluated multiple times, which would be useless and time con-
suming. Another problem occurs if there are two elements g1, g2 ∈ G with g1 ∈ expand(g2)
and g2 ∈ expand(g1) exist. Then, the search would get trapped in an endless loop. Thus,
visiting a genotype twice should always be avoided. Often, it is possible to design the search
operations in a way preventing this from the start. Otherwise, tabu lists should be used, as
done in the previously discussed Tabu Search algorithm (see Chapter 14 on page 273).

Since we want to keep our algorithm definitions as general as possible, we will keep the
notation of individuals p that encompass a genotype p.g ∈ G and a phenotype p.x ∈ X.
Therefore, we need to an expansion operator that returns a set of individuals P rather than
a set G of elements of the search space. We therefore define the operation “expandToInd”
in Algorithm 17.1.

Algorithm 17.1: P ←− expandToInd(g)

Input: g: the element of the search space to be expanded
Data: i: a counter variable
Data: p: an individual record
Output: P : the list of individual records resulting from the expansion

begin1

G←− expand(g)2

P ←− ()3

for i←− 0 up to len(G)− 1 do4

p.g ←− G[i]5

// Implicitly: p⋆.x←− gpm(p⋆.g)
P ←− addListItem(P, p)6

return P7

end8

For all state space search strategies, we can define four criteria that tell if they are
suitable for a given problem or not.

1. Completeness. Does the search algorithm guarantee to find a solution (given that there
exists one)? (Do not mix up with the completeness of search operations specified
in Definition 1.27 on page 44.)

2. Time Consumption. How much time will the strategy need to find a solution?
3. Memory Consumption. How much memory will the algorithm need to store intermediate

steps? Together with time consumption this property is closely related to complexity
theory, as discussed in Section 30.1.3 on page 550.

4. Optimiality. Will the algorithm find an optimal solution if there exist multiple correct
solutions?

Search algorithms can further be classified according to the following definitions:

Definition 17.3 (Local Search). Local search algorithms work on a single current state
(instead of multiple solution candidates) and generally transcend only to neighbors of the
current state [1780].

Local search algorithms are not systematic but have two major advantages: They use
very little memory (normally only a constant amount) and are often able to find solutions
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in large or infinite search spaces. These advantages come, of course, with large trade-offs in
processing time.

We can consider local searches as special case of global searches which incorporate larger
populations. If the previously mentioned requirements are met, global search, in turn, can
be regarded as a special case of global optimization algorithms.

17.2 General Information

17.2.1 Areas Of Application

Some example areas of application of State space search are:

Application References

Networking and Communication [1918, 1637, 1952]
see Section 23.2 on page 401

17.2.2 Books

Some books about (or including significant information about) State space search are:

Russell and Norvig [1780]: Artificial Intelligence: A Modern Approach
Bednorz [166]: Advances in Greedy Algorithms

17.3 Uninformed Search

The optimization algorithms that we have considered up to now always require some sort
of utility measure. These measures, the objective functions, are normally real-valued and
allow us to make fine distinctions between different individuals. Under some circumstances,
however, only a criterion isGoal is given as a form of Boolean objective function. The methods
previously discussed will then not be able to descend a gradient anymore and degenerate to
random walks (see Section 17.3.5 on page 294).

Here, uninformed search strategies2 are a viable alternative since they do not require
or take into consideration any knowledge about the special nature of the problem (apart
from the knowledge represented by the expand operation, of course). Such algorithms are
very general and can be applied to a wide variety of problems. Their common drawback is
that search spaces are often very large. Without the incorporation of information in form
of heuristic functions, for example, the search may take very long and quickly becomes
infeasible [1780, 446, 569].

17.3.1 Breadth-First Search

In breadth-first search3 (BFS), we start with expanding the root solution candidate. Then
all of the states derived from this expansion are visited, and then all their children, and so
on. In general, we first expand all states in depth d before considering any state in depth
d+ 1.

It is complete, since it will always find a solution if there exists one. If so, it will also find
the solution that can be reached from the root state with the least expansion steps. Hence,
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Algorithm 17.2: X⋆ ←− bfs(r, isGoal)

Input: r: the root individual to start the expansion at
Input: isGoal: an operator that checks whether a state is a goal state or not
Data: p: the state currently processed
Data: P : the queue of states to explore
Output: X⋆: the solution states found, or ∅
begin1

P ←− createList(1, r)2

while len(P ) > 0 do3

p←− deleteListItem(P, 0)4

if isGoal(p.x) then return {p.x}5

P ←− appendList(P, expandToInd(p.g))6

return ∅7

end8

if the number of expansion steps needed from the origin to a state is a measure for the costs,
BFS is also optimal.

Algorithm 17.2 illustrates how breadth-first search works. The algorithm is initialized
with a root state r ∈ G which marks the starting point of the search. BFS uses a state list
P which initially only contains this root individual. In a loop, the first element p is removed
from this list. If the goal predicate isGoal(p.x) evaluates to true, p.x is a goal state and we
can return a set X⋆ = {p.x} containing it as the solution. Otherwise, we expand p.g and
append the newly found individuals to the end of queue P . If no solution can be found, this
process will continue until the whole accessible search space has been enumerated and P
becomes empty. Then, an empty set is returned in place of X⋆, because there is no element
x in the (accessible part of the) problem space X for which isGoal(x) becomes true.

In order to examine the space and time complexity of BFS, we assume a hypothetical state
space Gh where the expansion of each state g ∈ Gh will return a set of len(expand(g)) = b
new states. In depth 0, we only have one state, the root state r. In depth 1, there are b
states, and in depth 2 we can expand each of them to again, b new states which makes b2,
and so on. Up to depth d we have a number of states total of

1 + b+ b2 + · · ·+ bd =
bd+1 + 1

b− 1
∈ O

(
bd
)

(17.3)

We have both, a space and time complexity from O
(
bd
)
. In the worst case, all nodes in

depth d need to be stored, in the best case only those of depth d− 1.

17.3.2 Depth-First Search

Depth-first search4 (DFS) is very similar to BFS. From the algorithmic point of view, the
only difference that it uses a stack instead of a queue as internal storage for states (compare
line 4 in Algorithm 17.3 with line 4 in Algorithm 17.2). Here, always the last state element
of the set of expanded states is considered next. Thus, instead of searching level for level in
the breath as BFS does, DFS searches in depth (which – believe it or not – is the reason for
its name). DFS advances in depth until the current state cannot further be expanded, i. e.,
expand(p.g) = (). Then, the search steps again up one level. If the whole search space has
been browsed and no solution is found, ∅ is returned.

The memory consumption of the DFS is linear, because in depth d, at most d ∗ b states
are held in memory. If we assume a maximum depth m, the time complexity is bm in the

2 http://en.wikipedia.org/wiki/Uninformed_search [accessed 2007-08-07]

3 http://en.wikipedia.org/wiki/Breadth-first_search [accessed 2007-08-06]

4 http://en.wikipedia.org/wiki/Depth-first_search [accessed 2007-08-06]

http://en.wikipedia.org/wiki/Uninformed_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
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Algorithm 17.3: X⋆ ←− dfs(r, isGoal)

Input: r: the root individual to start the expansion at
Input: isGoal: an operator that checks whether a state is a goal state or not
Data: p: the state currently processed
Data: P : the queue of states to explore
Output: X⋆: the solution states found, or ∅
begin1

P ←− createList(1, r)2

while len(P ) > 0 do3

p←− deleteListItem(P, len(P )− 1)4

if isGoal(p.x) then return {p.x}5

P ←− appendList(P, expandToInd(p.g))6

return ∅7

end8

worst case where the solution is the last child state in the path explored the last. If m is
very large or infinite, a DFS may take very long to discover a solution or will not find it at
all, since it may get stuck in a “wrong” branch of the state space. Hence, depth first search
is neither complete nor optimal.

17.3.3 Depth-limited Search

The depth-limited search5 [1780] is a depth-first search that only proceeds up to a given
maximum depth d. In other words, it does not examine solution candidates that are more
than d expand-operations away from the root state r, as outlined in Algorithm 17.4 in a
recursive form. Analogously to the plain depth first search, the time complexity now becomes
bd and the memory complexity is in O(b ∗ d). Of course, the depth-limited search can neither
be complete nor optimal. If a maximum depth of the possible solutions however known, it
may be sufficient.

Algorithm 17.4: X⋆ ←− dl dfs(r, isGoal, d)

Input: r: the root individual to start the expansion at
Input: isGoal: an operator that checks whether a state is a goal state or not
Input: d: the (remaining) allowed depth steps
Data: p: the state currently processed
Output: X⋆: the solution states found, or ∅
begin1

if isGoal(r.x) then return {r.x}2

if d > 0 then3

foreach p ∈ expandToIndr.g do4

X⋆ ←− dl dfs(p, isGoal, d− 1)5

if len(X⋆) > 0 then return X⋆
6

return ∅7

end8

5 http://en.wikipedia.org/wiki/Depth-limited_search [accessed 2007-08-07]

http://en.wikipedia.org/wiki/Depth-limited_search
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17.3.4 Iterative Deepening Depth-First Search

The iterative deepening depth-first search6 (IDDFS, [1780]), defined in Algorithm 17.5,
iteratively runs a depth-limited DFS with stepwise increasing maximum depths d. In each
iteration, it visits the states in the according to the depth-first search. Since the maximum
depth is always incremented by one, one new level in terms means of distance in expand-
operations from the root is explored in each iteration. This effectively leads to some form of
breadth-first search.

IDDFS thus unites the advantages of BFS and DFS: It is complete and optimal, but only
has a linearly rising memory consumption in O(d ∗ b). The time consumption, of course, is
still in O

(
bd
)
. IDDFS is the best uninformed search strategy and can be applied to large

search spaces with unknown depth of the solution.
The Algorithm 17.5 is intended for infinitely large search spaces. In real systems, there

is a maximum d̂ after which the whole space would be explored and the algorithm should
return ∅ if no solution was found.

Algorithm 17.5: X⋆ ←− iddfs(r, isGoal)

Input: r: the root individual to start the expansion at
Input: isGoal: an operator that checks whether a state is a goal state or not
Data: d: the current depth limit
Output: X⋆: the solution states found, or ∅
begin1

d←− 02

repeat3

X⋆ ←− dl dfs(r, isGoal, d)4

d←− d+ 15

until len(X⋆) > 06

return X⋆
7

end8

17.3.5 Random Walks

Random walks7 (sometimes also called drunkard’s walk) are a special case of undirected,
local search. Instead of proceeding according to some schema like depth-first or breadth-first,
the next solution candidate to be explored is always generated randomly from the currently
investigated one. [974, 649] Under some special circumstances, random walks can be the
search algorithms of choice. This for instance the case in

1. If we encounter a state explosion because there are too many states to which we can
possible transcend to and methods like breadth-first search or iterative deepening depth-
first search cannot be applied because they would consume too much memory.

2. In certain cases of online search it is not possible to apply systematic approaches like
BFS or DFS. If the environment, for instance, is only partially observable and each state
transition represents an immediate interaction with this environment, we are maybe not
able to navigate to past states again. One example for such a case is discussed in the
work of Skubch [1897, 1898] about reasoning agents.

6 http://en.wikipedia.org/wiki/IDDFS [accessed 2007-08-08]

7 http://en.wikipedia.org/wiki/Random_walk [accessed 2007-11-27]

http://en.wikipedia.org/wiki/IDDFS
http://en.wikipedia.org/wiki/Random_walk
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Random walks are often used in optimization theory for determining features of a fitness
landscape. Measures that can be derived mathematically from a walk model include esti-
mates for the number of steps needed until a certain configuration is found, the chance to
find a certain configuration at all, and the average difference of the objective values of two
consecutive populations. From practically running random walks, some information about
the search space can be extracted. Skubch [1897, 1898], for instance, uses the number of en-
counters of certain state transition during the walk in order to successively build a heuristic
function.

17.4 Informed Search

In an informed search8, a heuristic function h helps to decide which states are to be expanded
next. If the heuristic is good, informed search algorithms may dramatically outperform
uninformed strategies [1407, 1711, 1626].

As specified in Definition 1.2 on page 22, heuristic functions are problem domain depen-
dent. In the context of an informed search, a heuristic function h : X 7→ R+ maps the states
in the state space G to the positive real numbers R+. We further define that all heuristics
will be zero for the elements which are part of the solution space S, i. e.,

∀x ∈ X : isGoal(x)⇒ h(x) = 0 ∀heuristics h : X 7→ R+ (17.4)

There are two possible meanings of the values returned by a heuristic function h:

1. In the above sense, the value of a heuristic function h(p.x) for an individual p is the
higher, the more expand-steps p.g is probably (or approximately) away from finding a
valid solution. Hence, the heuristic function represents the distance of an individual to
a solution in solution space.

2. The heuristic function can also represent an objective function in some way. Suppose that
we know the minimal value y̌ for an objective function f or at least a value from where
on all solutions are feasible. If this is the case, we could set h(p.x) = max {0, f(p.x)− y̌},
assuming that f is subject to minimization. Now the value of heuristic function will be
the smaller, the closer an individual is to a possible correct solution and Equation 17.4
still holds. In other words, a heuristic function may also represent the distance to a
solution in objective space.

Of course, both meanings are often closely related since states that are close to each other
in problem space are probably also close to each other in objective space (the opposite does
not necessarily hold).

A best-first search9 [1626] is a search algorithm that incorporates such a heuristic function
h in a way which ensures that promising individuals p with low estimation values h(p.x) are
evaluated before other states q that receive a higher values h(q.x) > h(p.x).

17.4.1 Greedy Search

A greedy search10 is a best-first search where the currently known solution candidate with
the lowest heuristic value is investigated next. The greedy algorithm internal sorts the list
of currently known states in descending order according to a heuristic function h. Thus, the
elements with the best (lowest) heuristic value will be at the end of the list, which then

8 http://en.wikipedia.org/wiki/Search_algorithms#Informed_search [accessed 2007-08-08]

9 http://en.wikipedia.org/wiki/Best-first_search [accessed 2007-09-25]

10 http://en.wikipedia.org/wiki/Greedy_search [accessed 2007-08-08]

http://en.wikipedia.org/wiki/Search_algorithms#Informed_search
http://en.wikipedia.org/wiki/Best-first_search
http://en.wikipedia.org/wiki/Greedy_search
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can be used as a stack. The greedy search as specified in Algorithm 17.6 now works like a
depth-first search on this stack and thus, also shares most of the properties of the DFS. It
is neither complete nor optimal and its worst case time consumption is bm. On the other
hand, like breadth-first search, its worst-case memory consumption is also bm.

Algorithm 17.6: X⋆ ←− greedySearch(r, isGoal, h)

Input: r: the root individual to start the expansion at
Input: isGoal: an operator that checks whether a state is a goal state or not
Input: h: the heuristic function
Data: p: the state currently processed
Data: P : the queue of states to explore
Output: X⋆: the solution states found, or ∅
begin1

P ←− createList(1, r)2

while len(P ) > 0 do3

P ←− sortListd(P, cmp(p1, p2) ≡ h(p1.x)− h(p2.x))4

p←− deleteListItem(P, len(P )− 1)5

if isGoal(p.x) then return {p.x}6

P ←− appendList(P, expandToInd(p.g))7

return ∅8

end9

17.4.2 A⋆ search

In A⋆ search11 is a best-first search that uses a estimation function h⋆ : X 7→ R+ which is
the sum of a heuristic function h(x) that estimates the costs needed to get from x to a valid
solution and a function g(x) that computes the costs that are needed to get to x.

h⋆(x) = g(x) + h(x) (17.5)

A⋆ search proceeds exactly like the greedy search outlined in Algorithm 17.6, if h⋆ is
used instead of plain h. An A⋆ search will definitely find a solution if there exists one, i. e.,
it is complete.

Definition 17.4 (Admissible Heuristic Function). A heuristic function h : X 7→ R+ is
admissible if it never overestimates the minimal costs for reaching a goal state.

Definition 17.5 (Monotonic Heuristic Function). A heuristic function h : X 7→ R+ is
monotonic12 if it never overestimates the costs for getting from one state to its successor.

h(p.x) ≤ g(q.x)− g(p.x) + h(q.x) ∀q.g ∈ expand(p.g) (17.6)

An A⋆ search is optimal if the heuristic function h used is admissible. Optimal in this
case means that there exists no search algorithm that can find the same solution as the A⋆

search needing fewer expansion steps if using the same heuristic. If we implement expand in
a way which prevents that a state is visited more than once, h also needs to be monotone
in order for the search to be optimal.

11 http://en.wikipedia.org/wiki/A%2A_search [accessed 2007-08-09]

12 see Definition 27.28 on page 463

http://en.wikipedia.org/wiki/A%2A_search
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17.4.3 Adaptive Walks

An adaptive walk is a theoretical optimization method which, like a random walk, usually
works on a population of size 1. It starts at a random location in the search space and
proceeds by changing (or mutating) its single solution candidate. For this modification,
three methods are available:

1. One-mutant change: The optimization process chooses a single new individual from the
set of “one-mutant change” neighbors, i. e., a neighboring individual differing from the
current solution candidate in only one property. If the new individual is better, it replaces
its ancestor, otherwise it is discarded.

2. Greedy dynamics: The optimization process chooses a single new individual from the set
of “one-mutant change” neighbors. If it is not better than the current solution candi-
date, the search continues until a better one has been found or all neighbors have been
enumerated. The major difference to the previous form is the number of steps that are
needed per improvement.

3. Fitter Dynamics: The optimization process enumerates all one-mutant neighbors of the
current solution candidate and transcends to the best one.

From these elaborations, it becomes clear that adaptive walks are very similar to hill
climbing and Random Optimization. The major difference is that an adaptive walk is a
theoretical construct that, very much like random walks, helps us to determine properties of
fitness landscapes whereas the other two are practical realizations of optimization algorithms.

Adaptive walks are a very common construct in evolutionary biology. Biological popula-
tions are running for a very long time and so their genetic compositions are assumed to be rel-
atively converged [807, 44]. The dynamics of such populations in near-equilibrium states with
low mutation rates can be approximated with one-mutant adaptive walks [1903, 807, 44].
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Parallelization and Distribution

As already stated many times, global optimization problems are often computational in-
tense. Up until now, we have only explored the structure and functionality of optimization
algorithms without paying attention to their potential of parallelization or even distribu-
tion1.

Roughly speaking, parallelization2 means to search for pieces of code that can potentially
run concurrently and letting them execute by different processors [1984, 184]. Take painting
a fence for example. Here, the overall progress will be much faster if more than one painter
applies the color to the wood. Distribution3 is a special case of parallelization where the
different processors are located on different machines in a network [146, 2010]. Imagine that
each fence-painter would take a piece of the fence to his workshop where he can use a special
airbrush which can color the whole piece at once. Distribution comes with the trade-off of
additional communication costs for transporting the data, but has the benefit that it is more
generic. At the current time, off-the-shelf PCs usually have not more than two CPUs. This
limits the benefit of local parallelization. We can, however, connect arbitrarily many of such
computers in a network for distributed processing.

18.1 Analysis

In order to understand which parts of an optimization algorithm can be parallelized, the
first step is an analysis. We will do such an analysis for evolutionary algorithms as example
for population-based optimizers.4. The parallelization and distribution of evolutionary algo-
rithms has long been a subject to study and has been discussed by multiple researchers like
Alba and Tomassini [34], Cant’u-Paz [329, 330], Tan et al. [2003], Tanese [2007], Mühlenbein
[1478], and Bollini and Piastra [244].

There are two components of evolutionary algorithms whose performance potentially can
remarkably be increased by parallelization: the evaluation and the reproduction stages. As
sketched in Figure 18.1, evaluation is a per-individual process. The values of the objective
functions are determined for each solution candidate independently from the rest of the pop-
ulation. Evaluating the individuals often involves complicated simulations and calculations
and is thus usually the most time-consuming part of evolutionary algorithms.

During the fitness assignment process, it is normally required to compare solution can-
didates with the rest of the population, to compute special sets of individuals, or to update
some data structures. This makes it very hard for parallelization to provide any speedup.

1 Section 30.2 on page 553 gives a detailed introduction into distributed algorithms, their advan-
tages and drawbacks.

2 http://en.wikipedia.org/wiki/Parallelization [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Distributed_computing [accessed 2007-11-30]

4 In Section 2.1.3 on page 98 you can find the basic evolutionary algorithm.

http://en.wikipedia.org/wiki/Parallelization
http://en.wikipedia.org/wiki/Distributed_computing
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The selection phase may or may not require access to certain subsets of the population
or data updates. Whether parallelization is possible or is beneficial thus depends on the
selection scheme applied.

The reproduction phase, on the other hand, can very easily be parallelized. It involves
creating a new individual by using (but not altering) the information from n existing ones,
where n = 0 corresponds to the creation operation, n = 1 resembles mutation, and n = 2
means recombination. Thus, the making of each new genotype is an independent task.

Reproduction Selection

Evaluation
Fitness

AssignmentInitial Population

Figure 18.1: Parallelization potential in evolutionary algorithm.

Despite running an evolutionary algorithm in single a thread5 of execution (see
Figure 18.2), our analysis has shown that makes sense to have at least the evaluation and
reproduction phase executed in parallel as illustrated in Figure 18.3. Usually, the population
is larger than the number of available CPUs6, so one thread could be created per processors
that consecutively pulls individuals out of a queue and processes them. This approach even
yields performance gains on off-the-shelf personal computers since these nowadays at least
come with hyper-threading7 technology [2064, 1564] or even dual-core8 CPUs [1165, 1891].

single thread / local machine

Initial. Eval. Fitness.

Select.Reprod.

Figure 18.2: A sequentially proceeding evolutionary algorithm.

5 http://en.wikipedia.org/wiki/Thread_%28computer_science%29 [accessed 2007-07-03]

6 http://en.wikipedia.org/wiki/Cpu [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Hyper-threading [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Dual-core [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Cpu
http://en.wikipedia.org/wiki/Hyper-threading
http://en.wikipedia.org/wiki/Dual-core


18.2 Distribution 301

local machine

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.

main thread

worker thread

worker thread

Figure 18.3: A parallel evolutionary algorithm with two worker threads.

Cant’u-Paz [328] divides parallel evolutionary algorithms into two main classes:

1. In globally parallelized EAs, each individual in the population can (possibly) always
mate with any other.

2. In coarse grained approaches, the population is divided into several sub-populations
where mating inside a sub-population is unrestricted but mating between individuals of
different sub-populations may only take place occasionally according to some rule.

In ancient Greece, a deme was a district or township inhabited by a group that formed
an independent community. They were the basic units of government in Attica as remodeled
by Cleisthenes around 500 BC. In biology, a deme is a locally interbreeding group within a
geographic population.

Definition 18.1 (Deme). In evolutionary algorithms, a deme is a distinct sub-population.

In the following, we are going to discuss some of the different parallelization methods
from the viewpoint of distribution because of its greater generality.

18.2 Distribution

The distribution of an algorithm only pays off if the delay induced by the transmissions
necessary for data exchange is much smaller than the time saved by distributing the com-
putational load. Thus, in some cases distributing of optimization is useless. If searching for
the root of a mathematical function for example, transmitting the parameter vector x to
another computer will take much longer than computing the function f(x) locally. In this
section, we will investigate some basic means to distribute evolutionary algorithms that can
as well as be applied to other optimization methods as outlined by Weise and Geihs [2177].

18.2.1 Client-Server

If the evaluation of the objective functions is time consuming, the easiest approach to dis-
tribute and evolutionary algorithm is the client-server scheme (also called master-slave).9

Figure 18.4 illustrates how we can make use of this very basic, global distribution scheme.
Here, the servers (slaves) receive the single tasks, process them, and return the results.

9 A general discussing concerning the client-server architecture can be found in Section 30.2.2 on
page 556
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Such a task can, for example, be the reproduction of one or two individuals and the sub-
sequent determination of the objective values of the offspring. The client (or master) just
needs to distribute the parent individuals to the servers and receives their fully evaluated
offspring in return. These offspring are then integrated into the population, where fitness
assignment and selection is performed. Client-server-based distribution approaches for evo-
lutionary algorithms have been discussed and tested by Van Veldhuizen et al. [2102], Xu
et al. [2271], Dubreuil et al. [604] and were realized in general-purpose software packages by
Cahon et al. [323], Luke et al. [1327], and Weise and Geihs [2177].

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.
Client/Master

Server/Slave

Server/Slave

Figure 18.4: An EA distributed according to the client-server approach.

One practical realization of this approach can be to use a queue where all the selected
individuals are pushed into as mating pool. Each server in the network is then represented
by a thread on the client side. Such a thread pulls individuals from the queue, sends them
to its corresponding server, and waits for the result to be returned. It places the individuals
it receives into the new population and then starts over again. Servers may possess multiple
processors, which can be taken into account by representing them by an appropriate number
of threads.

18.2.2 Island Model

Under some circumstances, the client-server approach may not be optimal, especially if

1. Processing of the tasks is fast relatively to the amount of time needed for the data
exchange between the client and the server. In other words, if messages that have to be
exchanged travel longer than the work would take if performed locally, the client-server
method would actually slow down the system.

2. Populations are required that cannot be held completely in the memory of a single
computer. This can be the case either if the solution candidates are complex and memory
consuming or the nature of the problem requires large populations.

In such cases, we can again learn from nature. Until now we only have imitated evolution
on one large continent. All individuals in the population compete with each other and
there are no barriers between the solution candidates. In reality, there occur obstacles like
mountain ranges or oceans, separating parts of the population and creating isolated sub-
populations. Another example for such a scenario is an archipelago like the Galapagos islands
where Darwin [485], the father of the evolution theory, performed his studies. On the single
islands, different species can evolve independently. From time to time, a few individuals
from one isle migrate another one, maybe by traveling on a tree trunk over the water or
by been blown there by a storm. If they are fit enough in their new environment, they can
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compete with the local population and survive. Otherwise, they will be extruded by the
native residents of the habitat. This way, the islands manage an approximately equal level
of fitness of their individuals, while still preserving a large amount of diversity.

Initial. Eval. Fitness.

Select.Reprod.

P2P
Network

Initial. Eval. Fitness.

Select.Reprod.

P2P-Node

P2P-Node

Figure 18.5: An evolutionary algorithm distributed in a P2P network.

We can easily copy this natural role model in evolutionary algorithms by using multiple
sub-populations (demes) as discussed by Cohoon et al. [426], Martin et al. [1365], Skolicki and
De Jong [1896, 1895], Gorges-Schleuter [836], Tanese [2007], and Toshine et al. [2048] and also
realized in various software packages such as those created by Whitley and Starkweather
[2213], Paechter et al. [1597], Tan et al. [2003], Arenas et al. [83], Chong and Langdon
[398], Luke et al. [1327], Cahon et al. [323], and Weise and Geihs [2177]. Distributing the
demes on n different nodes in a network of computers, each representing one island, is
maybe the most popular form of coarse grained parallelization. Hence, both disadvantages
of the original master/slave approach are circumvented: Communication between nodes is
only needed when individuals migrate between them. This communication can be performed
asynchronously to the n independently running evolutionary algorithms and does not slow
down their performance. The migration rule can furthermore be chosen in a way that reduces
the network traffic. By dividing the population, the number of solution candidates to be held
on single machines also decreases, which helps to mitigate the memory consumption problem.

The island model can be realized by peer-to-peer networks10 where each node runs an
independent evolution, as illustrated in Figure 18.5. Here, we have modified the selection
phase which now returns some additional individuals to be transmitted to another node in
the system. Depending on the optimization problems, solution candidates migrating over the
network can either enter the fitness assignment process on the receiving machine directly
or may take part in the evaluation process first. If the latter is the case, different objective
functions can applied on different nodes.

10 P2P networks are discussed in Section 30.2.2 on page 557.
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Driving this thought further, one will recognize that the peer-to-peer approach inher-
ently allows mixing of different optimization technologies, as outlined by Weise and Geihs
[2177]. On one node, for instance, the SPEA2-algorithm (see ?? on page ??) can be per-
formed, whereas another node could optimize according to plain hill climbing as described
in Chapter 10 on page 253. Such a system, illustrated in Figure 18.6, has a striking advan-
tage. From the No Free Lunch Theorem discussed in Section 1.4.10 on page 76, we know
that for optimization algorithms perform differently for different problems. If the problem
is unimodal, i. e., has exactly one global optimum and no local optima, a hill climbing ap-
proach will outperform any other technique since it directly converges to this optimum.
If the fitness landscape is rugged, one the other hand, methods like SPEA2 which have a
very balanced exploration/exploitation proportion are able to yield better results and hill
climbing algorithms will get stuck to local optima. In most cases, it is not possible to know
beforehand which optimization strategy will perform best. Furthermore, the best approach
may even change while the optimization proceeds. If a new, better individual evolves, i. e., a
new optimum is approached, hill climbing will be fast in developing this solution candidate
further until its best form is found, i.e., the bottom of the local optimum is reached. In other
phases, an exploration of the solution space may be required since all known local optima
have been tracked. A technology like Ant Colony Optimization could now come into play.
A heterogeneous mixture of these algorithms that exchanges individuals from time to time
will retain the good properties of the single algorithms and, in many cases, outperform a ho-
mogeneous search [1275, 1023, 24, 95, 2283]. Just remember how our discussion of Memetic
Algorithms in Chapter 15 on page 277.

P2P
Network

Ant
Colony

Optimiz.
Sim.

Annealing

Hill
Climbing

SPEA2

NSGA2

Figure 18.6: An example for a heterogeneous search.

The island model can also be applied locally by simply using disjoint local populations.
Although this would not bring a performance gain, it could improve the convergence behavior
of the optimization algorithm. Spieth et al. [1943], for instance, argue that the island model
can be used to preserve the solution diversity. By doing so it decreases the probability of
premature convergence (see Section 1.4.2 on page 58).

Broadcast-Distributed Parallel Evolutionary Algorithm

The Broadcast-Distributed Parallel Evolutionary Algorithm (BDP) defined by Johnson et al.
[1060] extends the island model for large networks of wirelessly connected, resource-restricted
devices such as sensor networks, amorphous and paintable computing systems. In the BDP,
each node carries a separate population from which one individual is selected after each
generation. This individual is broadcasted to the neighbors of the node. Every time a node
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receives an individual, it appends it to an internal mate list. Whenever the length of this
list exceeds a certain threshold, selection and subsequent crossover is performed on the joint
set of the population and the individuals in the mate list.

18.2.3 Mixed Distribution

Of course, we can combine the both distribution approaches previously discussed by having
a peer-to-peer network that also contains client-server systems, as sketched in Figure 18.7.
Such a system will be especially powerful if we need large populations of individuals that
take long to evaluate. Then, the single nodes in the peer-to-peer network together provide
a larger virtual population, while speeding up their local evolutions by distributing the
computational load to multiple servers.

Initial. Eval. Fitness.

Select.Reprod.P2P-Node

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.

P2P-Node
Client/Master

Server/Slave

Server/Slave

P2P
Network

Figure 18.7: A mixed distributed evolutionary algorithms.

18.3 Cellular Genetic Algorithms

Cellular Genetic Algorithms [33] are a special family of parallelization models for genetic
algorithms which has been studied by various researchers such as Whitley [2212, 2208],
Manderick and Spiessens [1353], Hillis [928], and Davidor [490]. A good understanding of
this model can be reached by starting with the basic architecture of the cellular system as
described by Whitley [2208].

Assume we have a matrix m of N × N cells. Each cell has a processor and holds one
individual of the population. It can communicate with its right, left, top, and bottom neigh-
bor. Cells at the edge of the matrix are wired with cells in the same column/row at the
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opposite edge. The cell mI,j can thus communicate with m(i+1) mod N,j , m(i−1) mod N,j ,
mi,(j+1) mod N , and mi,(j−1) mod N . It is also possible to extend this neighborhood to all
cells in a given Manhattan distance, but let us stick with the easiest case.

Each cell can evaluate the individual it locally holds. For creating offspring, it can either
mutate this individual or recombine it with one selected from of the four solution candidates
on its neighbors. At the beginning, the matrix is initialized with random individuals. After
some time, the spatial restriction of mating leads to the occurrence of local neighborhoods
with similar solution candidates denoting local optima. These hoods begin to grow until they
touch each other. Then, the regions better optima will “consume” worse ones and reduce
the overall diversity.

Although there are no fixed mating restrictions like in the island model, regions that
are about twenty or so moves away will virtually not influence each other. We can consider
groups of cells that distant as separate sub-populations. This form of separation is called
isolation by distance – again, a term that originally stems from biology (coined by Wright
[2261]). [2208, 432, 1478, 836] For observing such effects, it is said that a certain minimum
of cells is required – at least about 1000 according to Whitley [2208].
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Maintaining the Optimal Set

Most multi-objective optimization algorithms return a set of optimal solutions X⋆ instead of
a single individual x⋆. Many optimization techniques also internally keep track of the set of
best solution candidates encountered during the search process. In Simulated Annealing, for
instance, it is quite possible to discover an optimal element x⋆ and subsequently depart from
it to a local optimum x⋆

l . Therefore, optimizers normally carry a list of the non-prevailed
solution candidates ever visited with them.

In scenarios where the search space G differs from the problem space X it often makes
more sense to store the list of optimal individual records P ⋆ instead of just keeping the
optimal phenotypes x⋆. Since the elements of the search space are no longer required at the
end of the optimization process, we define the simple operation extractPhenotypes which
extracts them from a set of individuals P .

∀x ∈ extractPhenotypes(P )⇒ ∃p ∈ P : x = p.x (19.1)

19.1 Updating the Optimal Set

Whenever a new individual p is created, the set of optimal individuals P ⋆ may change. It is
possible that the new solution candidate must be included in the optimal set or even prevails
some of the phenotypes already contained therein which then must be removed.

Definition 19.1 (updateOptimalSet). The function updateOptimalSet updates a set of op-
timal elements P ⋆

old with the new solution candidate pnew.x. It uses implicit knowledge of
the prevalence relation ≻ and the corresponding comparator function cmpF .

P ⋆
new = updateOptimalSet(P ⋆

old, pnew) ,
P ⋆

old, P
⋆
new ⊆ G× X, pnew ∈ G× X :

∀p1 ∈ P ⋆
old ∄p2 ∈ P ⋆

old : p2.x≻p1.x ⇒ P ⋆
new ⊆ P ⋆

old ∪ {pnew}∧
∀p1 ∈ P ⋆

new ∄p2 ∈ P ⋆
new : p2.x≻p1.x

(19.2)

We define two equivalent approaches in Algorithm 19.1 and Algorithm 19.2 which perform
the necessary operations. Algorithm 19.1 creates a new, empty optimal set and successively
inserts optimal elements whereas Algorithm 19.2 removes all elements which are prevailed
by the new individual pnew from the old optimal set P ⋆

old.
Especially in the case of evolutionary algorithms, not a single new element is created

in each generation but a set P . Let us define the operation updateOptimalSetN for this
purpose. This operation can easily be realized by iteratively applying updateOptimalSet, as
shown in Algorithm 19.3.
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Algorithm 19.1: P ⋆
new ←− updateOptimalSet(P ⋆

old, pnew)

Input: P ⋆
old: the optimal set as known before the creation of pnew

Input: pnew: a new individual to be checked
Output: P ⋆

new: the optimal set updated with the knowledge of pnew

begin1

P ⋆
new ←− ∅2

foreach pold ∈ P ⋆
old do3

if pnew.x≻pold.x then4

P ⋆
new ←− P ⋆

new ∪ {pold}5

if pold.x≻pnew.x then return P ⋆
old6

return P ⋆
new ∪ {pnew}7

end8

Algorithm 19.2: P ⋆
new ←− updateOptimalSet(P ⋆

old, pnew) (2nd Version)

Input: P ⋆
old: the optimal set as known before the creation of pnew

Input: pnew: a new individual to be checked
Output: P ⋆

new: the optimal set updated with the knowledge of pnew

begin1

P ⋆
new ←− P ⋆

old2

foreach pold ∈ P ⋆
old do3

if pnew.x≻pold.x then4

P ⋆
new ←− P ⋆

new \ {pold}5

else if pold.x≻pnew.x then6

return P ⋆
old7

return P ⋆
new ∪ {pnew}8

end9

Algorithm 19.3: P ⋆
new ←− updateOptimalSetN(P ⋆

old, P )

Input: P ⋆
old: the old optimal set

Input: P : the set of new individuals to be checked for optimality
Data: p: an individual from P
Output: P ⋆

new: the updated optimal set

begin1

P ⋆
new ←− P ⋆

old2

foreach p ∈ P do P ⋆
new ←− updateOptimalSet(P ⋆

new, p)3

return P ⋆
new4

end5

19.2 Obtaining Optimal Elements

The function updateOptimalSet helps an optimizer to build and maintain a list of optimal
individuals. When the optimization process finishes, the extractPhenotypes can then be used
to obtain the optimal elements of the problem space and return them to the user. However,
not all optimization methods maintain an optimal set all the time. When they terminate,
they have to extracts all optimal elements the set of individuals Pop currently known.

Definition 19.2 (extractOptimalSet). The function extractOptimalSet function extracts a
set P ⋆ of optimal (non-prevailed) individuals from any given set of individuals Pop.

∀P ⋆ ⊆ Pop ⊆ G× X, P ⋆ = extractOptimalSet(Pop)⇒ ∀p1 ∈ P ⋆ ∄p2 ∈ Pop : p2.x≻p1.x
(19.3)
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Algorithm 19.4 defines one possible realization of extractOptimalSet. By the way, this
approach could also be used for updating an optimal set.

updateOptimalSet(P ⋆
old, pnew) ≡ extractOptimalSet(P ⋆

old ∪ pnew) (19.4)

Algorithm 19.4: P ⋆ ←− extractOptimalSet(Pop)

Input: Pop: the list to extract the optimal individuals from
Data: pany, pchk: solution candidates tested for supremacy
Data: i, j: counter variables
Output: P ⋆: the optimal subset extracted from Pop

begin1

P ⋆ ←− Pop2

for i←− len(P ⋆)− 1 down to 1 do3

for j ←− i− 1 down to 0 do4

if P ⋆
[i]≻P ⋆

[j] then5

P ⋆ ←− deleteListItem(P ⋆, j)6

i←− i− 17

else if P ⋆
[j]≻P ⋆

[i] then8

P ⋆ ←− deleteListItem(P ⋆, i)9

return listToSet(P ⋆)10

end11

19.3 Pruning the Optimal Set

In some optimization problems, there may be very many if not infinite many optimal individ-
uals. The set of X⋆ optimal solution candidates computed by the optimization algorithms,
however, cannot grow infinitely because we only have limited memory. Therefore, we need
to perform an action called pruning which reduces the size of the optimal set to a given
limit k [1466, 1993, 427].

There exists a variety of possible pruning operations. Morse [1466] and Taboada and
Coit [1992], for instance, suggest to use clustering algorithms1 for this purpose. In principle,
also any combination of the fitness assignment and selection schemes discussed in Chapter 2
would do. It is very important that the loss of generality during a pruning operation is
minimized. Fieldsend et al. [667], for instance, point out that if the extreme elements of the
optimal frontier are lost, the resulting set may only represent a small fraction of the optimal
that could have been found without pruning. Instead of working on the set of optimal
solution candidates X⋆, we again base our approach on a set of optimal individuals P ⋆ and
we define:

Definition 19.3 (pruneOptimalSet). The pruning operation pruneOptimalSet reduces the
size of a set P ⋆

old of individuals to fit to a given upper boundary k.

∀P ⋆
new ⊆ P ⋆

old ⊆ G× X, k ∈ N : P ⋆
new = pruneOptimalSet(P ⋆

old, k)⇒ |P ⋆
new| ≤ k (19.5)

19.3.1 Pruning via Clustering

Algorithm 19.5 uses clustering to provide the functionality specified in this definition and
thereby realizes the idea of Morse [1466] and Taboada and Coit [1992]. Basically, any given
clustering algorithm could be used as replacement for cluster – see Chapter 29 on page 535
for more information on clustering.

1 You can find a discussion of clustering algorithms in Section 29.2.
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Algorithm 19.5: P ⋆
new ←− pruneOptimalSetc(P ⋆

old, k)

Input: P ⋆
old: the optimal set to be pruned

Input: k: the maximum size allowed for the optimal set (k > 0)
Input: [implicit] cluster: the clustering algorithm to be used
Input: [implicit] nucleus: the function used to determine the nuclei of the clusters
Data: B: the set of clusters obtained by the clustering algorithm
Data: b: a single cluster b ∈ B
Output: P ⋆

new: the pruned optimal set

begin1

// obtain k clusters

B ←− cluster(P ⋆
old)2

P ⋆
new ←− ∅3

foreach b ∈ B do P ⋆
new ←− P ⋆

new ∪ nucleus(b)4

return P ⋆
new5

end6

19.3.2 Adaptive Grid Archiving

Let us discuss the adaptive grid archiving algorithm (AGA) as example for a more sophis-
ticated approach to prune the optimal set. AGA has been introduced for the evolutionary
algorithm PAES2 by Knowles and Corne [1154] and uses the objective values (computed
by the set of objective functions F ) directly. Hence, it can treat the individuals as |F |-
dimensional vectors where each dimension corresponds to one objective function f ∈ F .
This |F |-dimensional objective space Y is divided in a grid with d divisions in each dimen-
sion. Its span in each dimension is defined by the corresponding minimum and maximum
objective values. The individuals with the minimum/maximum values are always preserved.
This circumvents the phenomenon of narrowing down the optimal set described by Fieldsend
et al. [667] and distinguishes the AGA approach from clustering-based methods. Hence, it
is not possible to define maximum optimal set sizes k which are smaller than 2|F |. If indi-
viduals need to be removed from the set because it became too large, the AGA approach
removes those that reside in regions which are the most crowded.

The original sources outline the algorithm basically with with descriptions and defini-
tions. Here, we introduce a more or less trivial specification in Algorithm 19.6 on the facing
page and Algorithm 19.7 on page 312. The function agaDivide is internally used to perform
the grid division. It transforms the objective values of each individual to grid coordinates
stored in the array lst. Furthermore, agaDivide also counts the number of individuals that
reside in the same coordinates for each individual and makes it available in cnt. It en-
sures the preservation of border individuals by assigning a negative cnt value to them. This
basically disables their later disposal by the pruning algorithm pruneOptimalSetaga since
pruneOptimalSetaga deletes the individuals from the set P ⋆

old that have largest cnt values
first.

2 PAES is discussed in ?? on page ??
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Algorithm 19.6: (Pl, lst, cnt)←− agaDivide(Pold, d)

Input: Pold: the optimal set to be pruned
Input: d: the number of divisions to be performed per dimension
Input: [implicit] F : the set of objective functions
Data: i, j: counter variables
Data: mini,maxi,mul: temporary stores
Output: (Pl, lst, cnt): a tuple containing the list representation Pl of Pold, a list lst

assigning grid coordinates to the elements of Pl and a list cnt containing the
number of elements in those grid locations

begin1

mini←− createList(|F |,∞)2

maxi←− createList(|F |,−∞)3

for i←− |F | − 1 down to 0 do4

mini[i−1]←− min {fi(p.x) ∀p ∈ Pold}5

maxi[i−1]←− max {fi(p.x) ∀p ∈ Pold}6

mul←− createList(|F |, 0)7

for i←− |F | − 1 down to 0 do8

if maxi[i] 6= mini[i] then9

mul[i]←− d
maxi[i]−mini[i]10

else11

maxi[i]←− maxi[i] + 112

mini[i]←− mini[i]− 113

Pl ←− setToList(Pold)14

lst←− createList(len(Pl) , ∅)15

cnt←− createList(len(Pl) , 0)16

for i←− len(Pl)− 1 down to 0 do17

lst[i]←− createList(|F |, 0)18

for j ←− 1 up to |F | do19

if (fj(Pl[i]) ≤ mini[j−1]) ∨ (fj(Pl[i]) ≥ maxi[j−1]) then20

cnt[i]←− cnt[i]− 221

lst[i][j−1]←− ⌊(fj(Pl[i])−mini[j−1]) ∗mul[j−1]⌋22

if cnt[i] > 0 then23

for j ←− i+ 1 up to len(Pl)− 1 do24

if lst[i] = lst[j] then25

cnt[i]←− cnt[i] + 126

if cnt[j] > 0 then cnt[j]←− cnt[j] + 127

return (Pl, lst, cnt)28

end29
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Algorithm 19.7: P ⋆
new ←− pruneOptimalSetaga(P ⋆

old, d, k)

Input: P ⋆old: the optimal set to be pruned
Input: d: the number of divisions to be performed per dimension
Input: k: the maximum size allowed for the optimal set (k ≥ 2|F |)
Input: [implicit] F : the set of objective functions
Data: i: a counter variable
Data: Pl: the list representation of P ⋆

old

Data: lst: a list assigning grid coordinates to the elements of Pl

Data: cnt: the number of elements in the grid locations defined in lst
Output: P ⋆

new: the pruned optimal set

begin1

if len(P ⋆
old) ≤ k then return P ⋆

old2

(Pl, lst, cnt)←− agaDivide(P ⋆
old, d)3

while len(Pl) > k do4

idx←− 05

for i←− len(Pl)− 1 down to 1 do6

if cnt[i] > cnt[idx] then idx←− i7

for i←− len(Pl)− 1 down to 0 do8

if (lst[i] = lst[idx]) ∧ (cnt[i] > 0) then cnt[i]←− cnt[i]− 19

Pl ←− deleteListItem(Pl, idx)10

cnt←− deleteListItem(cnt, idx)11

lst←− deleteListItem(lst, idx)12

return listToSet(Pl)13

end14
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Experimental Settings, Measures, and Evaluations

In this chapter we will discuss the possible experimental settings, the things that we can
measure during experiments, and what information we can extract from these measurements.
We will also define some suitable shortcuts which we use later in descriptions of experiments
in order to save space in tables and graphics.

20.1 Settings

Experiments can only be reproduced and understood if their setup is precisely described.
Especially in the area of global optimization algorithms, there is a wide variety of possible
parameter settings. Incompletely documenting an experiment may lead to misunderstand-
ings. Other researchers repeating the tests will use default settings for all parameters not
specified (or any settings that they find neat) and possibly obtain totally different results.
Here, we will try to list many possible parameters of experiments (without claiming com-
pleteness). Of course, not all of them are relevant in a given experiment. Instead, this list is
to be understood as a hint of what to consider when specifying a test series. In many tables
and graphics, we will use shortcuts of the parameter names in order to save space.

20.1.1 The Optimization Problem

As stated in Definition 1.34 on page 46, an optimization problem is a five-tuple
(X, F,G,Op, gpm) specifying the problem space X, the objective functions F , the search
space G, the set of search operations Op, and the genotype-phenotype mapping gpm. Spec-
ifying the elements of this tuple is the most important prerequisite for any experiment.
Table 20.1 gives an example for this structure.

Parameter Short Description

Problem

Space

X The space of possible solution candidates. (see Section 1.3.1)

Example: The variable length natural vectors x = (x0, x1, . . . )
T

,
xi ∈ N0 ∀i ∈ [0, len(x)− 1], 0 < len(x) ≤ 500 ∀x ∈ X

Objective

Functions

F The objective functions which measure the utility of the solution
candidates. If nothing else is stated, minimization is assumed. (see

Definition 1.1)

Example: F = {f1, f2} : f1(x) =
∑len(x)−1

i=0 xi,

f2(x) =
∑len(x)−1

i=0 sinxi
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Search Space G The space of the elements where the search operations are applied
on. (see Section 1.3.1)

Example: The variable length bit strings g : 0 < len(g) ≤ 2000.
Search

Operations

Op The search operations available for the optimizer. Here it is also
important to note the way in which they are applied. (see Section 1.3.1)

Example: creation: uniform in length and values
os = 1→ mr = 10% mutation, cr = 90% multi-point

crossover
os = 2→ mr = 25% mutation, cr = 80% multi-point

crossover
os = 3→ mr = 45% mutation, cr = 65% multi-point

crossover
The results from crossover may be mutated (non-
exclusive search operations).

GPM gpm The genotype-phenotype mapping translates points from the search
space G to points in the problem space X. (see Definition 1.30)

Example: x = gpm(g)⇒ xi =
∑4i+3

j=4i gj , len(x) =
⌊

1
4 len(g)

⌋

Table 20.1: The basic optimization problem settings.

In this table we have defined a simple example optimization problem which has a search
space composed of vectors with between 1 and 500 elements (natural numbers). These vectors
are encoded as variable length bit strings, where groups of four bits stand for one vector
element. As objective functions, two simple sums over the vector elements are applied.
When needed, new strings with uniformly distributed length and contents are created with
the creation operation. Sometimes, a test series involves tests with different settings. This
is the case in this example too, where three configurations for the reproduction operations
are given. In a table containing the results of the experiments, there could be a column
“os” may contain the values from 1 to 3 corresponding to these settings. In our example,
elements resulting from the crossover may be mutated (which is meant by “non-exclusive”).
Therefore, the percentages in which the operators are applied do not necessarily need to
sum up to 100%. With this definition, the problem can be reproduced easily and it is also
possible to apply different global optimization algorithms and to compare the results.

20.1.2 The Optimization Algorithm Applied

The performance of an optimization algorithm strongly depends on its configuration. Ta-
ble 20.1 lists some of the parameters most commonly involved in this book and gives examples
how they could be configured.

Parameter Short Description

Optimization

Algorithm

alg The optimization algorithm used to solve the problem. (see Defini-

tion 1.39)

Example:

alg = 0→ (Parallel) Random Walks
alg = 1→ evolutionary algorithm
alg = 2→Memetic Algorithm
alg = 3→ Simulated Annealing
alg = 4→ downhill simplex
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Comparison

Operator

cm In multi-objective optimization, individuals are often compared ac-
cording to Pareto or prevalence schemes. This parameter states
which scheme was used, if any. (see Section 1.2.4)

Example:
cm = 0→ weighted sum
cm = 1→ Pareto comparison

Steady-State ss Are the parent individuals in the population simply discarded (gen-
erational) or do they compete with their offspring (steady-state).
This parameter is usually only valid in the context of evolutionary
algorithms or other population-oriented optimizers. (see Section 2.1.6)

Example:
ss = 0→ generational
ss = 1→ steady-state

Population

Size

ps The population size (only valid for population-oriented algorithms).
Example: ps ∈ {10, 100, 1000, 10 000}

Elitism el Are the best solution candidates preserved (elitism) or not (no
elitism)? (see Definition 2.4)

Example:
el = 0→ no elitism is used
el = 1→ elitism is used

Maximum

Archive Size

as The size of the archive with the best known individuals (only valid
if elitism is used). Notice: An archive size of zero corresponds to no
elitism. (see Definition 2.4)

Example: as ∈ {0, 10, 20, 40, 80}
Fitness

Assignment

Algorithm

fa The fitness assignment algorithm used. (see Section 2.3)

Example:
fa = 0→ weighted sum fitness assignment
fa = 1→ Pareto ranking
fa = 2→ Variety Preserving Ranking

Selection

Algorithm

sel The selection algorithm used. (see Section 2.4)

Example:
sel = 0→ Fitness proportionate selection
sel = 1→ Tournament selection
sel = 2→ Truncation Selection

Tournament

Size

k The number of individuals competing in tournaments in tourna-
ment selection (only valid for sel = 1). (see Section 2.4.8)

Example: k ∈ {2, 3, 4, 5}
Convergence

Prevention

cp Is the simple convergence prevention method used? (see Section 2.4.8)

Example: cp ∈ {0, 0.1, 0.2, 0.3, 0.4}

Table 20.2: Some basic optimization algorithm settings.

Such a table describes a set of experiments if at least one of the parameters has more
than one value. If several parameters can be configured differently, the number of experi-
ments multiplies accordingly. Then, (full) factorial experiments1 [263, 2288, 681] where all
possible parameter combinations are tested separately (multiple times) can be performed.
Factorial experiments are one basic design of experiments2 (DoE) [682, 1149, 263, 460, 2288].
Since many parameter settings of evolutionary algorithms have influence each other [648]
(for example elitism and steady state and selection and fitness assignment, mutation and
crossover rate, etc.), it is insufficient to test the influence of each parameter separately. In-
stead, DoE designs are recommended in order to determine the effect of these factors with
efficient experiments.

20.1.3 Other Run Parameters

In Table 20.3, some additional parameters describing how the optimization algorithm was
applied and how the experiments were carried out.

1 http://en.wikipedia.org/wiki/Factorial_experiment [accessed 2008-08-07]

2 http://en.wikipedia.org/wiki/Design_of_experiments [accessed 2008-10-14]

http://en.wikipedia.org/wiki/Factorial_experiment
http://en.wikipedia.org/wiki/Design_of_experiments
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Parameter Short Description

Number of

Training

Cases

tc The number of training cases used for evaluating the objective func-
tions.
Example: tc ∈ {1, 10, 20}

Training Case

Change

Policy

ct The policy according to which the training cases are changed. (see

Definition 1.39)

Example:
ct = 0→ The training cases do not change.
ct = 1→ The training cases change each generation.
ct = 2→ Training cases change after each evaluation.

Evaluation

Limit

mxτ The maximum number of individual evaluations τ that each run is
allowed to perform. (see Definition 1.42)

Example: mxτ = 45 000
Generation

Limit

mxt The maximum number of iterations/generations t that each run is
allowed to perform. (see Definition 1.43)

Example: mxt = 1000
Maximum

Number of

Runs

mxr The (maximum) number of runs to perform. This threshold can
be combined with time constrainints which may lead to fewer runs
being performed.
Example: mxr = 40

Maximum

Time per Run

mxrT The (maximum) amount of time granted per run.
Example: mxrT = 40h

Maximum

Total Time

mxT The (maximum) total time granted.
Example: mxT = 40d 5h

System

Configuration

Cfg Especially in cases where time constraints are imposed, the con-
figuration of the system on which the experiments run becomes
important.

Example:

Cfg = 0→ one 9 GHz two-core PC, 3 GiB RAM,
Windows XP, Java 1.4

Cfg = 1→ one 9 GHz two-core PC, 3 GiB RAM,
Windows XP, Java 1.6

Table 20.3: Some additional parameters of experiments.

20.2 Measures

In Table 20.4 we list some basic measurements that easily can be taken from each test
series of a single configuration. From these basic results, more meaningful metrics can be
computed.

Measure Short Description

Number of

Comp. Runs

#r The total number of completed runs with the specified configura-
tion.
Example: #r = 100

Success

Evaluations

sτ i The number of individual evaluations τ performed in run i until the
first individual with optimal functional objective values occured.
This individual may have non-optimal non-functional objective val-
ues or be overfitted. (see Definition 1.42)

Example:
sτ i = 100→ 1st successful individual in evaluation 100

sτ i = ∅ → no successful individual was found
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Success

Generations

sti The number of iterations/generations t performed in run i until the
first individual with optimal functional objective values occurred.
This individual may have non-optimal non-functional objective val-
ues or be overfitted. (see Definition 1.43)

Example:
sti = 800→ 1st successful individual in generation 800

sti = ∅ → no successful individual was found
Perfection

Evaluation

pτ i The number of individual evaluations τ performed in run i until
a “perfect” individual with optimal functional objective values oc-
curred. Depending on the context, this may be an individual where
all objective values are optimal, a non-overfitted individual with
optimal functional objectives, or both. Thus, pti ≥ sti always holds
(see Definition 1.42)

Example:
pτ i = 100→ 1st perfect individual in evaluation 100

pτ i = ∅ → no perfect individual was found
Perfection

Generation

pti The number of iterations/generations t performed in run i until a
“perfect” individual with optimal functional objective values oc-
curred. Depending on the context, this may be an individual where
all objective values are optimal, a non-overfitted individual with
optimal functional objectives, or both. Thus, pti ≥ sti always holds
(see Definition 1.43)

Example:
pti = 800→ 1st perfect individual in generation 800

pti = ∅ → no perfect individual was found
Solution Set X⋆

i The set X⋆
i ⊆ X of solutions returned by run i.

Example: X⋆
i =

{
(0, 1, 2)

T
, (4, 5, 6)

T
}

Runtime rTi The total time needed by run i.
Example: rTi = 312s

Table 20.4: Some basic measures that can be obtained from experiments.

The distinction between successful and perfect individuals may seem confusing at first
glance and is not necessary in many experiments. Often though, such a distinction is useful.
Assume, for instance, that we want to optimize a schedule for a transportation or manufac-
turing company. A successful schedule, in this case, would be one that allows the company
to process all orders. This does not necessarily mean that it is optimal. Perfect would stand
for optimal in this context while successful would translate to feasible. If we evolve programs
with Genetic Programming and use training cases for their evaluation, we can consider a run
as successful if it finds a program which works correctly on all training cases. This, however,
could also be caused by overfitting. Then, a perfect program would be one that either also
works correctly on another, larger set of test cases not used during the optimization process
or whose correctness has been proven. An experimental run is called “successful” (“perfect”)
if it found a successful (“perfect”) individual. The concrete definition of successful and per-
fect is problem specific and must be stated whenever using these predicates. Furthermore
notice that we use the sign ∅ in order to denote runs where no successful (or perfect) solution
candidate was discovered.

20.3 Evaluation

20.3.1 Simple Evaluation Measures

After a series of experiments has been carried out and the measures from Section 20.2
have been collected, we can use them to compute some first, simple metrics which can
serve as basis for deriving more comprehensive statistics. The simple metrics basically cover
everything mentioned in Section 28.3: For a quantity q measured in multiple experimental
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runs, we can compute the number #q of experiments that fulfilled the predicates attached
to q and the estimators of the minimum

̂

q, mean q, maximum q̂, median med(q), and the
standard deviation s [q], and so on. Obviously, not all of them are needed or carry a meaning
in every experiment. Table 20.5 lists some of these first metrics.
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Measure Short Description

Number of

Successful

Runs

#s The number of runs where successful individuals were discovered.
#s = |{i : (sτ i 6= ∅) ∧ (0 ≤ i < #r)}| (20.1)

Success

Fraction

s/r The fraction of experimental runs that turned out successful.
s/r = #s

#r
(20.2)

Minimum

Success

Evaluation

̂

sτ The number of evaluations τ needed by the fastest (successful) ex-
perimental run to find a successful individual. (or ∅ if no run was
successful) ̂

sτ =

{
min {sτ i 6= ∅} if ∃sτ i 6= ∅

∅ otherwise
(20.3)

Mean Success

Evaluation

sτ The average number of evaluations τ needed by the (successful)
experimental runs to find a successful individual. (or ∅ if no run
was successful)

sτ =

{ ∑
sτi 6=∅ sτ i

|{sτi 6=∅}| if ∃sτ i 6= ∅
∅ otherwise

(20.4)

Maximum

Success

Evaluation

ŝτ The number of evaluations τ needed by the slowest (successful)
experimental run to find a successful individual. (or ∅ if no run was
successful)

ŝτ =

{
max {sτ i 6= ∅} if ∃sτ i 6= ∅

∅ otherwise
(20.5)

Minimum

Success

Generation

̂

st The number of generations/iterations t needed by the fastest (suc-
cessful) experimental run to find a successful individual. (or ∅ if no
run was successful)̂

st =

{
min {sti 6= ∅} if ∃sti 6= ∅

∅ otherwise
(20.6)

Mean Success

Generation

st The average number of generations/iterations t needed by the (suc-
cessful) experimental runs to find a successful individual. (or ∅ if
no run was successful)

st =

{ ∑
sti 6=∅ sti

|{sti 6=∅}| if ∃sti 6= ∅
∅ otherwise

(20.7)

Maximum

Success

Generation

ŝt The number of Generations generations/iterations t needed by the
slowest (successful) experimental run to find a successful individual.
(or ∅ if no run was successful)

ŝt =

{
max {sti 6= ∅} if ∃sti 6= ∅

∅ otherwise
(20.8)

Number of

Perfect Runs

#p The number of runs where perfect individuals were discovered.
#p = |{i : (pτ i 6= ∅) ∧ (0 ≤ i < #r)}| (20.9)

Perfection

Fraction

p/r The fraction of experimental runs that found perfect individuals.
p/r =

#p
#r

(20.10)
Minimum

Perfection

Evaluation

̂

pτ The number of evaluations τ needed by the fastest (perfect) exper-
imental run to find a perfect individual. (or ∅ if no run was found
one) ̂

pτ =

{
min {pτ i 6= ∅} if ∃pτ i 6= ∅

∅ otherwise
(20.11)

Mean

Perfection

Evaluation

pτ The average number of evaluations τ needed by the (perfect) ex-
perimental runs to find a perfect individual. (or ∅ if no run was
found one)

pτ =

{ ∑
pτi 6=∅ pτ i

|{pτ i 6=∅}| if ∃pτ i 6= ∅
∅ otherwise

(20.12)
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Maximum

Perfection

Evaluation

p̂τ The number of evaluations τ needed by the slowest (perfect) exper-
imental run to find a perfect individual. (or ∅ if no run found one)

p̂τ =

{
max {pτ i 6= ∅} if ∃pτ i 6= ∅

∅ otherwise
(20.13)

Minimum

Perfection

Generation

̂

pt The number of generations/iterations t needed by the fastest (per-
fect) experimental run to find a perfect individual. (or ∅ if no run
was found one)̂

pt =

{
min {pti 6= ∅} if ∃pti 6= ∅

∅ otherwise
(20.14)

Mean

Perfection

Generation

pt The average number of generations/iterations t needed by the (per-
fect) experimental runs to find a perfect individual. (or ∅ if no run
was found one)

pt =

{ ∑
pti 6=∅ pti

|{pti 6=∅}| if ∃pti 6= ∅
∅ otherwise

(20.15)

Maximum

Perfection

Generation

p̂t The number of generations/iterations t needed by the slowest (per-
fect) experimental run to find a perfect individual. (or ∅ if no run
found one)

p̂t =

{
max {pti 6= ∅} if ∃pti 6= ∅

∅ otherwise
(20.16)

Mean

Runtime

rT The arithmetic mean of the runtime consumed by the single runs.
rT = 1

#r

∑
#r−1
i=0 rTi (20.17)

Table 20.5: Simple evaluation results.

20.3.2 Sophisticated Estimates

The average generation of success st is an estimate of the expected number of iterations
needed by the optimizer to find a solution to the optimization problem specified. From
the measurements taken during the experiments, however, we can also extract some more
sophisticated estimates which give us more information about the optimization process.

Cumulative Probability of Success etc.

One of these estimate is the cumulative probability of success CPs(ps, t′) introduced by Koza
[1196]. It approximates the probability that a population-based optimization algorithm with
a population size ps solves a given problem until iteration (generation) t′. Basically, it can
easily be estimated from the experimental data as follows:

CPs(ps, t′) =
|{sti : sti ≤ t′}|

#r
(20.18)

The probability of solving the problem until the t’th iteration at least once in stn inde-
pendent runs then becomes approximately 1 − (1− CPs(ps, t′))

stn . If we want to find out
how many runs with t′ iterations we need to solve the problem with probability z, we have
to solve z = 1− (1− CPs(ps, t′))

stn . This equation can be solved and we obtain the function
stn(z, ps, t′):

stn(z, ps, t′) =





log(1−z)
log(1−CPs(ps,t′)) if 0 < CPs(ps, t′) < z

1 if CPs(ps, t′) ≥ z
+∞ otherwise

(20.19)

From this value, we can directly compute an estimate of the number of objective function
evaluations stn(z, ps, t′) needed (i. e., the individuals to be processed) to find a solution with
probability z if stn(z, ps, t′) independent runs proceed up to t′ iterations. If we have a
generational evolutionary algorithm (i. e., ss = 1), this would be stn(z, ps, t′) ∗ ps ∗ t′. In
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a steady-state algorithm where all ps parents compete with a total of ps offspring and tc
training cases are used that change each generation (ct = 1), we would require 2 ∗ ps ∗
tc ∗ stn(z, ps, t′) ∗ t′ evaluations. If the training cases where constant, we would not need to
re-evaluate the parents in order to determine their objective values, and stn(z, ps, t′) would
become ps ∗ tc ∗ stn(z, ps, t′) ∗ t′.

Obviously, how the value of stn(z, ps, t′) is computed strongly depends on the optimiza-
tion algorithm applied and may be different from case to case. For the sake of simplicity, we
assume that even if we have |F | > 1 objective functions, all of them can be evaluated in one
single evaluation step together if not explicitly stated otherwise.

Since we often distinguish successful and perfect solutions in this book, we can easily
derive the estimates CPp, ptn, and pτn analogously to CPs, stn, and sτn:

CPp(ps, t′) =
|{pti : pti ≤ t′}|

#r
(20.20)

ptn(z, ps, t′) =





log(1−z)
log(1−CPp(ps,t′)) if 0 < CPp(ps, t′) < z

1 if CPp(ps, t′) ≥ z
+∞ otherwise

(20.21)

20.4 Verification

When obtaining measures like the mean number of individual evaluations sτ needed to solve
a given problem for multiple optimizers or for several configurations of the same optimization
algorithm, one would tend to say that an algorithm/configuration A with sτ(A) < sτ(B) is
better than an algorithm/configuration B. Such a statement should never be made without
further discussion and statistical foundation. Never forget that measures or evaluation results
obtained from experiments are always estimates3, i. e., guesses on the real parameter of an
unknown probability distribution driving the process (optimization algorithm) which we
have sampled with our measurements. An estimate should never be considered to be more
than a direction, a pointer to an area, where the real values of the parameters are.

20.4.1 Confidence Intervals or Statistical Tests

So, instead of defining the mean number of evaluations to success as a single number,
we could instead compute a confidence interval (see Section 28.7.3). A confidence in-
terval specifies boundaries inside which the true value of the estimated quantity is lo-
cated with a certain probability. Using a bit more math, we could derive an interval like
P (1000 ≤ E[sτ(A)] ≤ 3000) ≥ 90%, which is far more meaningful than just stating that
sτ(A) = 2000. If the upper limit of the confidence interval of E[sτ(A)] is below the lower
limit of the confidence interval for E[sτ(B)], it would indeed be justified to say that algorithm
A performs better than B.

Computing the conventional confidence intervals discussed in Section 28.7.3 has a draw-
back when it comes to experiments. If you look up the examples there, you will find that all
equations there assume that the measured quantity has one of the well-known probability
distributions. In other words, for deriving the aforementioned interval for A, we would have
to assume that the sτ(A) are often distributed, for instance. Of course we do not know if
this is the case, and normally we cannot know. More often, we even have strong evidence
that such an assumption would be rank nonsense. A normal distribution is a continuous
distribution which stretches to infinity in both directions. Even if we ignore that sτ surely is
not a continuous but discrete quantity, it will definitely never be negative. Furthermore, if

3 Some introduction on estimation theory can be found in Section 28.7, by the way.
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the optimization algorithm used for the experiments is population-oriented, sτ is often con-
sidered to be a multiple of the population size (see Section 20.3.2, for example). Computing
a confidence interval using obviously wrong or even unverified/unverifiable assumptions is
useless, wrong, and misleading.

This brings us back to square one, to the quantities which we have derived with the
previously discussed evaluation methods. But there exists another way to check whether
sτ(A) < sτ(B) is significant or if this result is rather likely to be coincidence: statistical
testing. Statistical tests are briefly discussed in Section 28.8 in this book. The idea of testing
is that first, a so-called null hypothesis H0 is defined which states “E[sτ(A)] and E[sτ(B)]
are equal.” The alternative hypothesis H1 would be “E[sτ(A)] and E[sτ(B)] are not equal.”
The goal is to find out whether or not there is enough statistical evidence to reject H0 and
to accept H1 with a certain, small probability p of error. Of course, most of the hypothesis
tests have the same problem than the conventional confidence intervals from Section 28.7.3,
they assume certain probability distributions driving the measurements. The set of non-
parametric tests discussed in Section 28.8.1 works without such assumptions.

Thus, whenever we have insufficient information about the distribution of the samples,
these tests are the method of choice for checking if experimental results indeed carry some
meaning or not. Nevertheless, it is very important to realize that even these tests have
certain requirements which must not be ignored.

Interestingly, many statistical tests can be inverted and used to compute confidence
intervals as noted in Section 28.7.3 which closes the circle of this section.

20.4.2 Factorial Experiments

If we have an experiment where multiple parameter configurations are tested, i.e., a factorial
experiment [263, 2288, 681], we often want to find two things:

1. the best possible configuration, and
2. which settings of one parameter are (in average) good and which are bad.

Notice that a configuration consisting only of the worst possible settings of all parameters
can still be the best configuration possible – if the parameter settings interact. In Section 20.1
we have already mentioned that this is often the case in optimization algorithms such as
evolutionary algorithms. On the other hand, knowing general trends for certain parameters
is valuable too. Obviously, the best observed parameter configuration is the one with the
best mean or median performance. If it is significantly better than the others needs to be
tested.

Finding out whether a certain parameter configuration is good or not is relatively easy
in factorial experiments. Assume we have run an experiment with the five parameters pop-
ulation size (either ps = 512 or ps = 1024), convergence prevention (cp = 0 or cp = 0.3),
steady-state or generational populations (ss = 1 or ss = 0), mutation rates mr = 3% and
mr = 15%, and crossover rates cr = 60% and cr = 80%. In the case of a full factorial
experiment, we would thus test 25 = 32 different configurations. For each configuration,
mxr experimental runs are performed. Assume furthermore that we are considered in the
estimate p/r of the probability of finding a perfect solution in a single run and the expected
number of individual evaluations ptn(z, ps, t′) needed to find such a perfect solution with
probability z (if runs of the evolutionary algorithm were performed with population size ps
up to t′ iterations).

After all 32 ∗mxr runs, we would compute these measures for each single configuration.
The influence of the two population size settings on the perfection rate p/r can then be
estimated by dividing the testing configurations into two groups, those with ps = 1024 and
those with ps = 512. For both groups, the arithmetic mean p/r and the median med(p/r) are
computed separately and compared. In Table 20.6, we see that the mean and the median
of the configurations with 1024 individuals in the population are higher than for those with
ps = 512. As one would expect, the larger population has a higher chance of completing
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a run with finding a correct solution than the smaller population algorithm. Now we test
this trend with the mentioned non-parametric tests4 by pairwise grouping the results of the
runs which have exactly the same configurations except for their population size settings.
In the example Table 20.6, we have 16 such pairs and find that all three tests agree on the
significance of the result.

ps = 1024 vs. ps = 512 (based on 16 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ps=1024 = 0.19, med(p/r)|ps=512 = 0.09,
α ≈ 0.0063 ⇒ significant at level α = 0.01

Randomization test:
(see Section 28.8.1)

p/r|ps=1024 = 0.06, p/r|ps=512 = 0.0,
α ≈ 0.0024 ⇒ significant at level α = 0.01

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ps:1024−512 = 114.0,
α ≈ 0.019 ⇒ not significant at level α = 0.01

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ps=1024 = 1.66 · 108, med(pτn)|ps=512 = +∞,
α ≈ 0.1940 ⇒ not significant at level α = 0.01

Randomization test:
(see Section 28.8.1)

pτn|ps=1024 = +∞, pτn|ps=512 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ps:1024−512 = −94.0,
α ≈ 0.0601 ⇒ not significant at level α = 0.01

Table 20.6: ps = 1024 vs. ps = 512 (based on 16 samples)

For pτn, we can also find differences between the two groups. However, as it (could have)
turned out, multiple configurations were not able to yield a solution in any of the runs (i. e.,
have p/r = 0) and thus, their pτn becomes infinite. Due to this configuration, the random-
ization test could not be applied. Besides the numerical problems here, another reason why
some of tests cannot be used would be if we had too many samples, for instance (see the
discussion of the randomization test in Section 28.8.1). Although the larger population size
again seems to better in the sample, the tests show that there is not enough evidence to
support this expectations and that the result could have shown up coincidentally. A more
thorough example for this approach can be found in Section 21.3.2 on page 366.

4 We can assume that both p/r and pτn are continuous quantities for large mxr.
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Benchmarks and Toy Problems

In this chapter, we discuss some benchmark and toy problems which are used to demonstrate
the utility of global optimization algorithms. Such problems have usually no direct real-world
application but are well understood, widely researched, and can be used

1. to measure the speed and the ability of genetic algorithm algorithms to find good so-
lutions, as done for example by Luke and Panait [1319], Borgulya [250], and Liu et al.
[1295],

2. as benchmark for comparing different optimization approaches, as done by Zitzler et al.
[2330] and Purshouse and Fleming [1679], for instance,

3. to derive theoretical results since they are normally well understood in a mathematical
sense, as done for example by Jansen and Wegener [1039],

4. as basis to verify theories, as used for instance by Burke et al. [308] and Langdon and
Poli [1241],

5. as playground to test new ideas, research, and developments,
6. as easy-to-understand examples to discuss features and problems of optimization (as

done here in Section 1.2.2 on page 27),
7. for demonstration purposes, since they normally are interesting, funny, and can be vi-

sualized in a nice manner.

21.1 Real Problem Spaces

Mathematical benchmark functions are especially interesting for testing and comparing tech-
niques based on real vectors (X = Rn) like plain Evolution Strategy (see Chapter 5 on
page 227), Differential Evolution (see Section 5.5 on page 229), and Particle Swarm Opti-
mization (see Chapter 9 on page 249). However, they only require such vectors as solution
candidates, i. e., elements of the problem space X. Hence, techniques with different search
spaces G, like genetic algorithms, can also be applied to them, given that a genotype-
phenotype mapping is provided accordingly.

The optima or the Pareto frontier of benchmark functions has already been determined
theoretically. When applying an optimization algorithm to the functions, we are interested
in the number of solution candidates which they need to process in order to find the optima
and how close we can get to them. They also give us a great opportunity to find out about
the influence of parameters like population size, the choice of the selection algorithm, or the
efficiency of reproduction operations.

21.1.1 Single-Objective Optimization

In this section, we list some of the most important benchmark functions for scenarios in-
volving only a single optimization criterion. This, however, does not mean that the search
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space has only a single dimension – even a single-objective optimization can take place in
n-dimensional space Rn.

Sphere

The sphere function listed by Suganthan et al. [1979] (or F1 by De Jong [512]) and defined
here in Table 21.1 is a very simple measure of efficiency of optimization methods. They have,
for instance, been used by Rechenberg [1713] for testing his Evolution Strategy-approach.

function fsphere(x) =
∑n

i=1 x
2
i (21.1)

domain X ⊂ Rn, Xi ∈ [−10, 10] (21.2)
optimum x⋆ = (0, 0, .., 0)T (21.3)
separable yes
multimodal no

Table 21.1: The Sphere function.

TODO

21.1.2 Multi-Objective Optimization

In this section, we list some of the most important benchmark functions for scenarios in-
volving multiple objectives (see Section 1.2.2 on page 27). A comprehensive review on such
problems is given by Huband et al. [972]. Other multi-objective problems can be found in
[546].

TODO

21.1.3 Dynamic Fitness Landscapes

The moving peaks benchmarks independently developed by Branke [277, 278] and Morrison
and De Jong [1465] in order to illustrate the behavior of dynamic environments as discussed
in Section 1.4.9 on page 76. Figure 21.1 shows an example of this benchmark for a two-
dimensional real parameter setting (the third dimension is the fitness).
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Fig. 21.1.a: t = 0 Fig. 21.1.b: t = 1

Fig. 21.1.c: t = 2 Fig. 21.1.d: t = 3

Fig. 21.1.e: t = 4 Fig. 21.1.f: t = 6

Fig. 21.1.g: t = 7 Fig. 21.1.h: t = 13

Figure 21.1: An example for the moving peaks benchmark of Branke [277, 278]

21.2 Binary Problem Spaces

21.2.1 Kauffman’s NK Fitness Landscapes

The ideas of fitness landscapes1 and epistasis2 came originally from evolutionary biology
and later were adopted by evolutionary computation theorists. It is thus not surprising that
biologists also contributed much to the research of both. In the late 1980s, Kauffman [1098]
defined the NK fitness landscape [1100, 1098, 1101], a family of objective functions with
tunable epistasis, in an effort to investigate the links between epistasis and ruggedness.

The problem space and also the search space of this problem are bit strings of the length
N , i. e., G = X = BN . Only one single objective function is used and referred to as fitness

1 Fitness landscapes have been introduced in Section 1.3.2 on page 47.
2 Epistasis is discussed in Section 1.4.6 on page 68.
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function FN,K : BN 7→ R+. Each gene xi contributes one value fi : BK+1 7→ [0, 1] ⊂ R+

to the fitness function which is defined as the average of all of these N contributions. The
fitness fi of a gene xi is determined by its allele and the alleles at K other loci xi1 , xi2 , .., xiK

with i1..K ∈ [0, N − 1] \ {i} ⊂ N0, called its neighbors.

FN,K(x) =
1

N

N−1∑

i=0

fi (xi, xi1 , xi2 , .., xiK
) (21.4)

Whenever the value of a gene changes, all the fitness values of the genes to whose neighbor
set it belongs will change too – to values uncorrelated to their previous state. While N
describes the basic problem complexity, the intensity of this epistatic effect can be controlled
with the parameter K ∈ 0..N : If K = 0, there is no epistasis at all, but for K = N − 1 the
epistasis is maximized and the fitness contribution of each gene depends on all other genes.
Two different models are defined for choosing the K neighbors: adjacent neighbors, where
the K nearest other genes influence the fitness of a gene or random neighbors where K other
genes are therefore randomly chosen.

The single functions fi can be implemented by a table of length 2K+1 which is indexed
by the (binary encoded) number represented by the gene xi and its neighbors. These tables
contain a fitness value for each possible value of a gene and its neighbors. They can be filled
by sampling an uniform distribution in [0, 1) (or any other random distribution).

We may also consider the fi to be single objective functions that are combined to a
fitness value FN,K by a weighted sum approach, as discussed in Section 1.2.2. Then, the
nature of NK problems will probably lead to another well known aspect of multi-objective
optimization: conflicting criteria. An improvement in one objective may very well lead to
degeneration in another one.

The properties of the NK landscapes have intensely been studied in the past and the
most significant results from Kauffman [1099], Weinberger [2170], and Fontana et al. [721]
will be discussed here. We therefore borrow from the summaries provided by Altenberg [44]
and Defoin Platel et al. [549]. Further information can be found in [2258, 769, 393, 392]. An
analysis of the behavior of estimation of distribution algorithms and genetic algorithms in
NK landscapes has been provided by Pelikan [1632].

K = 0

For K = 0, the fitness function is not epistatic. Hence, all genes can be optimized separately
and we have the classical additive multi-locus model.

1. There is a single optimum x⋆ which is globally attractive, i. e., which can and will be
found by any (reasonable) optimization process regardless of the initial configuration.

2. For each individual x 6= x⋆, there exists a fitter neighbor.
3. An adaptive walk3 from any point in the search space will proceed by reducing the

Hamming distance to the global optimum by 1 in each step (if each mutation only
affects one single gene). The number of better neighbors equals the Hamming distance
to the global optimum. Hence, the estimated number of steps of such a walk is N

2 .
4. The fitness of direct neighbors is highly correlated since it shares N − 1 components.

K = N − 1

For K = N − 1, the fitness function equals a random assignment of fitness to each point of
the search space.

1. The probability that a genotype is a local optimum is 1
N−1 .

2. The expected total number of local optima is thus 2N

N+1 .

3 See Section 17.4.3 on page 297 for a discussion of adaptive walks.
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3. The average distance between local optima is approximately 2 ln (N − 1).
4. The expected length of adaptive walks is approximately ln (N − 1).
5. The expected number of mutants to be tested in an adaptive walk before reaching a

local optimum is
∑log2 (N−1)−1

i=0 2i.
6. With increasing N , the expected fitness of local optima reached by an adaptive from a

random initial configuration decreases towards the mean fitness FN,K = 1
2 of the search

space. This is called the complexity catastrophe [1099].

For K = N − 1, the work of Flyvbjerg and Lautrup [692] is of further interest.

Intermediate K

1. For small K, the best local optima share many common alleles. As K increases, this cor-
relation diminishes. This degeneration proceeds faster for the random neighbors method
than for the nearest neighbors approach.

2. For larger K, the fitness of the local optima approach a normal distribution with mean
m and variance s approximately

m = µ+ σ
√

2 ln (K + 1)K + 1 (21.5)

s =
(K + 1)σ2

N(K + 1 + 2(K + 2) ln (K + 1))
(21.6)

where µ is the expected value of the fi and σ2 is their variance.
3. The mean distance between local optima, roughly twice the length of an adaptive walk,

is approximately N log2 (K+1)
2(K+1) .

4. The autocorrelation function4 ρ(k, FN,K) and the correlation length τ are:

ρ(k, FN,K) =

(
1− K + 1

N

)k

(21.7)

τ =
−1

ln
(
1− K+1

N

) (21.8)

Computational Complexity

Altenberg [44] nicely summarizes the four most important theorems about the computational
complexity of optimization of NK fitness landscapes. These theorems have been proven using
different algorithms introduced by Weinberger [2171] and Thompson and Wright [2040].

1. The NK optimization problem with adjacent neighbors is solvable in O
(
2KN

)
steps and

thus in P [2171].
2. The NK optimization problem with random neighbors is NP-complete for K ≥ 2 [2171,

2040].
3. The NK optimization problem with random neighbors and K = 1 is solvable in polyno-

mial time. [2040].

Adding Neutrality – NKp, NKq, and Technological Landscapes

As we have discussed in Section 1.4.5, natural genomes exhibit a certain degree of neutrality.
Therefore, researchers have proposed extensions for the NK landscape which introduce neu-
trality, too [776, 777]. Two of them, the NKp and NKq landscapes, achieve this by altering
the contributions fi of the single genes to the total fitness. In the following, assume that
there are N tables, each with 2K entries representing these contributions.

4 See Definition 1.48 on page 63 for more information on autocorrelation.
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The NKp landscapes devised by Barnett [149] achieves neutrality by setting a certain
number of entries in each table to zero. Hence, the corresponding allele combinations do not
contribute to the overall fitness of an individual. If a mutation leads to a transition from one
such zero configuration to another one, it is effectively neutral. The parameter p denotes the
probability that a certain allele combination does not contribute to the fitness. As proven by
Reidys and Stadler [1718], the ruggedness of the NKp landscape does not vary for different
values of p. Barnett [148] proved that the degree of neutrality in this landscape depends on
p.

Newman and Engelhardt [1521] follow a similar approach with their NKq model. Here,
the fitness contributions fi are integers drawn from the range [0, q) and the total fitness of
a solution candidate is normalized by multiplying it with 1/q−1. A mutation is neutral when
the new allelic combination resulting from it leads to the same contribution than the old
one. In NKq landscapes, the neutrality decreases with rising values of q. In [777], you can
find a thorough discussion of the NK, the NKp, and the NKq fitness landscape.

With their technological landscapes, Lobo et al. [1300] follow the same approach from
the other side: the discretize the continuous total fitness function FN,K . The parameter M
of their technological landscapes corresponds to a number of bins [0, 1/M), [1/M, 2/M), . . . ,
into which the fitness values are sorted and put away.

21.2.2 The p-Spin Model

Motivated by the wish of researching the models for the origin of biological information by
Anderson [51, 1747] and Tsallis and Ferreira [2056], Amitrano et al. [48] developed the p-
spin model. This model is an alternative to the NK fitness landscape for tunable ruggedness
[2172]. Other than the previous models, it includes a complete definition for all genetic
operations which will be discussed in this section.

The p-spin model works with a fixed population size ps of individuals of an also fixed
length N . There is no distinction between genotypes and phenotype, in other words, G = X.
Each gene of an individual x is a binary variable which can take on the values −1 and 1.

G = {−1, 1}N , xi[j] ∈ {−1, 1} ∀i ∈ [1..ps], j ∈ [0..N − 1] (21.9)

On the 2N possible genotypic configurations, a space with the topology of an N -dimensional
hypercube is defined where neighboring individuals differ in exactly one element. On this
genome, the Hamming distance distHam can be defined as

distHam(x1, x2) =
1

2

N−1∑

i=0

(1− x1[i]x2[i]) (21.10)

Two configurations are said to be ν mutations away from each other if they have the Ham-
ming distance ν. Mutation in this model is applied to a fraction of the N ∗ ps genes in the
population. These genes are chosen randomly and their state is changed, i. e., x[i]→ −x[i].

The objective function fK (which is called fitness function in this context) is subject to
maximization, i. e., individuals with a higher value of fK are less likely to be removed from
the population. For very subset z of exactly K genes of a genotype, one contribution A(z)
is added to the fitness.

fK(x) =
∑

∀z∈P([0..K])∧|z|=K

A(x[z[0]], x[z[1]], . . . , x[z[K−1]]) (21.11)

A(z) = az ∗ z[0] ∗ z[1] ∗ · · · ∗ z[K−1] is the product of an evenly distributed random number az

and the elements of z. For K = 2, f2 can be written as f2(x) =
∑K−1

i=0

∑k−1
j=0 aijx[i]x[j], which

corresponds to the spin-glass [208, 1402] function first mentioned by Anderson [51] in this
context. With rising values of K, this fitness landscape becomes more rugged. Its correlation
length τ is approximately N/2K, as discussed thoroughly by Weinberger and Stadler [2172].
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For selection, Amitrano et al. [48] suggest to use the measure PD(x) defined by Rokhsar
et al. [1747] as follows:

PD(x) =
1

1 + eβ(fK(x)−H0)
(21.12)

where the coefficient β is a sharpness parameter and H0 is a threshold value. For β → ∞,
all individuals x with fK(x) < H0 will die and for β = 0, the death probability is always 1

2 .
The individuals which have died are then replaced with copies of the survivors.

21.2.3 The ND Family of Fitness Landscapes

The ND family of fitness landscape has been developed by Beaudoin et al. [161] in order to
provide a model problem with tunable neutrality.

The degree of neutrality ν is defined as the number (or, better, the fraction of) neutral
neighbors (i.e., those with same fitness) of a solution candidate, as specified in Equation 1.42
on page 64. The populations of optimization processes residing on a neutral network
(see Section 1.4.5 on page 66) tend to converge into the direction of the individual which has
the highest degree of neutrality on it. Therefore, Beaudoin et al. [161] create a landscape
with a predefined neutral degree distribution.

The search space is again the set of all binary strings of the length N , G = X = BN .
Thus, a genotype has minimally 0 and at most N neighbors with Hamming distance 1 that
have the same fitness. The array D has the length N + 1 and the element D[i] represents
the fraction of genotypes in the population that have i neutral neighbors.

Beaudoin et al. [161] provide an algorithm that divides the search space into neutral
networks according to the values in D. Since this approach cannot exactly realize the dis-
tribution defined by D, the degrees of neutrality of the single individuals are subsequently
refined with a Simulated Annealing algorithm. The objective (fitness) function is created in
form of a complete table mapping X 7→ R. All members of a neutral network then receive
the same, random fitness.

If it is ensured that all members in a neutral network always have the same fitness,
its actual value can be modified without changing the topology of the network. Tunable
deceptiveness is achieved by setting the fitness values according to the Trap Functions [540,
12, 1069].

Trap Functions

Trap functions fb,r,x⋆ : BN 7→ R are subject to maximization based on the Hamming distance
to a pre-defined global optimum x⋆. They build a second, local optimum in form of a hill
with a gradient pointing away from the global optimum. This trap is parameterized with
two values, b and r, where b corresponds to the width of the attractive basins and r to their
relative importance.

fb,r,x⋆(x) =

{
1− distHam(x,x⋆)

Nb
if N ∗ distHam(x,x⋆) < b

r( 1
N distHam(x,x⋆)−b)

1−b
otherwise

(21.13)

Equation 21.14 shows a similar “Trap” function defined by Ackley [12] where u(x) is the
number of ones in the bit string x of length n and z = ⌊3n/4⌋ [1069]. The objective function
f(x) is subject to maximization is sketched in Figure 21.2.

f(x) =

{
(8n/z) (z − u(x)) if u(x) ≤ z

(10n/ (n− z)) (u(x)− z) otherwise
(21.14)
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u(x)

f(x) global optimium
with small basin

of attraction

local optimium
with large basin
of attraction

Figure 21.2: Ackley’s “Trap” function [12, 1069].

21.2.4 The Royal Road

The Royal Road functions developed by Mitchell et al. [1432] and presented first at the
Fifth International Conference on Genetic Algorithms in July 1993 are a set of special
fitness landscapes for genetic algorithms [1067, 1432, 731, 1682, 2098]. Their problem space
X and search space G are fixed-length bit strings. The Royal Road functions are closely
related to the Schema Theorem5 and the Building Block Hypothesis6 and were used to
study the way in which highly fit schemas are discovered. They therefore define a set of
schemas S = s1, s2, . . . , sn and an objective function (here referred to as fitness function),
subject to maximization, as

f(x) =
∑

∀s∈S

c(s)σ(s, x) (21.15)

where x ∈ X is a bit string, c(s) is a value assigned to the schema s and σ(s, x) is defined as

σ(s, x) =

{
1 if x is an instance of s
1 otherwise

(21.16)

In the original version, c(s) is the order of the schema s, i. e., c(s) ≡ order(s), and S is
specified as follows (where * stands for the don’t care symbol as usual).

1 s1 = 11111111********************************************************; c(s1 ) = 8

2 s2 = ********11111111************************************************; c(s2 ) = 8

3 s3 = ****************11111111****************************************; c(s3 ) = 8

4 s4 = ************************11111111********************************; c(s4 ) = 8

5 s5 = ********************************11111111************************; c(s5 ) = 8

6 s6 = ****************************************11111111****************; c(s6 ) = 8

7 s7 = ************************************************11111111********; c(s7 ) = 8

8 s8 = ********************************************************11111111; c(s8 ) = 8

9 s9 = 1111111111111111************************************************; c(s9 ) = 16

10 s10 = ****************1111111111111111********************************; c(s10) = 16

11 s11 = ********************************1111111111111111****************; c(s11) = 16

12 s12 = ************************************************1111111111111111; c(s12) = 16

13 s13 = 11111111111111111111111111111111********************************; c(s13) = 32

14 s14 = ********************************11111111111111111111111111111111; c(s14) = 32

15 s15 = 1111111111111111111111111111111111111111111111111111111111111111; c(s15) = 64

Listing 21.1: An example Royal Road function.

5 See Section 3.6 on page 150 for more details.
6 The Building Block Hypothesis is elaborated on in Section 3.6.5 on page 152
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By the way, from this example, we can easily see that a fraction of all mutation and
crossover operations applied to most of the solution candidates will fall into the don’t care
areas. Such modifications will not yield any fitness change and therefore are neutral.

The Royal Road functions provide certain, predefined stepping stones (i. e., building
blocks) which (theoretically) can be combined by the genetic algorithm to successively create
schemas of higher fitness and order. Mitchell et al. [1432] performed several tests with their
Royal Road functions. These tests revealed or confirmed that

1. Crossover is a useful reproduction operation in this scenario. Genetic algorithms which
apply this operation clearly outperform hill climbing approaches solely based on muta-
tion.

2. In the spirit of the Building Block Hypothesis, one would expect that the intermediate
steps (for instance order 32 and 16) of the Royal Road functions would help the genetic
algorithm to reach the optimum. The experiments of Mitchell et al. [1432] showed the
exact opposite: leaving them away speeds up the evolution significantly. The reason is
the fitness difference between the intermediate steps and the low-order schemas is high
enough that the first instance of them will lead the GA to converge to it and wipe out
the low-order schemas. The other parts of this intermediate solution play no role and
may allow many zeros to hitchhike along.

Especially this last point gives us another insight on how we should construct genomes:
the fitness of combinations of good low-order schemas should not be too high so other good
low-order schemas do not extinct when they emerge. Otherwise, the phenomenon of domino
convergence researched by Rudnick [1773] and outlined in Section 1.4.2 and Section 21.2.5
may occur.

Variable-Length Representation

The original Royal Road problems can be defined for binary string genomes of any given
length n, as long as n is fixed. A Royal Road benchmark for variable-length genomes has
been defined by Defoin Platel et al. [548].

The problem space XΣ of the VLR (variable-length representation) Royal Road problem
is based on an alphabet Σ with N = |Σ| letters. The fitness of an individual x ∈ XΣ is
determined by whether or not consecutive building blocks of the length b of the letters l ∈ Σ
are present. This presence can be defined as

Bb(x, l) =

{
1 if ∃i : (0 ≤ i < (len(x)− b)) ∧ (x[i+j] = l ∀j : 0 ≤ j < (b− 1))
0 otherwise

(21.17)

1. Where b ≥ 1 is the length of the building blocks,
2. Σ is the alphabet with N = |Σ| letters,
3. l is a letter in Σ,
4. x ∈ XΣ is a solution candidate, and
5. x[k] is the kth locus of x.

Bb(x, l) is 1 if a building block, an uninterrupted sequence of the letter l, of at least length
b, is present in x. Of course, if len(x) < b this cannot be the case and Bb(x, l) will be zero.

We can now define the functional objective function fΣb : XΣ 7→ [0, 1] which is subject
to maximization as

fΣb(x) =
1

N

N∑

i=1

Bb(x,Σ[i]) (21.18)

An optimal individual x⋆ solving the VLR Royal Road problem is thus a string that
includes building blocks of length b for all letters l ∈ Σ. Notice that the position of these
blocks plays no role. The set X⋆

b of all such optima with fΣb(x
⋆) = 1 is then
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X⋆
b ≡ {x⋆ ∈ XΣ : Bb(x

⋆, l) = 1 ∀l ∈ Σ} (21.19)

Such an optimum x⋆ for b = 3 and Σ = {A, T,G,C} is

x⋆ = AAAGTGGGTAATTTTCCCTCCC (21.20)

The relevant building blocks of x⋆ are written in bold face. As it can easily be seen, their
location plays no role, only their presence is important. Furthermore, multiple occurrences of
building blocks (like the second CCC) do not contribute to the fitness. The fitness landscape
has been designed in a way ensuring that fitness degeneration by crossover can only occur
if the crossover points are located inside building blocks and not by block translocation or
concatenation. In other words, there is no inter-block epistasis.

Epistatic Road

Defoin Platel et al. [549] combined their previous work on the VLR Royal Road with Kauff-
man’s NK landscapes and introduced the Epistatic Road. The original NK landscape works
on binary representation of the fixed length N . To each locus i in the representation, one
fitness function fi is assigned denoting its contribution to the overall fitness. fi however is
not exclusively computed using the allele at the ith locus but also depends on the alleles of
K other loci, its neighbors.

The VLR Royal Road uses a genome based on the alphabet Σ with N = len(Σ) letters.
It defines the function Bb(x, l) which returns 1 if a building block of length b containing
only the character l is present in x and 0 otherwise. Because of the fixed size of the alphabet
Σ, there exist exactly N such functions. Hence, the variable-length representation can be
translated to a fixed-length, binary one by simply concatenating them:

Bb(x,Σ[0]) Bb(x,Σ[1]) . . . Bb(x,Σ[N−1]) (21.21)

Now we can define a NK landscape for the Epistatic Road by substituting the Bb(x, l)
into Equation 21.4 on page 330:

FN,K,b(x) =
1

N

N−1∑

i=0

fi(Bb(x,Σ[i]), Bb(x,Σ[i1]), . . . , Bb(x,Σ[iK ])) (21.22)

The only thing left is to ensure that the end of the road, i. e., the presence of all N
building blocks, also is the optimum of FN,K,b. This is done by exhaustively searching the
space BN and defining the fi in a way that Bb(x, l) = 1 ∀ l ∈ Σ ⇒ FN,K,b(x) = 1.

Royal Trees

An analogue of the Royal Road for Genetic Programming has been specified by Punch et al.
[1678]. This Royal Tree problem specifies a series of functions A, B, C, . . . with increasing
arity, i. e., A has one argument, B has two arguments, C has three, and so on. Additionally,
a set of terminal nodes x, y, z is defined.

For the first free levels, the perfect trees are shown Figure 21.3. An optimal A-level tree
consists of an A node with an x leaf attached to it. The perfect level-B tree has a B as
root with two perfect level-A trees as children. A node labeled with C having three children
which all are optimal B-level trees is the optimum at C-level, and so on.

The objective function, subject to maximization, is computed recursively. The raw fitness
of a node is the weighted sum of the fitness of its children. If the child is a perfect tree at the
appropriate level, a perfect C tree beneath a D-node, for instance, its fitness is multiplied
with the constant FullBonus, which normally has the value 2. If the child is not a perfect
tree, but has the correct root, the weight is PartialBonus (usually 1). If it is otherwise
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Figure 21.3: The perfect Royal Trees.

incorrect, its fitness is multiplied with Penalty, which is 1
3 per default. If the whole tree is

a perfect tree, its raw fitness is finally multiplied with CompleteBonus which normally is
also 2. The value of a x leaf is 1.

From Punch et al. [1678], we can furthermore borrow three examples for this fitness
assignment and outline them in Figure 21.4. A tree which represents a perfect A level has
the score of CompleteBonus ∗FullBonus ∗ 1 = 2 ∗ 2 ∗ 1 = 4. A complete and perfect tree at
level B receives CompleteBonus(FullBonus∗4+FullBonus∗4) = 2∗(2∗4+2∗4) = 32. At
level C, this makes CompleteBonus(FullBonus ∗32 +FullBonus ∗32 +FullBonus ∗32) =
2(2 ∗ 32 + 2 ∗ 32 + 2 ∗ 32) = 384.
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Figure 21.4: Example fitness evaluation of Royal Trees

Other Derived Problems

Storch and Wegener [1968, 1969, 1970] used their Real Royal Road for showing that there
exist problems where crossover helps improving the performance of evolutionary algorithms.
Naudts et al. [1505] have contributed generalized Royal Road functions functions in order
to study epistasis.

21.2.5 OneMax and BinInt

The OneMax and BinInt are two very simple model problems for measuring the convergence
of genetic algorithms.

The OneMax Problem

The task in the OneMax (or BitCount) problem is to find a binary string of length n
consisting of all ones. The search and problem space are both the fixed-length bit strings
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G = X = Bn. Each gene (bit) has two alleles 0 and 1 which also contribute exactly this value
to the total fitness, i. e.,

f(x) =

n−1∑

i=0

x[i], ∀x ∈ X (21.23)

For the OneMax problem, an extensive body of research has been provided by Ackley
[12], Mühlenbein and Schlierkamp-Voosen [1481], Thierens and Goldberg [2035], Miller and
Goldberg [1416], Bäck [97], Blickle and Thiele [230], and Wilson and Kaur [2230].

The BinInt Problem

The BinInt problem devised by Rudnick [1773] also uses the bit strings of the length n
as search and problem space (G = X = Bn). It is something like a perverted version of the
OneMax problem, with the objective function defined as

f(x) =

n−1∑

i=0

2n−i−1x[i], x[i] ∈ {0, 1} ∀i ∈ [0..n− 1] (21.24)

Since the bit at index i has a higher contribution to the fitness than all other bit at higher
indices together, the comparison between two solution candidates x1 and x2 is won by the
lexicographically bigger one. Thierens et al. [2036] give the example x1 = (1, 1, 1, 1, 0, 0, 0, 0)
and x2 = (1, 1, 0, 0, 1, 1, 0, 0), where the first deviating bit (underlined, at index 2) fully
determines the outcome of the comparison of the two.

We can expect that the bits with high contribution (high salience) will converge quickly
whereas the other genes with lower salience are only pressured by selection when all others
have already been fully converged. Rudnick [1773] called this sequential convergence phe-
nomenon domino convergence due to its resemblance with a row of falling domino stones
[2036] (see Section 1.4.2). Generally, he showed that first, the highly salient genes converge
(i. e., take on the correct values in the majority of the population). Then, step by step, the
building blocks of lower significance can converge, too. Another result of Rudnick’s work
is that mutation may stall the convergence because it can disturb the highly significant
genes, which then counters the effect of the selection pressure on the less salient ones. Then,
it becomes very less likely that the majority of the population will have the best alleles
in these genes. This somehow dovetails with the idea of error thresholds from theoretical
biology [625, 1552] which we have mentioned in Section 1.4.3. It is also explains some the
experimental results obtained with the Royal Road problem from Section 21.2.4. The BinInt
problem was used in the studies of Sastry and Goldberg [1810, 1811].

One of the maybe most important conclusions from the behavior of GAs applied to the
BinInt problem is that applying a genetic algorithm to solve a numerical problem (X ⊆ Rn)
whilst encoding the solution candidates binary (G ⊆ Bn) in a straightforward manner will
like produce suboptimal solutions. Schraudolph and Belew [1836], for instance, recognized
this problem and suggested a Dynamic Parameter Encoding (DPE) where the values genes of
the bit string are readjusted over time: Initially, optimization takes place on a rather coarse
grained scale and after the optimum on this scale is approximated, the focus is shifted to a
finer interval and the genotypes are re-encoded to fit into this interval. In their experiments,
this method works better as the direct encoding.

21.2.6 Long Path Problems

The long path problems have been designed by Horn et al. [958] in order to construct a
unimodal, non-deceptive problem without noise which hill climbing algorithms still can only
solve in exponential time. The idea is to wind a path with increasing fitness through the
search space so that any two adjacent points on the path are no further away than one
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search step and any two points not adjacent on the path are away at least two search steps.
All points which are not on the path should guide the search to its origin.

The problem space and search space in their concrete realization is the space of the
binary strings G = X = Bl of the fixed, odd length l. The objective function flp(x) is
subject to maximization. It is furthermore assumed that the search operations in hill climbing
algorithms alter at most one bit per search step, from which we can follow that two adjacent
points on the path have a Hamming distance of one and two non-adjacent points differ in
at least two bits.

The simplest instance of the long path problems that Horn et al. [958] define is the
Root2path Pl. Paths of this type are constructed by iteratively increasing the search space
dimension. Starting with P1 = (0, 1), the path Pl+2 is constructed from two copies P a

l = P b
l

of the path Pl as follows. First, we prepend 00 to all elements of the path P a
l and 11 to

all elements of the path P b
l . For l = 1 this makes P a

1 = (000, 001) and P b
l = (110, 111).

Obviously, two elements on P a
l or on P b

l still have a Hamming distance of one whereas each
element from P a

l differs at least two bits from each element on P b
l . Then, a bridge element Bl

is created that equals the last element of P a
l , but has 01 as the first two bits, i. e., B1 = 011.

Now the sequence of the elements in P b
l is reversed and P a

l , Bl, and the reversed P b
l are

concatenated. Hence, P3 = (000, 001, 011, 111, 110). Due to this recursive structure of the
path construction, the path length increases exponentially with l (for odd l):

len(Pl+2) = 2 ∗ len(Pl) + 1 (21.25)

len(Pl) = 3 ∗ 2
l−1
2 − 1 (21.26)

The basic fitness of a solution candidate is 0 if it is not on the path and its (zero-based)
position on the path plus one if it is part of the path. The total number of points in the space

is Bl is 2l and thus, the fraction occupied by the path is approximately 3∗2− l+1
2 , i.e., decreases

exponentially. In order to avoid that the long path problem becomes a needle-in-a-haystack
problem7, Horn et al. [958] assign a fitness that leads the search algorithm to the path’s origin
to all off-path points xo. Since the first point of the path is always the string 00...0 containing
only zeros, subtracting the number of ones from l, i. e., flp(xo) = l−countOccurences(1, xo),
is the method of choice. To all points on the path, l is added to the basic fitness, making
them superior to all other solution candidates.

Some examples for the construction of Root2paths can be found in Table 21.2 and the
path for l = 3 is illustrated in Figure 21.5. In Algorithm 21.1 we try to outline how the
objective value of a solution candidate x can be computed online. Here, please notice two
things: First, this algorithm deviates from the one introduced by Horn et al. [958] – we
tried to resolve the tail recursion and also added some minor changes. Another algorithm
for determining flp is given by Rudolph [1774]. The second thing to realize is that for small
l, we would not use the algorithm during the individual evaluation but rather a lookup
table. Each solution candidate could directly be used as index for this table which contains
the objective values. For l = 20, for example, a table with entries of the size of 4B would
consume 4MiB which is acceptable on today’s computers.

The experiments of Horn et al. [958] showed that hill climbing methods that only con-
centrate on sampling the neighborhood of the currently known best solution perform very
poor on long path problems whereas genetic algorithms which combine different solution
candidates via crossover easily find the correct solution. Rudolph [1774] shows that it does
so in polynomial expected time. He also extends this idea long k-paths in [1775]. Droste
et al. [598] and Garnier and Kallel [774] analyze this path and find that also (1+1)-EAs can
have exponential expected runtime on such unimodal functions.

It should be mentioned that the Root2paths constructed according to the method de-
scribed in this section here do not have the maximum length possible for long paths. Horn

7 See Section 1.4.5 for more information on needle-in-a-haystack problems.
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Figure 21.5: The root2path for l = 3.

P1 = (0, 1)
P3 = (000, 001, 011, 111, 110)
P5 = (00000, 00001, 00011, 00111, 00110, 01110, 11110, 11111, 11011, 11001, 11000)
P7 = (0000000, 0000001, 0000011, 0000111, 0000110, 0001110, 0011110, 0011111, 0011011,

0011001, 0011000, 0111000, 1111000, 1111001, 1111011, 1111111, 1111110, 1101110,
1100110, 1100111, 1100011, 1100001, 1100000)

P9 = (000000000, 000000001, 000000011, 000000111, 000000110, 000001110, 000011110,
000011111, 000011011, 000011001, 000011000, 000111000, 001111000, 001111001,
001111011, 001111111, 001111110, 001101110, 001100110, 001100111, 001100011,
001100001, 001100000, 011100000, 111100000, 111100001, 111100011, 111100111,
111100110, 111101110, 111111110, 111111111, 111111011, 111111001, 111111000,
110111000, 110011000, 110011001, 110011011, 110011111, 110011110, 110001110,
110000110, 110000111, 110000011, 110000001, 110000000)

P11 = (00000000000, 00000000001, 00000000011, 00000000111, 00000000110, 00000001110,
00000011110, 00000011111, 00000011011, 00000011001, 00000011000, 00000111000,
00001111000, 00001111001, 00001111011, 00001111111, 00001111110, 00001101110,
00001100110, 00001100111, 00001100011, 00001100001, 00001100000, 00011100000,
00111100000, 00111100001, 00111100011, 00111100111, 00111100110, 00111101110,
00111111110, 00111111111, 00111111011, 00111111001, 00111111000, 00110111000,
00110011000, 00110011001, 00110011011, 00110011111, 00110011110, 00110001110,
00110000110, 00110000111, 00110000011, 00110000001, 00110000000, 01110000000,
11110000000, 11110000001, 11110000011, 11110000111, 11110000110, 11110001110,
11110011110, 11110011111, 11110011011, 11110011001, 11110011000, 11110111000,
11111111000, 11111111001, 11111111011, 11111111111, 11111111110, 11111101110,
11111100110, 11111100111, 11111100011, 11111100001, 11111100000, 11011100000,
11001100000, 11001100001, 11001100011, 11001100111, 11001100110, 11001101110,
11001111110, 11001111111, 11001111011, 11001111001, 11001111000, 11000111000,
11000011000, 11000011001, 11000011011, 11000011111, 11000011110, 11000001110,
11000000110, 11000000111, 11000000011, 11000000001, 11000000000)

Table 21.2: Some long Root2paths for l from 1 to 11 with underlined bridge elements.
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Algorithm 21.1: r ←− flp(x)

Input: x: the solution candidate with an odd length
Data: s: the current position in x
Data: sign: the sign of the next position
Data: isOnPath: true if and only if x is on the path
Output: r: the objective value

begin1

sign←− 12

s←− len(x)− 13

r ←− 04

isOnPath←− true5

while (s ≥ 0) ∧ isOnPath do6

if s = 0 then7

if x[0] = 1 then r ←− r + sign8

sub←− subList(x, s− 2, 2)9

if sub = 11 then10

r ←− r + sign ∗
(
3 ∗ 2

s
2 − 2

)
11

sign←− −sign12

else13

if sub 6= 00 then14

if (x[s] = 0) ∧ (x[s−1] = 1) ∧ (x[s−2] = 1) then15

if (s = 2) ∨ [(x[s−3] = 1)∧
(countOccurences(1, subList(x, 0, s− 3)) = 0)]

then
16

r ←− r + sign ∗
(
3 ∗ 2

s
2
−1 − 1

)

else else isOnPath←− false17

else isOnPath←− false18

s←− s− 219

if isOnPath then r ←− r + len(x)20

else r ←− len(x)− countOccurences(1, x)− 121

end22

et al. [958] also introduce Fibonacci paths which are longer than the Root2paths. The prob-
lem of finding maximum length paths in a l-dimensional hypercube is known as the snake-
in-the-box 8 problem [1104, 483] which was first described by Kautz [1104] in the late 1950s.
It is a very hard problem suffering from combinatorial explosion and currently, maximum
snake lengths are only known for small values of l.

21.2.7 Tunable Model for Problematic Phenomena

What is a good model problem? Which model fits best to our purposes? These questions
should be asked whenever we apply a benchmark, whenever we want to use something for
testing the ability of a global optimization approach. The mathematical functions intro-
duced in Section 21.1, for instance, are good for testing special mathematical reproduction
operations like used in Evolution Strategies and for testing the capability of an evolutionary
algorithm for estimating the Pareto frontier in multi-objective optimization. Kauffman’s NK
fitness landscape (discussed in Section 21.2.1) was intended to be a tool for exploring the
relation of ruggedness and epistasis in fitness landscapes but can prove very useful for finding
out how capable an global optimization algorithm is to deal with problems exhibiting these
phenomena. In Section 21.2.4, we outlined the Royal Road functions, which were used to

8 http://en.wikipedia.org/wiki/Snake-in-the-box [accessed 2008-08-13]

http://en.wikipedia.org/wiki/Snake-in-the-box
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investigate the ability of genetic algorithms to combine different useful formae and to test
the Building Block Hypothesis. The Artificial Ant (Section 21.3.1) and the GCD problem
from Section 21.3.2 are tests for the ability of Genetic Programming of learning algorithms.

All these benchmarks and toy problems focus on specific aspects of global optimization
and will exhibit different degrees of the problematic properties of optimization problems to
which we had devoted Section 1.4:

1. premature convergence and multimodality (Section 1.4.2),
2. ruggedness (Section 1.4.3),
3. deceptiveness (Section 1.4.4),
4. neutrality and redundancy (Section 1.4.5),
5. overfitting and oversimplification (Section 1.4.8), and
6. dynamically changing objective functions (Section 1.4.9).

With the exception of the NK fitness landscape, it remains unclear to which degrees these
phenomena occur in the test problem. How much intrinsic epistasis does the Artificial Ant
or the GCD problem emit? What is the quantity of neutrality inherent in Royal Road for
variable-length representations? Are the mathematical test functions rugged and, if so, to
which degree? All the problems are useful test instances for global optimization. They have
not been designed to give us answers to questions like: Which fitness assignment process
can be useful when an optimization problem exhibits weak causality and thus has a rugged
fitness landscape? How does a certain selection algorithm influence the ability of a genetic
algorithm to deal with neutrality? Only Kauffman’s NK landscape provides such answers,
but only for epistatis. By fine-tuning its N and K parameters, we can generate problems with
different degrees of epistatis. Applying a genetic algorithm to these problems then allows us
to draw conclusions on its expected performance when being fed with high or low epistatic
real-world problems.

In this section, a new model problem is defined that exhibits ruggedness, epistasis, neu-
trality, multi-objectivity, overfitting, and oversimplification features in a controllable manner
Weise et al. [2185], Niemczyk [1533]. Each of them is introduced as a distinct filter compo-
nent which can separately be activated, deactivated, and fine-tuned. This model provides
a perfect test bed for optimization algorithms and their configuration settings. Based on a
rough estimation of the structure of the fitness landscape of a given problem, tests can be
run very fast using the model as a benchmark for the settings of an optimization algorithm.
Thus, we could, for instance, determine a priori whether increasing the population size of
an evolutionary algorithm over an approximated limit is likely to provide a gain.

With it, we also can evaluate the behavior of an optimization method in the presence of
various problematic aspects, like epistasis or neutrality. This way, strengths and weaknesses
of different evolutionary approaches could be explored in a systematic manner. Additionally,
it is also well suited for theoretical analysis because of its simplicity. The layers of the model,
sketched using an example in Figure 21.6, are specified in the following.

Model Definition

The basic optimization task in this model is to find a binary string x⋆ of a predefined length
n = len(x⋆) consisting of alternating zeros and ones in the space of all possible binary strings
X = B∗. The tuning parameter for the problem size is n ∈ N.

x⋆ = 0101010101010 . . . 01 (21.27)

Overfitting and Oversimplification

Searching this optimal string could be done by comparing each genotype g with x⋆. There-
fore we would use the Hamming distance9 [882] distHam(a, b), which defines the difference

9 Definition 29.6 on page 537 includes the specification of the Hamming distance.
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Figure 21.6: An example for the fitness landscape model.

between two binary strings a and b of equal length as the number of bits in which they differ
(see Equation 29.10).

Instead of doing this directly, we test the solution candidate against tc training samples
T1, T2, .., Ttc. These samples are modified versions of the perfect string x⋆.

As outlined in Section 1.4.8 on page 72, we can distinguish between overfitting and
oversimplification. The latter is often caused by incompleteness of the training cases and the
former can originate from noise in the training data. Both forms can be expressed in terms
of our model by the objective function fε,o,tc (based on a slightly extended version of the
Hamming distance dist∗Ham) which is subject to minimization.
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dist∗Ham(a, b) = |{∀i : (a[i] 6= b[i]) ∧ (b[i] 6= ∗) ∧ (0 ≤ i < |a|)}| (21.28)

fε,o,tc(x) =

tc∑

i=1

dist∗Ham(x, Ti) , fε,o,tc(x) ∈ [0, f̂ ] ∀x ∈ X (21.29)

In the case of oversimplification, the perfect solution x⋆ will always reach a perfect score
in all training cases. There may be incorrect solutions reaching this value in some cases too,
because some of the facets of the problem are hidden. We take this into consideration by
placing o don’t care symbols (*) uniformly distributed into the training cases. The values of
the solution candidates at their loci have no influence on the fitness.

When overfitting is enabled, the perfect solution will not reach the optimal score in any
training case because of the noise present. Incorrect solutions may score better in some
cases and even outperform the real solution if the noise level is high. Noise is introduced
in the training cases by toggling ε of the remaining n − o bits, again following a uniform
distribution. An optimization algorithm can find a correct solution only if there are more
training samples with correctly defined values for each locus than with wrong or don’t care
values.

The optimal objective value is zero and the maximum f̂ of fε,o,tc is limited by the upper

boundary f̂ ≤ (n− o)tc. Its exact value depends on the training cases. For each bit index i,
we have to take into account whether a zero or a one in the phenotype would create larger
errors:

count(i, val) = |{j ∈ 1..n : Tj [i] = val}| (21.30)

e(i) =

{
count(i, 1) if count(i, 1) ≥ count(i, 0)
count(i, 0) otherwise

(21.31)

f̂ =

tc∑

i=1

e(i) (21.32)

Neutrality

We can create a well-defined amount of neutrality during the genotype-phenotype mapping
by applying a transformation uµ that shortens the solution candidates by a factor µ. The ith

bit in uµ(g) is defined as 0 if and only if the majority of the µ bits starting at locus i∗µ in g
is also 0, and as 1 otherwise. The default value 1 set in draw situations has (in average) no
effect on the fitness since the target solution x⋆ is defined as a sequence of alternating zeros
and ones. If the length of a genotype g is not a multiple of µ, the remaining len(g) mod µ
bits are ignored. The tunable parameter for the neutrality in our model is µ. If µ is set to
1, no additional neutrality is modeled.

Epistasis

Epistasis in general means that a slight change in one gene of a genotype influences some
other genes. We can introduce epistasis in our model as part of the genotype mapping and
apply it after the neutrality transformation. We therefore define a bijective function eη that
translates a binary string z of length η to a binary string eη(z) of the same length. Assume
we have two binary strings z1 and z2 which differ only in one single locus, i.e., their Hamming
distance is one. eη(i)ntroduces epistasis by exhibiting the following property:

distHam(z1, z2) = 1⇒ distHam(eη(z1) , eη(z2)) ≥ η − 1 ∀z1, z2 ∈ Bη (21.33)

The meaning of Equation 21.33 is that a change of one bit in a genotype g leads to the
change of at least η−1 bits in the corresponding mapping eη(x). This, as well as the demand
for bijectivity, is provided if we define eη as follows:
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eη(z) [i] =





⊗
z[j]

∀j:0≤j<η∧

j 6=(i−1) mod η

if 0 ≤ z < 2η−1, i. e., z[η−1] = 0

eη(z − 2η−1) [i] otherwise

(21.34)

In other words, for all strings z ∈ Bη which have the most significant bit (MSB) not
set, the eη transformation is performed bitwise. The ith bit in eη(z) equals the exclusive or
combination of all but one bit in z. Hence, each bit in z influences the value of η− 1 bits in
eη(z). For all z with 1 in the MSB, eη(z) is simply set to the negated eη transformation of z
with the MSB cleared (the value of the MSB is 2η−1). This division in e is needed in order
to ensure its bijectiveness. This and the compliance with Equation 21.33 can be shown with
a rather lengthy proof omitted here.

In order to introduce this model of epistasis in genotypes of arbitrary length, we divide
them into blocks of the length η and transform each of them separately with eη. If the length
of a given genotype g is no multiple of η, the remaining len(g) mod η bits at the end will
be transformed with the function elen(g) mod η instead of eη, as outlined in Figure 21.6. It
may also be an interesting fact that the eη transformations are a special case of the NK
landscape discussed in Section 21.2.1 with N = η and K ≈ η − 2.
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Figure 21.7: An example for the epistasis mapping z → e4(z).

The tunable parameter η for the epistasis ranges from 2 to n ∗ m, the product of the
basic problem length n and the number of objectives m (see next section). If it is set to a
value smaller than 3, no additional epistasis is introduced. Figure 21.7 outlines the mapping
for η = 4.

Multi-Objectivity

A multi-objective problem with m criteria can easily be created by interleaving m instances
of the benchmark problem with each other and introducing separate objective functions
for each of them. Instead of just dividing the genotype g in m blocks, each standing for
one objective, we scatter the objectives as illustrated in Figure 21.6. The bits for the first
objective function comprise x1 = (g[0], g[m], g[2m], . . . ), those used by the second objective
function are x2 = (g[1], g[m+1], g[2m+1], . . . ). Notice that no bit in g is used by more than one
objective function. Superfluous bits (beyond index nm − 1) are ignored. If g is too short,
the missing bits in the phenotypes are replaced with the complement from x⋆, i. e., if one
objective misses the last bit (index n − 1), it is padded by x⋆[n−1] which will worsen the
objective by 1 on average.

Because of the interleaving, the objectives will begin to conflict if epistasis (η > 2) is
applied, similar to NK landscapes. Changing one bit in the genotype will change the outcome
of at most min {η,m} objectives. Some of them may improve while others may worsen.

A non-functional objective function minimizing the length of the genotypes is added if
variable-length genomes are used during the evolution. If fixed-length genomes are used,
they can be designed in a way that the blocks for the single objectives have always the right
length.
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Ruggedness

In an optimization problem, there can be at least two (possibly interacting) sources of
ruggedness of the fitness landscape. The first one, epistasis, has already been modeled and
discussed. The other source concerns the objective functions themselves, the nature of the
problem. We will introduce this type of ruggedness a posteriori by artificially lowering the
causality of the problem space. We therefore shuffle the objective values with a permutation
r : [0, f̂ ] 7→ [0, f̂ ], where f̂ the abbreviation for the maximum possible objective value, as
defined in Equation 21.32.

Before we do that, let us shortly outline what makes a function rugged. Ruggedness
is obviously the opposite of smoothness and causality. In a smooth objective function, the
objective values of the solution candidates neighboring in problem space are also neighboring.
In our original problem with o = 0, ε = 0, and tc = 1 for instance, two individuals differing
in one bit will also differ by one in their objective values. We can write down the list of
objective values the solution candidates will take on when they are stepwise improved from

the worst to the best possible configuration as
(
f̂ , f̂ − 1, .., 2, 1, 0

)
. If we exchange two of the

values in this list, we will create some artificial ruggedness. A measure for the ruggedness of
such a permutation r is ∆(r):

∆(r) =

f̂−1∑

i=0

|r[i]− r[i+1]| (21.35)

The original sequence of objective values has the minimum value ∆̌ = f̂ and the maximum

possible value is ∆̂ = f̂(f̂+1)
2 . There exists at least one permutation for each ∆ value in

∆̌..∆̂. We can hence define the permutation rγ which is applied after the objective values
are computed and which has the following features:

1. It is bijective (since it is a permutation).
2. It must preserve the optimal value, i. e., rγ [0] = 0.
3. ∆(rγ) = ∆̌+ γ.

With γ ∈
[
0, ∆̂− ∆̌

]
, we can fine-tune the ruggedness. For γ = 0, no ruggedness

is introduced. For a given f̂ , we can compute the permutations rγ with the procedure

buildRPermutation
(
γ, f̂

)
defined in Algorithm 21.2.
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Figure 21.8: An example for rγ with γ = 0..10 and f̂ = 5.
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Algorithm 21.2: rγ ←− buildRPermutation
(
γ, f̂

)

Input: γ: the γ value
Input: f̂ : the maximum objective value
Data: i, j, d, tmp: temporary variables
Data: k, start, r: parameters of the subalgorithm
Output: rγ : the permutation rγ

begin1

Subalgorithm r ←− permutate(k, r, start)2

begin3

if k > 0 then4

if k ≤ (f̂ − 1) then5

r ←− permutate(k − 1, r, start)6

tmp←− r[f̂]7

r[f̂]←− r[f̂−k]8

r[f̂−k]←− tmp9

else10

i←−
⌊

start+1
2

⌋
11

if (start mod 2) = 0 then12

i←− f̂ + 1− i13

d←− −114

else15

d←− 116

for j ←− start up to f̂ do17

r[j]←− i18

i←− i+ d19

r ←− permutate
(
k − f̂ + start, r, start+ 1

)
20

end21

r ←−
(
0, 1, 2, .., f̂ − 1, f̂

)
22

return permutate(γ, r, 1)23

end24

Figure 21.8 outlines all ruggedness permutations rγ for an objective function which can

range from 0 to f̂ = 5. As can be seen, the permutations scramble the objective function
more and more with rising γ and reduce its gradient information.

Experimental Validation

In this section, we will use a selection of the experimental results obtained with our model
in order to validate the correctness of the approach.10 Table 21.3 states the configuration
of the evolutionary algorithm used for our experiments. For each of the experiment-specific
settings discussed later, at least 50 runs have been performed.

Parameter Short Description

Problem

Space

X The variable-length bit strings consisting of between 1 and 8000
bits. (see Section 3.5)

Objective

Functions

F F = {fε,o,tc, fnf}, where fnf is the non-functional length criterion
fnf (x) = len(x) (see Equation 21.29)

10 More experimental results and more elaborate discussions can be found in the bachelor’s thesis
of Niemczyk [1533].



348 21 Benchmarks and Toy Problems

Search Space G G = X
Search

Operations

Op cr = 80% single-point crossover, mr = 20% single-bit mutation

GPM gpm (see Section 21.2.7)

Optimization

Algorithm

alg plain genetic algorithm (see Chapter 3)

Comparison

Operator

cm Pareto comparison (see Section 1.2.2)

Population

Size

ps ps = 1000

Steady-State ss The algorithms were generational (not steady-state) (ss = 0). (see

Section 2.1.6)

Fitness

Assignment

Algorithm

fa For fitness assignment in the evolutionary algorithm, Pareto rank-
ing was used. (see Section 2.3.3)

Selection

Algorithm

sel A tournament selection with tournament size k = 5 was applied.
(see Section 2.4.4)

Convergence

Prevention

cp No additional means for convergence prevention were used, i. e.,
cp = 0. (see Section 2.4.8)

Generation

Limit

mxt The maximum number of generations that each run is allowed to
perform. (see Definition 1.43)

mxt = 1001

Table 21.3: The settings of the experiments with the benchmark model.

Basic Complexity

In the experiments, we distinguish between success and perfection. Success means finding
individuals x of optimal functional fitness, i.e., fε,o,tc(x) = 0. Multiple such successful strings
may exist, since superfluous bits at the end of genotypes do not influence their functional
objective. We will refer to the number of generations needed to find a successful individual
as success generations. The perfect string x⋆ has no useless bits, it is the shortest possible
solution with fε,o,tc = 0 and, hence, also optimal in the non-functional length criterion. In
our experiments, we measure:

Measure Short Description

Success

Fraction

s/r The fraction of experimental runs that turned out successful. (see

Section 20.3.1)

Minimum

Success

Generation

̂

st The number of generations needed by the fastest (successful) ex-
perimental run to find a successful individual. (see Section 20.3.1)

Mean Success

Generation

st The average number of generations needed by the (successful) ex-
perimental runs to find a successful individual. (see Section 20.3.1)

Maximum

Success

Generation

ŝt The number of Generations generations needed by the slowest (suc-
cessful) experimental run to find a successful individual. (see Sec-

tion 20.3.1)

Mean

Perfection

Generation

pt The average number of generations needed by the (perfect) exper-
imental runs to find a perfect individual.
equ:experimentPerfAvgGen

Table 21.4: First-level evaluation results of the experiments with the model benchmark.

In Figure 21.9, we have computed the minimum, average, and maximum number of the
success generations (

̂

st, st, and ŝt) for values of n ranging from 8 to 800. As illustrated, the
problem hardness increases steadily with rising string length n. Trimming down the solution
strings to the perfect length becomes more and more complicated with growing n. This is
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Figure 21.9: The basic problem hardness.

likely because the fraction at the end of the strings where the trimming is to be performed
will shrinks in comparison with its overall length.
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In Figure 21.10, we plotted the average success generations st with n = 80 and different
ruggedness settings γ. Interestingly, the gray original curve behaves very strangely. It is
divided into alternating solvable and unsolvable11 problems. The unsolvable ranges of γ
correspond to gaps in the curve. With rising γ, the solvable problems require more and more
generations until they are solved. After a certain (earlier) γ threshold value, the unsolvable
sections become solvable. From there on, they become simpler with rising γ. At some point,
the two parts of the curve meet.

Algorithm 21.3: γ ←− translate
(
γ′, f̂

)

Input: γ′: the raw γ value
Input: f̂ : the maximum value of fε,o,tc

Data: i, j, k, l: some temporary variables
Output: γ: the translated γ value

begin1

l←− f̂(f̂−1)
2

2

i←−
⌊

f̂
2

⌋
∗
⌊

f̂+1
2

⌋
3

if γ ≤ f̂ i then4

j ←−
⌊

f̂+2
2
−
√

f̂2

4
+ 1− γ

⌋

5

k ←− γ − j
(
f̂ + 2

)
+ j2 + f̂6

return k + 2
(
j
(
f̂ + 2

)
− j2 − f̂

)
− j7

else8

j ←−
⌊

(f̂ mod 2)+1

2
+

√
1−(f̂ mod 2)

4
+ γ − 1− i

⌋

9

k ←− γ −
(
j −

(
f̂ mod 2

))
(j − 1)− 1− i10

return l − k − 2j2 + j −
(
f̂ mod 2

)
(−2j + 1)11

end12

The reason for this behavior is rooted in the way that we construct the rugged-
ness mapping r and illustrates the close relation between ruggedness and deceptiveness.
Algorithm 21.2 is a greedy algorithm which alternates between creating groups of mappings
that are mainly rugged and such that are mainly deceptive. In Figure 21.8 for instance, from
γ = 5 to γ = 7, the permutations exhibit a high degree of deceptiveness whilst just being
rugged before and after that range. Thus, it seems to be a good idea to rearrange these
sections of the ruggedness mapping. The identity mapping should still come first, followed
by the purely rugged mappings ordered by their ∆-values. Then, the permutations should
gradually change from rugged to deceptive and the last mapping should be the most de-
ceptive one (γ = 10 in Figure 21.8). The black curve in Figure 21.10 depicts the results of
rearranging the γ-values with Algorithm 21.3. This algorithm maps deceptive gaps to higher
γ-values and, by doing so, makes the resulting curve continuous.12

Fig. 21.11.a sketches the average success generations for the rearranged ruggedness prob-
lem for multiple values of n and γ′. Depending on the basic problem size n, the problem
hardness increases steeply with rising values of γ′.

In Algorithm 21.2 and Algorithm 21.3, we use the maximum value of the functional
objective function (abbreviated with f̂) in order to build and to rearrange the ruggedness
permutations r. Since this value depends on the basic problem length n, the number of

11 We call a problem unsolvable if it has not been solved within 1000 generations.
12 This is a deviation from our original idea, but this idea did not consider deceptiveness.
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Figure 21.11: Experiments with ruggedness and deceptiveness.

different permutations and thus, the range of the γ′ values will too. The length of the lines
in direction of the γ′ axis in Fig. 21.11.a thus increases with n. We introduce two addi-
tional scaling functions for ruggedness and deceptiveness with a parameter g spanning from
zero to ten, regardless of n. Only one of these functions can be used at a time, depend-
ing on whether experiments should be run for rugged (Equation 21.36) or for deceptive
(Equation 21.37) problems. For scaling, we use the highest γ′ value which maps to rugged

mappings γ′r =
⌊
0.5f̂

⌋
∗
⌈
0.5f̂

⌉
, and the minimum and maximum ruggedness values accord-

ing to Equation 21.35.

rugged: γ′ = round(0.1g ∗ γ′r) (21.36)

deceptive: γ′ =

{
0 if g ≤ 0

γ′r + round
(

0.1g ∗
(
∆̂− ∆̌− γ′r

))
otherwise

(21.37)

When using this scaling mechanism, the curves resulting from experiments with different
n-values can be compared more easily: Fig. 21.11.b based on the scale from Equation 21.36,
for instance, shows much clearer how the problem difficulty rises with increasing ruggedness
than Fig. 21.11.a. We also can spot some irregularities which always occur at about the
same degree of ruggedness, near g ≈ 9.5, and that we will investigate in future.

The experiments with the deceptiveness scale Equation 21.37 show the tremendous effect
of deceptiveness in the fitness landscape. Not only does the problem hardness rise steeply
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with g (Fig. 21.11.c), after certain threshold, the evolutionary algorithm becomes unable to
solve the model problem at all (in 1000 generations), and the fraction of failed experiments
in Fig. 21.11.d jumps to 100% (since the fraction s/r of solved ones goes to zero).
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Figure 21.12: Experiments with epistasis.

Fig. 21.12.a illustrates the relation between problem size n, the epistasis factor η, and
the average success generations. Although rising epistasis makes the problems harder, the
complexity does not rise as smoothly as in the previous experiments. The cause for this is
likely the presence of crossover – if mutation was allowed solely, the impact of epistasis would
most likely be more intense. Another interesting fact is that experimental settings with odd
values of η tend to be much more complex than those with even ones. This relation becomes
even more obvious in Fig. 21.12.b, where the proportion of failed runs, i.e., those which were
not able to solve problem in less than 1000 generations, is plotted. A high plateau for greater
values of η is cut by deep valleys at positions where η = 2+2i ∀i ∈ N. This phenomenon has
thoroughly been discussed by Niemczyk [1533] and can be excluded from the experiments
by applying the scaling mechanism with parameter y ∈ [0, 10] as defined in Equation 21.38:

epistasis: η =





y ≤ 0 if 2
y ≥ 10 if 41

2 ⌊2y⌋+ 1 otherwise
(21.38)

Neutrality

Figure 21.13 illustrates the average number of generations st needed to grow an individual
with optimal functional fitness for different values of the neutrality parameter µ. Until
µ ≈ 10, the problem hardness increases rapidly. For larger degrees of redundancy, only
minor increments in st can be observed. The reason for this strange behavior seems to be the
crossover operation. Niemczyk [1533] shows that a lower crossover rate makes experiments
involving the neutrality filter of the model problem very hard. We recommend using only
µ-values in the range from zero to eleven for testing the capability of optimization methods
of dealing with neutrality.
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Figure 21.13: The results from experiments with neutrality.

Epistasis and Neutrality

Our model problem consists of independent filters for the properties that may influence the
hardness of an optimization task. It is especially interesting to find out whether these filters
can be combined arbitrarily, i. e., if they are indeed free of interaction. In the ideal case, st
of an experiment with n = 80, µ = 8, and η = 0 added to st of an experiment for n = 80,
µ = 0, and η = 4 should roughly equal to st of an experiment with n = 80, µ = 8, and
η = 4. In Figure 21.14, we have sketched these expected values (Fig. 21.14.a) and the results
of the corresponding real experiments (Fig. 21.14.b). In fact, these two diagrams are very
similar. The small valleys caused by the “easier” values of η (see Section 21.2.7) occur in
both charts. The only difference is a stronger influence of the degree of neutrality.
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Fig. 21.14.a: The expected results.
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Fig. 21.14.b: The experimentally obtained re-
sults.

Figure 21.14: Expection and reality: Experiments involving both, epistasis and neutrality

Ruggedness and Epistasis

It is a well-known fact that epistasis leads to ruggedness, since it violates the causality as
discussed in Section 1.4.6. Combining the ruggedness and the epistasis filter therefore leads
to stronger interactions. In Fig. 21.15.b, the influence of ruggedness seems to be amplified
by the presence of epistasis when compared with the estimated results shown in Fig. 21.15.a.
Apart from this increase in problem hardness, the model problem behaves as expected. The
characteristic valleys stemming from the epistasis filter are clearly visible, for instance.
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Fig. 21.15.a: The expected results.
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Fig. 21.15.b: The experimentally obtained
results.

Figure 21.15: Expection and reality: Experiments involving both, ruggedness and epistasis

Summary

In summary, this model problem has proven to be a viable approach for simulating prob-
lematic phenomena in optimization. It is

1. functional, i. e., allows us to simulate many problematic features,
2. tunable – each filter can be tuned independently,
3. easy to understand,
4. allows for very fast fitness computation,
5. easily extensible – each filter can be replaced with other approaches for simulating the

same feature.

Niemczyk [1533] has written a stand-alone Java class implementing the model problem
which is provided at http://www.sigoa.org/documents/ [accessed 2008-05-17] and http://www.

it-weise.de/documents/files/TunableModel.java [accessed 2008-05-17]. This class allows set-
ting the parameters discussed in this section and provides methods for determining the
objective values of individuals in the form of byte arrays. In the future, some strange behav-
iors (like the irregularities in the ruggedness filter and the gaps in epistasis) of the model
need to be revisited, explained, and, if possible, removed.

21.3 Genetic Programming Problems

21.3.1 Artificial Ant

We already have discussed parts of the Artificial Ant problem in Section 1.2.2 on page 27 –
here we are going to investigate it more thoroughly. The goal of the original problem defined
by Collins and Jefferson [431, 1046, 433] was to find a program that controls an artificial
ant in a simulated environment. Such environments usually have the following features:

1. It is divided in a toroidal grid generating rectangular cells in the plane making the
positions of coordinates of all objects discrete.

2. There exists exactly one ant in the environment.
3. The ant will always be inside one cell at one time.
4. A cell can either contain one piece of food or not.

http://www.sigoa.org/documents/
http://www.it-weise.de/documents/files/TunableModel.java
http://www.it-weise.de/documents/files/TunableModel.java
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The ant is a very simple life form. It always faces in one of the four directions north, east,
south, or west. Furthermore, it can sense if there is food in the next cell in the direction it
faces. It cannot sense if there is food on any other cell in the map.

Like space, the time in the Artificial Ant problem is also discrete. The ant may carry out
one of the following actions per time unit:

1. The ant can move for exactly one cell into the direction it faces. If this cell contains
food, the ant consumes it in the very moment in which it enters the cell.

2. The ant may turn left or right by 90.
3. The ant may do nothing in a time unit.

Many researchers such as Collins and Jefferson [431, 1046, 433], Koza [1196], Lee and
Wong [1268], Harries and Smith [900], Luke and Spector [1322], Kuscu [1226], Chellapilla
[384], Ito et al. [1024], Langdon and Poli [1240], and Frey [749] have ever since used the Ar-
tificial Ant problem as benchmark in their research. Since the Artificial Ant problem neither
imposes a special genome, phenome, nor otherwise restricts the parameters of the opti-
mization process, it is the ideal environment for such tests. In order to make the benchmark
results comparable, special instances of the problem like the Santa Fe Trail with well-defined
features have been defined.

Santa Fe trail

One instance of the artificial ant problem is the “Santa Fe trail” sketched in Figure 21.16
designed by Langdon [1196]. It is a map of 32∗32 cells containing 89 food pellets distributed
along a certain route. Initially, the ant will be placed in the upper left corner of the field
facing east. In trail of food pellets, there are gaps of five forms:

1. one cells along a straight line
2. two cells along a straight line
3. one cell in a corner
4. two cells at a corner (requiring something like a “horse jump” in chess)
5. three cells at a corner

The goal is here to find some form of control for the ant that allows it to eat as many of
the food pellets as possible (the maximum is 89) and to walk a distance as short as possible
in order to do so (the optimal route is illustrated in Figure 21.16). Of course, there will be
a time limit set for the ant to perform this task (normally 200 time units).

Solutions

Genetic Algorithm evolving Finite State Machines

Jefferson et al. [1046] applied a conventional genetic algorithm that evolved finite state
machines encoded in a fixed-length binary string genome to the Artificial Ant problem. The
sensor information together with the current state determines the next state, therefore a
finite state machine with at most m states can be encoded in a chromosome using 2m genes.
In order to understand the structure of such a chromosome, let us assume that m = 2n. We
then can specify the finite state machine as a table where n+ 1 bits are used as row index.
n of these indexes identify the current state and one bit is used for the sensor information
(1=food ahead, 0=no food ahead). In total, there are 2m rows. There is no need to store
the row indices, just the cell contents: n bits encode the next state, and two bits encode the
action to be performed at the state transition (00 for nothing, 01 for turning left, 10 for
turning right, 11 for moving). A chromosome encoding a finite state machine with m states
can be encoded in 2m(n + 2) = 2n+1(n + 2) bits. If the initial state in the chromosome is
also to be stored, another n bits are needed to do so. Every chromosome represents a valid
finite state machine.
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start

end

food gap in the trail with no food

Figure 21.16: The Santa Fee Trail in the Artificial Ant Problem [1196].

Jefferson et al. [1046] allowed for 32 states (453 bit chromosomes) in their finite state
machines. They used one objective function that returned the number of food pellets eaten
by the ant in a simulation run (of maximal 200 steps) and made it subject to maximization.
Using a population of 65 536 individuals, they found one optimal solution (with fitness 89).

Genetic Algorithm evolving Artificial Neural Networks

Collins and Jefferson [431] also evolved an artificial neural network (encoded in a 520 bit
genome) with a genetic algorithm of the same population size to successfully solve the
Artificial Ant problem. Later, they applied a similar approach [433] with 25 590 bit genomes
which allowed even the structure of the artificial neural networks to evolve to a generalized
problem exploring the overall behavior of ant colonies from a more biological perspective.

Genetic Programming evolving Control Programs

Koza [1189, 1188, 1187] solved the Artificial Ant problem by evolving LISP13-programs.
Therefore, he introduced the parameterless instructions MOVE, RIGHT, and LEFT that moved
the ant one unit, or turned it right or left respectively. Furthermore, the binary conditional
expression IF-FOOD-AHEAD executed its first parameter expression if the ant could sense food
and the second one otherwise. Two compound instructions, PROGN2 and PROGN3, execute their
two or three sub-expressions unconditionally. After 21 generations using a 500 individual
population and fitness-proportional selection, Genetic Programming yielded an individual
solving the Santa Fe trail optimally. Connolly [435] provides an easy step-by-step guide
for solving the Artificial Ant problem with Genetic Programming (and for visualizing this
process).

13 http://en.wikipedia.org/wiki/Lisp_%28programming_language%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
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21.3.2 The Greatest Common Divisor

Another problem suitable to test Genetic Programming approaches is to evolve an algorithm
that computes the greatest common divisor14, the GCD.

Problem Definition

Definition 21.1 (GCD). For two integer numbers a, b ∈ N0, the greatest common divi-
sor (GCD) is the largest number c ∈ N that divides both, a (c |a ≡ a mod c = 0) and b
(c |b ≡ b mod c = 0).

c = gcd (a, b) ⇔ c |a ∧ c |b ∧ (∄d ∈ N : d| a ∧ d |b ∧ d > c) (21.39)

⇔ max {e ∈ N : (a mod e = 0) ∧ (b mod e = 0)} (21.40)

The Euclidean Algorithm

The GCD can be computed with the Euclidean algorithm15 which is specified in its original
version in Algorithm 21.4 and in the improved, faster variant as Algorithm 21.5 [1559, 913].

Algorithm 21.4: gcd (a, b)←− euclidGcdOrig(a, b)

Input: a, b ∈ N0: two integers
Output: gcd (a, b): the greatest common divisor of a and b

begin1

while b 6= 0 do2

if a > b then a←− a− b3

else b←− b− a4

return a5

end6

Algorithm 21.5: gcd (a, b)←− euclidGcd(a, b)

Input: a, b ∈ N0: two integers
Data: t: a temporary variable
Output: gcd (a, b): the greatest common divisor of a and b

begin1

while b 6= 0 do2

t←− b3

b←− a mod b4

a←− t5

return a6

end7

The Objective Functions and the Prevalence Comparator

Although the GCD-problems seems to be more or less trivial since simple algorithms exist
that solve it, it has characteristics that make it hard of Genetic Programming. Assume we

14 http://en.wikipedia.org/wiki/Greatest_common_divisor [accessed 2007-10-05]

15 http://en.wikipedia.org/wiki/Euclidean_algorithm [accessed 2007-10-05]

http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Euclidean_algorithm
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have evolved a program x ∈ X which takes the two values a and b as input parameters and
returns a new value c = x(a, b). Unlike in symbolic regression16, it makes no sense to define
the error between c and the real value gcd (a, b) as objective function, since there is no relation
between the “degree of correctness” of the algorithm and |c− gcd (a, b)|. Matter of fact, we
cannot say that a program returning c1 = x1(20, 15) = 6 is better than c2 = x2(20, 15) = 10.
6 may be closer to the real result gcd (20, 15) = 5 but shares no divisor with it whereas
5 |10 ≡ 10 mod 5 = 0.

Based on the idea that the GCD is of the variables a and b is preserved in each step
of the Euclidean algorithm, a suitable functional objective function f1 : X 7→ [0, 5] for this
problem is Algorithm 21.6. It takes a training case (a, b) as argument and first checks whether
the evolved program x ∈ X returns the correct result for it. If so, f1(x) = 0 is returned.
Otherwise, we check if the greatest common divisor of x(a, b) and a is still the greatest
common divisor of a and b. If this is not the case, 1 is added to the objective value. The
same is repeated with x(a, b) and b. Furthermore, negative values of x(a, b) are penalized
with 2 and results that are larger or equal to a or b are penalized with one additional point
for each violation. Depending on the program representation, this objective function is very
rugged because small changes in the program have a large potential impact on the fitness. It
also exhibits a large amount of neutrality, since it can take on only integer values between
0 (the optimum) and 5 (the worst case).

Algorithm 21.6: r ←− f1(x, a, b)

Input: a, b ∈ N0: the training case
Input: x ∈ X: the evolved algorithm to be evaluated
Data: v: a variable holding the result of x for the training case
Output: r: the functional objective value of the functional objective function f1 for the

training case

begin1

r ←− 02

v ←− x(a, b)3

if v 6= gcd (a, b) then4

r ←− r + 15

if gcd (v, a) 6= gcd (a, b) then r ←− r + 16

if gcd (v, b) 6= gcd (a, b) then r ←− r + 17

if v ≤ 0 then8

r ←− r + 29

else10

if v ≥ a then r ←− r + 111

if v ≥ b then r ←− r + 112

return r13

end14

Additionally to f1, two objective functions optimizing non-functional aspects should be
present. f2(x) minimizes the number of expressions in x and f3(x) minimizes the number
of steps x needs until it terminates and returns the result. This way, we further small and
fast algorithms. These three objective functions, combined to a prevalence17 comparator
cmpF,gcd, can serve as a benchmark on how good a Genetic Programming approach can
cope with the rugged fitness landscape common to the evolution of real algorithms and how
the parameter settings of the evolutionary algorithm influence this ability.

16 See Section 23.1 for an extensive discussion of symbolic regression.
17 See Definition 1.17 on page 39 for more information.
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cmpF,gcd(x1, x2) =





−1 if f1(x1) < f1(x2)
1 if f1(x1) > f1(x2)

cmpF,Pareto(x1, x2) otherwise
(21.41)

In principle, Equation 21.41 gives the functional fitness precedence before any other
objective. If (and only if) the functional objective values of both individuals are equal,
the prevalence is decided upon a Pareto comparison of the remaining two (non-functional)
objectives.

The Training Cases

The structure of the training cases is also very important. If we simply use two random
numbers a and b, their greatest common divisor is likely to 1 or 2. Hence, we construct
a single training case by first drawing a random number r ∈ N uniformly distributed in
[10, 100 000] as lower limit for the GCD and then keep drawing uniformly distributed random
numbers a > r, b > r until gcd (a, b) ≥ r. Furthermore, if multiple training cases are involved
in the individual evaluation, we ensure that they involve different magnitudes of the values
of a, b, and r. If we change the training cases after each generation of the evolutionary
algorithm, the same goes for two subsequent training case sets. Some typical training sets
are noted in Listing 21.2.

1 Generation 0

2 ===================================

3 a b gcd(a,b)

4 87546096 2012500485 21627

5 1656382 161406235 9101

6 7035 5628 1407

7 2008942236 579260484 972

8 556527320 1588840 144440

9 14328736 10746552 3582184

10 1390 268760 10

11 929436304 860551 5153

12 941094 1690414110 1386

13 14044248 1259211564 53604

14

15 Generation 1

16 ===================================

17 a b gcd(a,b)

18 117140 1194828 23428

19 2367 42080 263

20 3236545 379925 65

21 1796284190 979395390 10

22 4760 152346030 10

23 12037362 708102 186

24 1785869184 2093777664 61581696

25 782331 42435530 23707

26 434150199 24453828 63

27 45509100 7316463 35007

28

29 Generation 2

30 ===================================

31 a b gcd(a,b)

32 1749281113 82 41

33 25328611 99 11

34 279351072 2028016224 3627936

35 173078655 214140 53535

36 216 126 18

37 1607646156 583719700 2836

38 1059261 638524299 21
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39 70903440 1035432 5256

40 26576383 19043 139

41 1349426 596258 31382

Listing 21.2: Some training cases for the GCD problem.

Rule-based Genetic Programming

We have conducted a rather large series of experiments on solving the GCD problem with
Rule-based Genetic Programming (RBGP, see Section 4.8.4 on page 207). In this section,
we will elaborate on the different parameters that we have tried out and what results could
be observed for these settings.

Settings

As outlined in Table 21.5, we have tried to solve the GCD problem with Rule-based Genetic
Programming with a lot of different settings (60 in total) in a factorial experiment. We will
discuss these settings here in accordance to Section 20.1.

Parameter Short Description

Problem

Space

X The space of Rule-based Genetic Programming-programs with be-
tween 2 and 100 rules. (see Section 4.8.4)

Objective

Functions

F F = {f1, f2, f3} (see Section 21.3.2)

Search Space G The variable-length bit strings with a gene size of 34 bits and a
length between 64 and 3400 bits.

Search

Operations

Op mr = 30% mutation (including single-bit flits, permutations, gene
deletion and insertion), cr = 70% multi-point crossover

GPM gpm (see Figure 4.29)

Optimization

Algorithm

alg The optimization algorithm applied.
alg = 0→ evolutionary algorithm
alg = 1→ Parallel Random Walks

Comparison

Operator

cm (see Equation 21.41)

Population

Size

ps ps ∈ {512, 1024, 2048}

Steady-State ss The evolutionary algorithms were either steady state (ss = 1),
meaning that the offspring had to compete with the already ex-
isting individuals in the selection phase, or generational/extinctive
(ss = 0), meaning that only the offspring took part in the selection
and the parents were discarded. (see Section 2.1.6)

ss = 0→ generational
ss = 1→ steady-state

Fitness

Assignment

Algorithm

fa For fitness assignment in the evolutionary algorithm, Pareto rank-
ing was used. (see Section 2.3.3)

Selection

Algorithm

sel A binary (k = 2) tournament selection was applied in the evolu-
tionary algorithm. (see Section 2.4.4)

Convergence

Prevention

cp (see Section 2.4.8)

cp ∈ {0, 0.3}
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Number of

Training

Cases

tc The number of training cases used for evaluating the objective func-
tions.
tc ∈ {1, 10}

Training Case

Change

Policy

ct The policy according to which the training cases are changed.
ct = 0→ The training cases do not change.
ct = 1→ The training cases change each generation.

Generation

Limit

mxt The maximum number of generations that each run is allowed to
perform. (see Definition 1.43)

mxt = 501
System

Configuration

Cfg normal off-the-shelf PCs with approximately 2 GHz processor power

Table 21.5: The settings of the RBGP-Genetic Programming experiments for the GCD
problem.

Convergence Prevention In our past experiments, we have made the experience that Genetic
Programming in rugged fitness landscapes and Genetic Programming of real algorithms
(which usually leads to rugged fitness landscapes) is very inclined to converge prematurely.
If it finds some half-baked solution, the population often tended to converge to this individual
and the evolutions stopped.

There are many ways to prevent this, like modifying the fitness assignment process
by using sharing functions (see Section 2.3.4 on page 114), for example. Such methods
influence individuals close in objective space and decrease their chance to reproduce. Here,
we decided to choose a very simple measure which only decreases probability of reproduction
of individuals with exactly equal objective functions: the simple convergence prevention
algorithm SCP introduced in Section 2.4.8. This filter has either been applied with strength
cp = 0.3 or not been used (cp = 0).

Comparison with Random Walks We found it necessary to compare the Genetic Program-
ming approach for solving this problem with random walks in order to find out whether or not
Genetic Programming can provide any advantage in a rugged fitness landscape. Therefore,
we either used an evolutionary algorithm with the parameters discussed above (alg = 0) or
parallel random walks (alg = 1). Random walks, in this context, are principally evolutionary
algorithms where neither fitness assignment nor selection are preformed. Hence, we can test
parameters like ps, ct, and tc, but no convergence prevention (cp = 0) and also no steady
state (expSteadyState = 0). The results of these random walks are the best individuals
encountered during their course.

Results

We have determined the following parameters from the data obtained with our experiments.

Measure Short Description

Perfection

Fraction

p/r The fraction of experimental runs that found perfect individuals.
This fraction is also the estimate of the cumulative probability
of finding a perfect individual until the 500th generation. (see Sec-

tion 20.3.1)

p/r = CPp(ps, 500) (see Equation 20.20)
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Number of

Perfect Runs

#p The number of runs where perfect individuals were discovered. (see

Section 20.3.1)

Number of

Successful

Runs

#s The number of runs where successful individuals were discovered.
(see Section 20.3.1)

Number of

Comp. Runs

#r The total number of completed runs with the specified configura-
tion.

Mean Success

Generation

st The average number of generations t needed by the (successful)
experimental runs to find a successful individual. (or ∅ if no run
was successful) (see Section 20.3.1)

Runs Needed

for Perfection

ptn The estimated number ptn(0.99, ps, 500) of independent runs
needed to find at least one perfect solution candidate with a prob-
ability of z = 0.99 until the 500th generation. (see Equation 20.21)

Evaluations

Needed for

Perfection

pτn The estimated number ptn(0.99, ps, 500) of objective function eval-
uations runs needed to find at least one perfect solution candidate
with a probability of z = 0.99 until the 500th generation. (see Sec-

tion 20.3.2)

Table 21.6: Evaluation parameters used in Table 21.7.

In the context of this experiment, a perfect solution represents a correct GCD algorithm,
i.e., is not overfitted. Solutions with optimal functional objective values (f1 = 0, whether due
to overfitting or not) are called successful. Overfitted programs, like the one illustrated in
Listing 21.4, will not work with inputs a and b different from those used in their evaluation.

Not all configurations were tested with the same number of runs since we had multiple
computers involved in these test series and needed to end it at some point of time. We then
used the maximum amount of available data for our evaluation. With the given configura-
tions, the evolutionary algorithm runs usually took about one to ten minutes (depending on
the population size). The results of the application of the Rule-based Genetic Programming
to the GCD problem are listed in Table 21.7 below.

rank alg cp ss ct tc ps p/r #p #s #r st ptn pτn

1. 0 0.3 1 0 1 1024 0.28 15 45 53 100.4 13.84 7 086 884
2. 0 0.3 1 0 1 512 0.12 6 35 51 98.5 36.79 9 419 095
3. 1 0 0 0 1 512 0.10 5 27 51 259.1 44.63 11 425 423
4. 0 0.3 1 0 10 2048 0.98 48 48 49 70.0 1.18 12 116 937
5. 1 0 0 0 1 1024 0.17 9 41 54 170.0 25.26 12 932 355
6. 0 0.3 0 0 1 2048 0.27 14 49 51 85.2 14.35 14 694 861
7. 0 0.3 1 0 10 1024 0.78 41 41 53 129.1 3.1 15 873 640
8. 0 0.3 1 0 1 2048 0.25 13 51 51 36.4 15.65 16 026 722
9. 0 0.3 1 0 10 512 0.49 25 25 51 153.0 6.84 17 498 481

10. 0 0.3 0 0 1 512 0.06 3 22 51 162.1 75.96 19 446 283
11. 0 0.3 0 1 10 1024 0.67 37 37 54 199.4 3.98 20 400 648
12. 0 0.3 0 1 1 1024 0.10 5 5 52 197.4 45.55 23 322 826
13. 0 0.3 1 1 10 2048 0.98 53 53 54 61.1 1.15 23 643 586
14. 0 0.3 0 0 1 1024 0.09 5 44 54 138.2 47.4 24 266 737
15. 0 0.3 0 0 10 2048 0.79 39 39 49 111.1 2.9 29 672 727
16. 0 0.3 0 1 10 2048 0.79 41 41 52 101.1 2.96 30 358 251
17. 0 0.3 1 1 10 1024 0.78 42 42 54 125.5 3.06 31 352 737
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18. 0 0.3 1 1 1 2048 0.28 14 14 54 107.8 15.35 31 427 005
19. 0 0.3 0 0 10 1024 0.52 27 27 53 196.3 6.47 33 106 746
20. 0 0.3 0 1 10 512 0.25 13 13 52 231.5 16.01 40 980 085
21. 0 0.3 1 1 10 512 0.41 21 21 50 231.5 8.45 43 284 918
22. 0 0.3 0 1 1 2048 0.09 5 5 53 46.6 46.47 47 589 578
23. 0 0.3 0 0 10 512 0.19 10 10 52 250.8 21.56 55 199 744
24. 0 0.3 1 1 1 512 0.04 2 2 49 102.0 110.51 56 580 143
25. 0 0.3 1 1 1 1024 0.06 3 3 52 116.0 77.5 79 357 503
26. 0 0 0 0 10 1024 0.15 8 8 55 263.0 29.3 150 004 032
27. 0 0 1 0 10 1024 0.13 7 7 53 272.3 32.51 166 455 244
28. 0 0 0 0 10 2048 0.24 12 12 49 280.6 16.39 167 876 619
29. 0 0 1 0 1 2048 0.02 1 18 51 245.5 232.55 238 134 779
30. 1 0 0 0 1 2048 0.02 1 50 54 120.9 246.37 252 282 298
31. 0 0 1 0 10 2048 0.16 8 8 49 249.9 25.84 264 557 703
32. 0 0 1 1 10 512 0.08 4 4 50 320.3 55.23 282 777 841
33. 0 0 0 1 10 1024 0.06 3 3 53 264.3 79.03 404 649 274
34. 0 0 0 1 10 2048 0.10 5 5 50 237.4 43.71 447 576 992
35. 0 0 0 0 10 512 0.00 1 1 52 492.0 237.16 607 126 560
36. 0 0 1 1 10 2048 0.13 7 7 52 250.9 31.85 652 324 553
37. 0 0 1 1 10 1024 0.03 2 2 54 328.5 122.02 1 249 510 675
38. 1 0 0 1 1 2048 0.00 0 2 53 101.5 +∞ +∞
39. 0 0 0 0 1 2048 0.00 0 16 54 146.2 +∞ +∞
40. 0 0 1 0 1 512 0.00 0 6 51 202.0 +∞ +∞
41. 1 0 0 1 1 1024 0.00 0 2 53 209.0 +∞ +∞
42. 0 0 0 0 1 1024 0.00 0 9 54 257.1 +∞ +∞
43. 0 0 1 0 1 1024 0.00 0 16 54 277.3 +∞ +∞
44. 0 0 0 0 1 512 0.00 0 4 50 369.5 +∞ +∞
45. 0 0 0 1 1 1024 0.00 0 0 53 ∅ +∞ +∞
46. 0 0 0 1 1 2048 0.00 0 0 53 ∅ +∞ +∞
47. 0 0 0 1 1 512 0.00 0 0 51 ∅ +∞ +∞
48. 0 0 0 1 10 512 0.00 0 0 51 ∅ +∞ +∞
49. 0 0 1 0 10 512 0.00 0 0 52 ∅ +∞ +∞
50. 0 0 1 1 1 1024 0.00 0 0 52 ∅ +∞ +∞
51. 0 0 1 1 1 2048 0.00 0 0 54 ∅ +∞ +∞
52. 0 0 1 1 1 512 0.00 0 0 49 ∅ +∞ +∞
53. 0 0.3 0 1 1 512 0.00 0 0 52 ∅ +∞ +∞
54. 1 0 0 0 10 1024 0.00 0 0 55 ∅ +∞ +∞
55. 1 0 0 0 10 2048 0.00 0 0 49 ∅ +∞ +∞
56. 1 0 0 0 10 512 0.00 0 0 52 ∅ +∞ +∞
57. 1 0 0 1 1 512 0.00 0 0 51 ∅ +∞ +∞
58. 1 0 0 1 10 1024 0.00 0 0 53 ∅ +∞ +∞
59. 1 0 0 1 10 2048 0.00 0 0 51 ∅ +∞ +∞
60. 1 0 0 1 10 512 0.00 0 0 51 ∅ +∞ +∞

Table 21.7: Results of the RBGP test series on the GCD problem.

Each of the sixty rows of this table denotes one single test series. The first column
contains the rank of the series according to ptn(., T, h)e following seven columns specify the
settings of the test series as discussed in defined Table 21.5 on page 361. The last seven
columns contain the evaluation results, which are formatted as follows:

Figure 21.17 illustrates the relation between the functional objective value f1 of the cur-
rently best individual of the runs to the generation for the twelve best test series (according
to their p/r-values). The curves are monotone for series with constant training sets (ct = 0)
and jagged for those where the training data changed each generation (ct = 1).
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1 false ∨ true ⇒ bt+1 = bt % at

2 (bt ≤ at) ∨ false ⇒ at+1 = at % bt

3 false ∨ true ⇒ ct+1 = bt

Listing 21.3: The RBGP version of the Euclidean algorithm.

1 (at ≤ bt) ∧ true ⇒ startt+1 = 1 − startt

2 false ∨ (startt > at) ⇒ startt+1 = startt ∗ 0

3 (at = 1) ∧ (0 ≥ start) ⇒ startt+1 = startt / ct

4 true ∧ (ct = startt) ⇒ ct+1 = ct + 1

5 (ct > 0) ∨ (at ≤ bt) ⇒ at+1 = at ∗ startt

6 true ∧ true ⇒ ct+1 = ct − ct

7 false ∨ (at 6= startt) ⇒ startt+1 = startt − startt

8 true ∨ (ct = startt) ⇒ ct+1 = ct + 1

9 false ∨ (0 < startt) ⇒ bt+1 = bt ∗ ct

10 (startt = ct) ∨ (1 > startt) ⇒ bt+1 = bt % 1

11 (0 ≤ 1) ∧ (0 ≥ 0) ⇒ at+1 = at / ct

12 false ∨ (bt < 0) ⇒ at+1 = 1 − at

13 (startt ≤ startt) ∨ true ⇒ ct+1 = ct / 0

14 (at = startt) ∧ true ⇒ ct+1 = ct + 0

15 (at ≤ bt) ∧ true ⇒ startt+1 = 1 − startt

Listing 21.4: An overfitted RBGP solution to the GCP problem.
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Fig. 21.17.a: alg=0,
cp=1, ss=1, ct=1,
tc=10, ps=2048
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Fig. 21.17.b: alg=0,
cp=1, ss=1, ct=0,
tc=10, ps=2048
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Fig. 21.17.c: alg=0,
cp=1, ss=0, ct=1,
tc=10, ps=2048
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Fig. 21.17.d: alg=0,
cp=1, ss=0, ct=0,
tc=10, ps=2048
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Fig. 21.17.e: alg=0,
cp=1, ss=1, ct=1,
tc=10, ps=1024
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Fig. 21.17.f: alg=0,
cp=1, ss=1, ct=0,
tc=10, ps=1024
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Fig. 21.17.g: alg=0,
cp=1, ss=0, ct=1,
tc=10, ps=1024
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Fig. 21.17.h: alg=0,
cp=1, ss=0, ct=0,
tc=10, ps=1024
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Fig. 21.17.i: alg=0,
cp=1, ss=1, ct=0,
tc=10, ps=512
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Fig. 21.17.j: alg=0,
cp=1, ss=1, ct=1,
tc=10, ps=512
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Fig. 21.17.k: alg=0,
cp=1, ss=1, ct=1,
tc=1, ps=2048
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Fig. 21.17.l: alg=0,
cp=1, ss=1, ct=0,
tc=1, ps=1024

Figure 21.17: The f1/generation-plots of the best configurations.
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Discussion

We have sorted the runs in Table 21.7 according to their pτn-values, i.e., the (estimate of the)
number of individual evaluations that are consumed by the ptn independent experimental
runs needed to find a perfect individual with z = 99% probability. Interestingly, our first
approach was to evaluate these experiments according to their p/r-ratio, which led to a
different order of the elements in the table.

Population Size The role of the population size ps is not obvious and there is no clear
tendency which one to prefer when considering the pτn-value only. Amongst the three best
EAs according to this metric, we can find all three tested population sizes. When we focus
on the p/r-ratio instead, the four best runs all have a population size of 2048. At least in this
experiment, the bigger the population, the bigger the chance of success of an experiment
holds. The significance of this tendency is shown in Table 21.8, Table 21.9, and Table 21.10.
Of course, this comes with the trade-off that more individuals need to be processed which
decreases pτn. If we perform multiple runs with smaller populations, we seemingly have a
higher chance of finding at least one non-overfitted program with lesser objective function
evaluations, but this trend could not be supported by the tests in the three tables.

ps = 1024 vs. ps = 512 (based on 19 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ps=1024 = 0.19, med(p/r)|ps=512 = 0.09,
α ≈ 0.0063 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|ps=1024 = 0.06, p/r|ps=512 = 0.0,
α ≈ 0.0024 ⇒ significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ps:1024−512 = 114.0,
α ≈ 0.019 ⇒ significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ps=1024 = 1.66 · 108, med(pτn)|ps=512 = +∞,
α ≈ 0.1940 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|ps=1024 = +∞, pτn|ps=512 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ps:1024−512 = −94.0,
α ≈ 0.0601 ⇒ not significant at level α = 0.05

Table 21.8: ps = 1024 vs. ps = 512 (based on 19 samples)
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ps = 2048 vs. ps = 512 (based on 20 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ps=2048 = 0.115, med(p/r)|ps=512 = 0.0,
α ≈ 0.0017 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|ps=2048 = 0.255, p/r|ps=512 = 0.087,
α ≈ 0.0006 ⇒ significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ps:2048−512 = 150.0,
α ≈ 0.0034 ⇒ significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ps=2048 = 2.452 · 108, med(pτn)|ps=512 = +∞,
α ≈ 0.293 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|ps=2048 = +∞, pτn|ps=512 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ps:2048−512 = −134.0,
α ≈ 0.0104 ⇒ significant at level α = 0.05

Table 21.9: ps = 2048 vs. ps = 512 (based on 20 samples)

ps = 1024 vs. ps = 2048 (based on 19 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ps=1024 = 0.06, med(p/r)|ps=2048 = 0.1,
α ≈ 0.002 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|ps=1024 = 0.186, p/r|ps=2048 = 0.255,
α ≈ 0.011 ⇒ significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ps:1024−2048 = −148.0,
α ≈ 0.002 ⇒ significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ps=1024 = 1.66 · 108, med(pτn)|ps=2048 = 2.523E8,
α ≈ 0.1597 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|ps=1024 = +∞, pτn|ps=2048 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ps:1024−2048 = −22.0,
α ≈ 0.6794 ⇒ not significant at level α = 0.05

Table 21.10: ps = 1024 vs. ps = 2048 (based on 19 samples)

Steady State In many experimental runs, a configuration with ss = 1, i. e., steady-state was
better than the exactly the same configuration with ss = 0 (compare, for instance, ranks 1
and 14 or rank 2 and 10 in Table 21.7). Also, if we look at the four best runs according to the
p/r-rate, we can see that the better two of them both have ss = 1 while the other two have
ss = 0 – while all other parameters remained constant. In Table 21.11, these tendencies are
reflected in the mean, median, and rank values but are not fully supported with sufficient
evidence in the hypothesis tests.
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ss = 1 vs. ss = 0 (based on 23 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ss=1 = 0.12, med(p/r)|ss=0 = 0.09,
α ≈ 0.053 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|ss=1 = 0.249, p/r|ss=0 = 0.186,
α ≈ 0.0076 ⇒ significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ss:1−0 = 125.0,
α ≈ 0.057 ⇒ not significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ss=1 = 1.665 · 108, med(pτn)|ss=0 = 1.679 · 108,
α ≈ 0.405 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|ss=1 = +∞, pτn|ss=0 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ss:1−0 = −27.0,
α ≈ 0.692 ⇒ not significant at level α = 0.05

Table 21.11: ss = 1 vs. ss = 0 (based on 23 samples)

Convergence Prevention The influence of our primitive convergence prevention mechanism
is remarkable – the top 15 test series according to p/r all have cp = 0.3, and even gen-
erational tests with a population size of 512 beat steady-state runs with a population of
2048 individuals if using convergence prevention. Considering the estimated number pτn of
individuals that need to be evaluated in ptn independent runs to achieve 99% probability of
finding a non-overfitted solution, this trend is even more obvious: all of the 23 best Genetic
Programming approaches had the convergence prevention mechanism turned on. To be more
precise: all but one single configuration with convergence prevention were better as all EA
configurations with convergence prevention turned off. This trend is fully supported by the
hypothesis tests from Table 21.12 for both, p/r and ptn. It seems that keeping the evolution-
ary process going and not allowing a single program to spread unchanged all throughout the
population increases the solution quality a lot.



21.3 Genetic Programming Problems 369

cp = 0.3 vs. cp = 0 (based on 23 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|cp=0.3 = 0.27, med(p/r)|cp=0 = 0.0,
α ≈ 0 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|cp=0.3 = 0.391, p/r|cp=0 = 0.048,
α ≈ 0 ⇒ significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|cp:0.3−0 = 274.0,
α ≈ 0 ⇒ significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|cp=0.3 = 2.96 · 107, med(pτn)|cp=0 = +∞,
α ≈ 0 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|cp=0.3 = +∞, pτn|cp=0 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|cp:0.3−0 = −276.0,
α ≈ 0 ⇒ significant at level α = 0.05

Table 21.12: cp = 0.3 vs. cp = 0 (based on 23 samples)

Number of Training Cases According to the pτn measure, using one training case tc = 1
is sometimes better than using tc = 10. Then, we fewer individual evaluations are needed
for finding a non-overfitted individual if fewer training cases are used. Obviously, using
ten training cases corresponds to ten times as many individual evaluations per generation.
When comparing row 1 and 7 in Table 21.7, the difference in estimated evaluations needed is
only approximately two, and the configuration of row 23 needs approximately three times as
many evaluations as row 10. The median in table Table 21.13 points into the other direction:
because of many zero values for p/r with one training case, these test series perform worse.
The only applicable test, the sign test, supports that ten training cases are better than one.

If we consider the fraction p/r of experiments that led to a perfect individual compared
to the total number of experiments run for a configuration, this effect becomes even more
obvious. The number of training cases has a very drastic effect: Then, the top ten test series
all are based on ten training cases (tc = 10). Table 21.13 clearly emphasizes the significance
of this tendency.

We can think of a very simple reason for that which can be observed very well when
comparing for example Fig. 21.17.l with Fig. 21.17.i. In the best series based on only a single
training case (tc = 1) and illustrated in Fig. 21.17.l, only six values (0..5) for the objective
function f1 could occur. The ninth best series depicted in Fig. 21.17.i on the other hand, had
a much broader set of values of f1 available. Since tc = 10 training cases were used and the
final objective value assigned to an individual is the average of the scores reached in all these
tests, it had much lower variations f1 with 51 = |{0.0, 0.1, 0.2, . . . , 4.8, 4.9, 5.0}| levels. By
using multiple training sets for these runs, we have effectively reduced the ruggedness of the
fitness landscape and made it easier for the evolutionary algorithm to descend a gradient.
The effect of increasing the resolution of the objective functions by increasing the number
of training cases has also been reported in other researchers such as Lasarczyk and Banzhaf
[1258] in the area of Algorithmic Chemistries18.

What we see is that a higher number of training cases decreases overfitting and increases
the chance of a run to find good solutions. It does, however, not decrease the expected
number of individuals to be processed until a good solution is found.

18 You can find Algorithmic Chemistries discussed in Section 4.8.2 on page 205.
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tc = 1 vs. tc = 10 (based on 29 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|tc=1 = 0.0, med(p/r)|tc=10 = 0.13,
α ≈ 0.0004 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|tc=1 = 0.058, p/r|tc=10 = 0.273,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(p/r)|tc:1−10 = −362.0,
α ≈ 0.000 02 ⇒ significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|tc=1 = +∞, med(pτn)|tc=10 = 2.646 · 108,
α ≈ 0.0241 ⇒ significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|tc=1 = +∞, pτn|tc=10 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|tc:1−10 = 111.0,
could not be applied

Table 21.13: tc = 1 vs. tc = 10 (based on 29 samples)

Changing Training Cases In this experiment, the EAs with constant training (ct = 0) cases
seemingly outperform those with training cases that change each generation (ct = 1) ac-
cording to the pτn metric. This is strange, since one would expect that this approach would
reduce overfitting and thus, since it does not a priori require more evaluations, improve the
pτn. Still, only one of tests from Table 21.14 supports the significance of this result. The
average first success generation st remains roughly constant, regardless if the training data
changes or not.

The best ten series according to st all use ten training cases (tc = 10), which seems to
prevent overfitting sufficiently on its own. There is a difference in tc = 1, though, when
we compare the perfect runs with those which were just successful. In all runs that find a
solution x ∈ X with f1(x) = 0, this solution is also correct if ct = 1, i. e., #p = #s. In the test
series where ct = 0, usually only a fraction of the runs that found an individual with optimal
functional fitness had indeed found a solution. Here, overfitting takes place and #p < #s can
be usually observed.

In the context of this experiment, the parameter ct has no substantial influence on the
chance of finding a solution to the GCD problem in a run. Using training cases that change
each generation even has a negatively influence on the pτn values. Maybe the proportion
of possible programs that are truly correct compared to those that just perform good when
applied to the training cases due to overfitting is relatively high in this problem. Then, the
influence of this parameter could be different in other scenarios.



21.3 Genetic Programming Problems 371

ct = 0 vs. ct = 1 (based on 29 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|ct=0 = 0.1, med(p/r)|ct=1 = 0.03,
α ≈ 0.053 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

p/r|ct=0 = 0.191, p/r|ct=1 = 0.165,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(p/r)|ct:0−1 = 86.0,
not significant

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|ct=0 = 1.665 · 108, med(pτn)|ct=1 = 1.25 · 109,
α ≈ 0.458 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|ct=0 = +∞, pτn|ct=1 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|ct:0−1 = −313.0,
α ≈ 0.0003 ⇒ significant at level α = 0.05

Table 21.14: ct = 0 vs. ct = 1 (based on 29 samples)

Comparison to Random Walks According to the chance p/r that a test series finds a non-
overfitted solution, the best 17 configurations all were evolutionary algorithms, and apart
from the 18th and 26th best series, no random walk made it into the top 30. Strangely,
two random walks obtain very good placements (third and fifth rank) when considering the
pτn metric but then, the next best random walk resides on rank 38. The two good random
walks are configured in a way that leads to few evaluations, which leads to good values of
pτn when accidentally a good solution was found. They are also the cause why only one of
the tests in Table 21.15 is really significant. Nevertheless, having two random walks in such
high placements could either mean that the GCD problem is very hard (so searching with
an EA is not really better than with a random walk) or very simple (since randomly created
programs can solve it in many cases).

Be it how it be, the dominance of Genetic Programming in most of the measurements
and evaluation results of this problem indicates that there is a benefit of using EAs. One of
the reasons for many of the bad performances of the random walks was that the individuals
tended to become unreasonable large. This also increased the amount of time needed for
evaluation. However, at least sometimes it seems to be a good idea to also try some runs
which utilize the brute force of random walks when trying to solve a GP problem.
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alg = 0 vs. alg = 1 (based on 12 samples)

Test according to p/r (higher is better)

Sign test:
(see Section 28.8.1)

med(p/r)|alg=0 = 0.0, med(p/r)|alg=1 = 0.0,
could not be applied

Randomization test:
(see Section 28.8.1)

p/r|alg=0 = 0.046, p/r|alg=1 = 0.024,
α ≈ 0.5 ⇒ not significant at level α = 0.05

Signed rankt test:
(see Section 28.8.1)

R(p/r)|alg:0−1 = −3.0,
α ≈ 0.925 ⇒ not significant at level α = 0.05

Test according to pτ n (lower is better)

Sign test:
(see Section 28.8.1)

med(pτn)|alg=0 = +∞, med(pτn)|alg=1 = +∞,
α ≈ 0.774 ⇒ not significant at level α = 0.05

Randomization test:
(see Section 28.8.1)

pτn|alg=0 = +∞, pτn|alg=1 = +∞,
could not be applied

Signed rankt test:
(see Section 28.8.1)

R(pτn)|alg:0−1 = −27.0,
α ≈ 0.289 ⇒ not significant at level α = 0.05

Table 21.15: alg = 0 vs. alg = 1 (based on 12 samples)
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Contests

For most of the problems that can be solved with the aid of computers, a multitude of
different approaches exist. They are often comparably good and their utility in single appli-
cation cases strongly depends on parameter settings and thus, the experience of the user.
Contests provide a stage where students, scientists, and practitioners from the industry can
demonstrate their solutions to specific problems. They not only provide indications for which
techniques are suitable for which tasks, but also give incitements and trickle scientific inter-
est to improve and extend them. The RoboCup1, for example is known to be the origin of
many new, advanced techniques in robotics, image processing, cooperative behavior, multi-
variate data fusion, and motion controls [114, 780, 115, 1102]2. In this chapter, we discuss
Genetic Programming approaches to competitions like the Data-Mining-Cup or the Web
Service Challenge.

22.1 DATA-MINING-CUP

22.1.1 Introduction

Data Mining

Definition 22.1 (Data Mining). Data mining3 can be defined as the nontrivial extraction
of implicit, previously unknown, and potentially useful information from data [743] and the
science of extracting useful information from large data sets or databases [885].

Today, gigantic amounts of data are collected in the web, in medical databases, by en-
terprise resource planning (ERP) and customer relationship management (CRM) systems
in corporations, in web shops, by administrative and governmental bodies, and in science
projects. These data sets are way too large to be incorporated directly into a decision making
process or to be understood as-is by a human being. Instead, automated approaches have
to be applied that extract the relevant information, to find underlying rules and patterns,
or to detect time-dependent changes. Data mining subsumes the methods and techniques
capable to perform this task. It is very closely related to estimation theory in stochastic
(discussed in Section 28.7 on page 499) – the simplest summary of a data set is still the
arithmetic mean of its elements. Data mining is also strongly related to artificial intelligence
[1780, 569], which includes learning algorithms that can generalize the given information.
Some of the most wide spread and most common data mining techniques are:

1 http://www.robocup.org/ [accessed 2007-07-03] and http://en.wikipedia.org/wiki/Robocup [ac-

cessed 2007-07-03]

2 Big up to the Carpe Noctem Robotic Soccer Team founded by my ingenious colleagues Baer and
Reichle [114] (http://carpenoctem.das-lab.net/ [accessed 2008-04-23])!

3 http://en.wikipedia.org/wiki/Data_mining [accessed 2007-07-03]

http://www.robocup.org/
http://en.wikipedia.org/wiki/Robocup
http://carpenoctem.das-lab.net/
http://en.wikipedia.org/wiki/Data_mining


374 22 Contests

1. artificial neural networks (ANN) [207, 210],
2. support vector machines (SVM) [2107, 2150, 306, 2092],
3. logistic regression [16],
4. decision trees [186, 2243],
5. Learning Classifier Systems as introduced in Chapter 7 on page 233, and
6. näıve Bayes Classifiers [578, 1741].

The DATA-MINING-CUP

The Data-Mining-Cup4 (DMC) has been established in the year 2000 by the prudsys AG5

and the Technical University of Chemnitz 6. It aims to provide an independent platform for
data mining users and data analysis tool vendors and builds a bridge between academic
science and economy. Today, it is one of Europe’s biggest and most influential conferences
in the area of data mining.

The Data-Mining-Cup Contest is the biggest international student data mining compe-
tition. In the spring of each year, students of national and international universities challenge
to find the best solution of a data analysis problem. Figure 22.1 shows the logos of the DMC
from 2005 till 2007 obtained from http://www.data-mining-cup.com/ [accessed 2007-07-03].

Fig. 22.1.a: 2005 Fig. 22.1.b: 2006 Fig. 22.1.c: 2007

Figure 22.1: Some logos of the Data-Mining-Cup.

22.1.2 The 2007 Contest – Using Classifier Systems

In Mai 2007, the students Stefan Achler, Martin Göb, and Christian Voigtmann came into
my office and told me about the DMC. They knew that evolutionary algorithms are methods
for global optimization that can be applied to a wide variety of tasks and wondered if they
can be utilized for the DMC too. After some discussion about the problem to be solved, we
together came up with the following approach which was then realized by them. While we
are going to talk about our basic ideas and the results of the experiments, a detailed view
on the implementation issues using the Java Sigoa framework are discussed in Section 26.1
on page 445. We have also summarized our work for this contest in a technical report [2178].

4 The Data-Mining-Cup is a registered trademark of prudsys AG. Der Data-Mining-Cup ist
eine eingetragene Marke der prudsys AG. http://www.data-mining-cup.com/ [accessed 2007-07-03],
http://www.data-mining-cup.de/ [accessed 2007-07-03]

5 http://www.prudsys.de/ [accessed 2007-07-03]

6 http://www.tu-chemnitz.de [accessed 2007-07-03] (Germany) – By the way, that’s the university I’ve
studied at, a great place with an excellent computer science department.

http://www.data-mining-cup.com/
http://www.data-mining-cup.com/
http://www.data-mining-cup.de/
http://www.prudsys.de/
http://www.tu-chemnitz.de
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A Structured Approach to Data Mining

Whenever any sort of problem should be solved, a structured approach is always advisable.
This goes for the application of optimization methods like evolutionary algorithms as well
as for deriving classifiers in a data mining problem. In this section we discuss a few simple
steps which should be valid for both kinds of tasks and which have been followed in our
approach to the 2007 DMC.

The first step is always to clearly specify the problem that should be solved. Parts of this
specification are possible target values and optimization criteria as well as the semantics of
the problem domain. The optimization criteria tell us how different possible solutions can be
compared with each other. If we were to sell tomatoes, for example, the target value (subject
to maximization) would be the profit. Then again, the semantics of the problem domain allow
us to draw conclusions on what features are important in the optimization or data mining
process. When selling tomatoes, for instance, the average weight of the vegetables, their
color, and maybe the time of the day when we open the store are important. The names
of our customers on the other hand are probably not. The task of the DMC 2007 Contest,
outlined in Section 22.1.2, is a good example for such a problem definition.

Before choosing or applying any data mining or optimization technique, an initial analysis
of the given data should be performed. With this review and the problem specification, we
can filter the data and maybe remove unnecessary features. Additionally, we will gain insight
in the data structure and hopefully can already eliminate some possible solution approaches.
It is, of course, better to exclude some mining techniques that cannot lead to good results
in the initial phase instead of wasting working hours in trying them out to avail. Finding
solutions with offline evolutionary computation usually takes a while, so we have now to
decide on one or two solution approaches that are especially promising for the problem
defined. We have performed this step for the DMC 2007 Contest data in Section 22.1.2 on
page 377.

After this, we can apply the selected approaches. Of course, running an optimizer on all
known sample data at once is not wise. Although we will obtain a result with which we can
solve the specified problem for all the known data samples, it is possible not a good solution.
Instead, it may be overfitted and can only process the data we were given. Normally however,
we will only be provided with fraction of the “real data” and want to find a system that is
able to perform well also on samples that are not yet known to us. Hence, we need to find
out whether or not our approach generalizes. Therefore, solutions are derived for a subset
of the available data samples only, the training data. These solutions are then tested on
the test set, the remaining samples not used in its creations.7 The system we have created
generalizes well if it is rated approximately equally good by the optimization criterion for
both, the training and the test data. Now we can repeat the process by using all available
data. We have evolved classifier systems that solve the DMC 2007 Contest according to this
method in Section 22.1.2 on page 379.

The students Achler, Göb, and Voigtmann have participated in the 2007 DMC Contest
and proceeded according to this pattern. In order to solve the challenge, they chose for
a genetic algorithm evolving a fuzzy classifier system. The results of their participation
are discussed in Section 22.1.2 on page 382. The following sub-sections are based on their
experiences and impressions, and reproduce how they proceeded.

The Problem Definition

Rebate systems are an important means to animate customers to return to a store in classical
retail. In the 2007 contest, we consider a check-out couponing system. Whenever a customer
leaves a store, at the end of her bill a coupon can be attached. She then can use the coupon
to receive some rebate on her next purchase. When printing the bill at the checkout, there
are three options for couponing:

7 See also Section 1.4.8 for this approach.
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Case N: attach no coupon to the bill,
Case A: attach coupon type A, a general rebate coupon, to the bill, or
Case B: attach coupon type B, a special voucher, to the bill.

The profit of the couponing system is defined as follows:

1. Each coupon which is not redeemed costs 1 money unit.
2. For each redeemed coupon of type A, the retailer gains 3 money units.
3. For each coupon of type B which is redeemed, the retailer gains 6 money units.

It is thus clear that simply printing both coupons at the end of each bill makes no sense.
In order to find a good strategy for coupon printing, the retailer has initiated a survey.
She wants to find out which type of customer has an affinity to cash in coupons and, if
so, which type of coupon most likely. Therefore the behavior of 50000 customers has been
anonymously recorded. For all these customers, we know the customer ID, the number of
redemptions of 20 different coupons and the historic information whether coupon type A,
coupon type B, or none of them has been redeemed. Cases where both have been cashed in
are omitted.
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Figure 22.2: A few samples from the DMC 2007 training data.

Figure 22.2 shows some samples from this data set. The task is to use it as training data
in order to derive a classifier C that is able to decide from a record of the 20 features whether
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a coupon A, B, or none should be provided to a customer. This means to maximize the
profit P (C) of retailer gained by using the classifier C which can be computed according to

P (C) = 3 ∗AA + 6 ∗ BB − 1 ∗ (NA + NB + BA + AB) (22.1)

where

1. AA is the number of correct assignments for coupon A.
2. BB is the number of correct assignments for coupon B.
3. NA is the number of wrong assignments to class A from the real class N.
4. NB is the number of wrong assignments to class B from the real class N.
5. BA is the number of wrong assignments to class A from the real class B.
6. AB is the number of wrong assignments to class B from the real class A.

Wrong assignments from the classes A and B to N play no role.
The classifier built with the 50000 data samples is then to be applied to another 50000

data samples. There however, the column Coupon is missing and should be the result of the
classification process. Based on the computed assignments, the profit score P is calculated
for each contestant by the jury and the team with the highest profit will win.

Initial Data Analysis

The test dataset has some properties which make it especially hard for learning algorithms
to find good solutions. Figure 22.3 for example shows three data samples with exactly the
same features but different classes. In general, there is some degree of fuzzyness and noise,
and clusters belonging to different classes overlap and contain each other. Since the classes
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Figure 22.3: DMC 2007 sample data – same features but different classes.

cannot be separated by hyper-planes in a straightforward manner, the application of neural
networks and support vector machines becomes difficult. Furthermore, the values of the
features take on only four different values and are zero to 83.7%, as illustrated in Table 22.1.
In general, such a small number of possible feature values makes it hard to apply methods

value number of occurrences

0 837 119
1 161 936
2 924
3 21

Table 22.1: Feature-values in the 2007 DMC training sets.

that are based on distances or averages. Stefan, Martin, and Christian had already come to
this conclusion when we met. At least, one positive fact can easily be found by eyesight when
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inspecting the training data: the columns C6, C14, and C20, marked gray in Figure 22.2, are
most probably insignificant since they are almost always zero and, hence, can be excluded
from further analysis. The same goes for the first column, the customer ID, by common
sense.

The Solution Approach: Classifier Systems

From the initial data analysis, we can reduce the space of values a feature may take on to
0, 1, and >1. This limited, discrete range is especially suited for Learning Classifier Systems
(LCS) discussed in Chapter 7 on page 233.

Since we already know the target function, P (C), we do not need the learning part of
the LCS. Instead, our idea was to use the profit P (C) defined in Equation 22.1 directly as
objective function for a genetic algorithm.

Very much like in the Pitt-approach [1926, 516, 1912] in LCS, the genetic algorithm
would be based on a population of classifier systems. Such a classifier system is a list of rules
(the single classifiers). A rule contains a classification part and one condition for each feature
in the input data. We used a two bit alphabet for the conditions, allowing us to encode the
four different conditions per feature listed in Table 22.2. The three different classes can be

condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be > 1
11 3 do not care (i. e., any value is ok)

Table 22.2: Feature conditions in the rules.

represented using two additional bits, where 00 and 11 stands for A, 01 means B, and 10

corresponds to N. We leave three insignificant features away, so a rule is in total 17∗2+2 = 36
bits small. This means that we need less memory for a classifier system with 17 rules than
for 10 double precision floating point numbers, as used by a neural network, for example.

When a feature is to be classified, the rules of a classifier system are applied step by step.
A rule fits to a given data sample if none of its conditions are violated by a corresponding
sample feature. As soon as such a rule is found, the input is assigned to the class identified
by the classification part of the rule. This stepwise interpretation creates a default hierarchy
that allows classifications to include each other: a more specific rule (which is checked before
the more general one) can represent a subset of features which is subsumed by a rule which
is evaluated later. If no rule in the classifier systems fits to a data sample, N is returned
per default since misclassifying an A or B as an N at least does not introduce a penalty in
P (C) according to Equation 22.1.

Since the input data is noisy, it turned out to be a good idea to introduce some fuzzyness
in our classifiers, too, by modifying this default rule. During the classification process, we
remember the rule which was violated by the least features. In the case that no rule fits
perfectly, we check if the number of these misfits is less than one fifth of the features, in
this case 17

5 ≈ 3. If so, we consider it as a match and classify the input according to the
rules classification part. Otherwise, the original default rule is applied and N is returned.
Figure 22.4 outlines the relation of the genotype and phenotype of such a fuzzy classifier
system. It shows a classifier system consisting of four rules that has been a real result of
the genetic algorithm. In this graphic, we also apply it to the second sample of the dataset
that is to be classified. As one can easily see, none of the four rules matches fully – which
strangely is almost always the case for classifier systems that sprung of the artificial evolution
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Figure 22.4: An example classifier for the 2007 DMC.

performed by us. The data sample, however, violates only three conditions of the second rule
and, hence, stays exactly at the 1

5 -threshold. Since no other rule in the classifier system has
less misfit conditions, the result of this classification process will be A.

Analysis of the Evolutionary Process

Table 22.3 lists the settings of the evolutionary algorithm that we have applied evolve
classifiers for the Data-Mining-Cup 2007 problem.

Parameter Short Description

Problem

Space

X The space of classifiers consisting of between 2 and 55 rules. (see

Section 22.1.2)

Objective

Functions

F F = {f1, f1}, where f1(C) = −P (C) rates the profic and f2(C) =
max {len(C) , 3} is the non-functional length criterion.

Search Space G The variable-length bit strings with a length between 74 and 2035
bits and a gene size of 37 bits. (see Section 3.5)

Search

Operations

Op cr = 70% multi-point crossover, mr = 30% mutation (including
single-bit flips, insertion, and deletion of genes)

GPM gpm (see Figure 22.4)

Optimization

Algorithm

alg elitist evolutionary algorithm (see Algorithm 2.2)

Comparison

Operator

cm Pareto comparison (see Section 1.2.2)

Population

Size

ps ps = 10 243

Maximum

Archive Size

as The size of the archive with the best known individuals was limited
to as = 101. (see Definition 2.4)
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Steady-State ss The algorithm was generational (not steady-state) (ss = 0). (see

Section 2.1.6)

Fitness

Assignment

Algorithm

fa For fitness assignment in the evolutionary algorithm, Pareto rank-
ing was used. (see Section 2.3.3)

Selection

Algorithm

sel A binary (k = 2) tournament selection was applied. (see Section 2.4.4)

Convergence

Prevention

cp No additional means for convergence prevention were used, i. e.,
cp = 0. (see Section 2.4.8)

Generation

Limit

mxt The maximum number of generations that each run is allowed to
perform. (see Definition 1.43)

mxt = 1001

Table 22.3: The settings of the experiments for the Data-Mining-Cup.
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Figure 22.5: The course of the classifier system evolution.

Figure 22.5 illustrates the course of the classifier system evolution. We can see a loga-
rithmic growth of the profit with the generations as well as with the number of rules in the
classifier systems. A profit of 8800 for the 50 000 data samples has been reached. Experiments
with 10 000 datasets held back and an evolution on the remaining 40 000 samples indicated
that the evolved rule sets generalize sufficiently well. The cause for the generalization of the
results is the second, non-functional objective function which puts pressure into the direction
of smaller classifier systems and the modified default rule which allows noisy input data. The
result of the multi-objective optimization process is the Pareto-optimal set. It comprises all
solution candidates for which no other individual exists that is better in at least one objec-
tive value and not worse in any other. Figure 22.6 displays some classifier systems which
are members of this set after generation 1000. C1 is the smallest non-dominated classifier
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C1

31333333011130233 B
00000000000200022 A
33111333330332130 A

C3

03331333011130231 B
30111233133033133 A
31133103011313123 B
02311333332332333 A
33011103011310123 B
10300321012202233 B
10023302313300100 N
13133032333113230 A
03213300330031031 N
03020000013303113 N
13331332003110200 N
23213331131003032 A
11000330203002300 N
03300220010030331 N
33113233330032133 A
31330333011330123 B
00203301133033010 N
01201323030333330 N
30223313301003001 B
30131230133013133 A
00113010002133100 B
30033000311103200 B
11121311103310003 A
11313132101000310 B
13312102313010013 A
31100222331222302 N
01333333011130230 B
31113333100312133 A
21313101111013100 B
00000000030200022 A
33111333330331133 A

31333333011130233 B
01201333030333310 N
00000000000200022 A
33111333330332133 A
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03331333011130231 B
30111233133033133 A
31133103011313123 B
02311333332332333 A
33011103011310123 B
10023302313300100 N
13133032333113230 A
02232331022331121 B
11023300332213301 A
02311333332332333 A
03213300330031031 N
03020000013303113 N
13331332003110200 N
13331332003110200 N
03300220010030331 N
23213331131003032 A
03300220010000331 N
21130320011021302 A
33113233330032133 A
10023122212302322 A
11000330203002300 N
30210113033032112 N
11321310200313233 A
33113233330332133 A
31330333011330123 B
30223313301003002 B
00203301133033010 N
01201323030333330 N
30223313301003001 B
30131230133013133 A
00113010002133100 B
30033000311103200 B
11121311103310003 A
21133113001000202 B
11313132101000310 B
13312102313010013 A
01333333011130230 B
30223313301003002 B
31113333100312133 A
21313101111013100 B
11330302002121233 B
32021231303033130 A
00000000030200022 A
31133103011313123 B
13133032333113230 A
02311333332332333 A
21313101111013100 B
10030321130311103 A
33111330330332133 A
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Figure 22.6: Some Pareto-optimal individuals among the evolved classifier systems.

system. It consists of three rules which lead to a profit of 7222. C2, with one additional rule,
reaches 7403. The 31-rule classifier system C3 provides a gain of 8748 to which the system
with the highest profit evolved, C4, adds only 45 to a total of 8793 with a trade-off of 18
additional rules (49 in total).

As shown in Table 22.1 on page 377, most feature values are 0 or 1 and there are only
very few 2 and 3-valued features. In order to find out how different treatment of those
will influence the performance of the classifiers and of the evolutionary process, we slightly
modified the condition semantics in Table 22.4 by changing the meaning of rule 2 from > 1
to ≤ 1 (compare with Table 22.2 on page 378).

The progress of the evolution depicted in Figure 22.7 exhibits no significant difference to
the first one illustrated in Figure 22.5. With the modified rule semantics, the best classifier
system evolved delivered a profit of 8666 by utilizing 37 rules. This result is also not very
much different from the original version. Hence, the treatment of the features with the values
2 and 3 does not seem to have much influence on the overall result. In the first approach,
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condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be ≤ 1
11 3 do not care (i. e., any value is ok)

Table 22.4: Different feature conditions in the rules.
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Figure 22.7: The course of the modified classifier system evolution.

rule-condition 2 used them as distinctive criterion. The new method treats them the same
as feature value 1, with slightly worse results.

Contest Results and Placement

A record number of 688 teams from 159 universities in 40 countries registered for the 2007
DMC Contest, from which only 248 were finally able to hand in results. The team of the
RWTH Aachen won place one and two by scoring 7890 and 7832 points on the contest data
set. Together with the team from the Darmstadt University of Technology, ranked third,
they occupy the first eight placements. Our team reached place 29 which is quite a good
result considering that none of its members had any prior experience in data mining.

Retrospectively, one can recognize that the winning gains are much lower than those we
have discussed in the previous experiments. They are, however, results of the classification
of a different data set – the profits in our experiment are obtained from the training sets and
not from the contest data. Although our classifiers did generalize well in the initial tests,
they seem to suffer from some degree of overfitting. Furthermore, the systems discussed
here are the result of reproduced experiments and not the original contribution from the
students. The system with the highest profit that the students handed in also had gains
around 8600 on the training sets. With a hill climbing optimizer, we squeezed out another
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200, increasing, of course, the risk of additional overfitting. In the challenge, the best scored
score of our team, a total profit of 7453 (5.5% less than the winning team). This classifier
system was however grown with a much smaller population (4096) than in the experiments
here, due to time restrictions.

It should also be noted that we did not achieve the best result with the best single
classifier system evolved, but with a primitive combination of this system with another
one: If both classifier systems delivered the same result for a record, this result was used.
Otherwise, N was returned, which at least would not lead to additional costs (as follows
from Equation 22.1 on page 377).

Conclusion

In order to solve the 2007 Data-Mining-Cup contest we exercised a structured approach.
After reviewing the data samples provided for the challenge, we have adapted the idea
of classifier systems to the special needs of the competition. As a straightforward way of
obtaining such systems, we have chosen a genetic algorithm with two objective functions.
The first one maximized the utility of the classifiers by maximizing the profit function
provided by the contest rules. The section objective function minimized a non-functional
criterion, the number of rules in the classifiers. It was intended to restrict the amount of
overfitting. The bred classifier systems showed reasonable good generalization properties
on the test data sets separated from the original data samples, but seem to be overfitted
when comparing these results with the profits gained in the contest. A conclusion is that
it is hard to prevent overfitting in an evolution based on limited sample data – the best
classifier system obtained will possibly be overfitted. In the challenge, the combination of
two classifiers yielded the best results. Such combinations of multiple, independent systems
will probably perform better than each of them alone.

In further projects, especially the last two conclusions drawn should be considered. Al-
though we used a very simple way to combine our classifier systems for the contest, it still
provided an advantage.

A classifier system in principle is nothing more but an estimator8. There exist many
sophisticated methods of combining different estimators in order to achieve better results
[88]. The original version of such “boosting algorithms”, developed by Schapire [1825], the-
oretically allows to achieve an arbitrarily low error rate, requiring basic estimators with a
performance only slightly better than random guessing on any input distribution. The Ad-
aBoost algorithm by Freund and Schapire [746, 747] additionally takes into consideration the
error rates of the estimators. With this approach, even classifiers of different architectures
like a neural network and a Learning Classifier System can be combined. Since the classifi-
cation task in the challenge required non-fuzzy answers in form of definite set memberships,
the usage of weighted majority voting [745, 1826], as already applied in a very primitive
manner, would probably have been the best approach.

22.2 The Web Service Challenge

22.2.1 Introduction

Web Service Composition

The necessity for fast service composition systems and the overall idea of the WS-Challenge
is directly connected with the emergence of Service-Oriented Architectures (SOA).

Today, companies rely on IT-architectures which are as flexible as their business strategy.
The software of an enterprise must be able to adapt to changes in the business processes

8 See our discussion on estimation theory in Section 28.7 on page 499.
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like accounting, billing, the workflows, and even in the office software. If external vendors,
suppliers, or customers change, the interfaces to their IT systems must be newly created
or modified too. Hence, the architecture of corporate software has to be built with the
anticipation of changes and updates [796, 1026, 2199].

A SOA is the ideal architecture for such systems [1362, 635]. Service oriented architectures
allow us to modularize the business logic and to implement it in the form of services accessible
in a network. Services are building blocks for service processes which represent the workflows
of an enterprise. They can be added, removed, and updated at runtime without interfering
with the ongoing business. A SOA can be seen as a complex system with manifold services
as well as n:m dependencies between services and applications:

1. An application may need various service functionalities.
2. Different applications may need the same service functionality.
3. A certain functionality may be provided by multiple services.

Business now depends on the availability of service functionality, which is ensured by
service management. Manual service management however becomes more and more cum-
bersome and ineffective with a rising number of relations between services and applications.
Here, self-organization promises a solution for finding services that offer a specific function-
ality automatically.

Self-organizing approaches need a combination of syntactic and semantic service descrip-
tions in order to decide whether a service provides a wanted functionality or not. Common
syntactic definitions like WSDL [249] specify the order and types of service parameters
and return values. Semantic interface description languages like OWL-S [71] or WSMO
[1748, 1749] annotate these parameters with a meaning. While WSDL can be used to define
a parameter myisbn of the type String, with OWL-S we can define that myisbn expects a
String which actually contains an ISBN. Via a taxonomy we can now deduce that values
which are annotated as either ISBN-10 or ISBN-139 can be passed to this service.

A wanted functionality is defined by a set of required output and available input pa-
rameters. A service offers this functionality if it can be executed with these available input
parameters and its return values contain the needed output values. In order to find such
services, the semantic concepts of their parameters are matched rather than their syntactic
data types.

Many service management approaches employ semantic service discovery [223, 224, 222,
1314, 1748, 1749, 830, 831]. Still, there is a substantial lack of research on algorithms and
system design for fast response service discovery. This is especially the case in service com-
position where service functionality is not necessarily provided by a single service. Instead,
combinations of services (compositions) are discovered. The sequential execution of these
services provides the requested functionality.

The Web Service Challenge

Since 2005, the annual Web Service Challenge10 (WS-Challenge, WSC) provides a platform
for researchers in the area of web service composition to compare their systems and ex-
change experiences [212, 213, 214]. It is co-located with the IEEE Conference on Electronic
Commerce (CEC) and the IEEE International Conference on e-Technology, e-Commerce,
and e-Service (EEE).

Each team participating in this challenge provides one software system. A jury then uses
these systems to solve different, complicated web service discovery and composition tasks.
The major evaluation criterion for the composers is the speed with which the problems are
solved. Another criterion is the completeness of the solution. Additionally, there is also a
prize for the best overall system architecture.

9 There are two formats for International Standard Book Numbers (ISBNs), ISBN-10 and ISBN-13,
see also http://en.wikipedia.org/wiki/Isbn [accessed 2007-09-02].

10 see http://www.ws-challenge.org/ [accessed 2007-09-02]

http://en.wikipedia.org/wiki/Isbn
http://www.ws-challenge.org/
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Figure 22.8: The logo of the Web Service Challenge.

22.2.2 The 2006/2007 Semantic Challenge

We have participated in the 2006 and 2007 Web Service Challenges [225, 226]. Here we
present the system, algorithms and data structures for semantic web service composition
that we applied in both challenges. A slightly more thorough discussion of this topic can
be found in Weise et al. [2179, 2184]. The tasks of the 2006 Web Service Challenge in San
Francisco, USA and the 2007 WSC in Tokyo, Japan are quite similar and only deviate in
the way in which the solutions have to be provided by the software systems. Hence, we will
discuss the two challenges together in this single section. Furthermore, we only consider the
semantic challenges, since they are more demanding than mere syntactic matching.

Semantic Service Composition

In order to discuss the idea of semantic service composition properly, we need some prereq-
uisites. Therefore, let us initially define the set of all semantic concepts M. All concepts that
exist in the knowledge base are members of M and can be represented as nodes in a wood
of taxonomy trees.

Definition 22.2 (subsumes). Two concepts A,B ∈M can be related in one of four possible
ways. We define the predicate subsumes : M×M 7→ B to express this relation as follows:

1. subsumes(A,B) holds if and only if A is a generalization of B (B is then a specialization
of A).

2. subsumes(B,A) holds if and only if A is a specialization of B (B is then a generalization
of A).

3. If neither subsumes(A,B) nor subsumes(B,A) holds, A and B are not related to each
other.

4. subsumes(A,B) and subsumes(B,A) is true if and only if A = B (antisymmetrie, as
defined in Equation 27.59 on page 463).

The subsumes relation is transitive (see Equation 27.55 on page 462), and so are gener-
alization and specialization: If A is a generalization of B (subsumes(A,B)) and B is a gen-
eralization of C (subsumes(B,C)), then A is also a generalization of C (subsumes(A,C)).
The same goes vice versa for specialization, here we can define that if A is a specialization
of B (subsumes(B,A)) and A is also a specialization of C (subsumes(C,A)), then either
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subsumes(B,C) or subsumes(C,B) (or both) must hold,i. e., either C is a specialization of
B, or B is a specialization of C, or B = C.

If a parameter x of a service is annotated with A and a value y annotated with B is
available, we can set x = y and call the service only if subsumes(A,B) holds (contravariance).
This means that x expects less or equal information than given in y. The hierarchy defined
here is pretty much the same as in object-oriented programming languages. If we imagine
A and B to be classes in Java, subsumes(A,B) can be considered to be equivalent to the
expression A.class.isAssignableFrom(B.class). If it evaluates to true, a value y of type B

can be assigned to a variable x of type A since y instanceof A will also be true.
From the viewpoint of a composition algorithm, there is no need for a distinction between

parameters and the annotated concepts. The set S contains all the services s known to the
service registry. Each service s ∈ S has a set of required input concepts s.in ⊆ M and a set
of output concepts s.out ⊆M which it will deliver on return. We can trigger a service if we
can provide all of its input parameters.

Similarly, a composition request R always consists of a set of available input concepts
R.in ⊆ M and a set of requested output concepts R.out ⊆ M. A composition algorithm in
the sense of the Web Service Challenges 2006 and 2007 discovers a (topologically sorted11)
set of n services S = {s1, s2, . . . , sn} : s1, . . . , sn ∈ S. As shown in Equation 22.2, the first
service (s0) of a valid composition can be executed with instances of the input concepts
R.in. Together with R.in, its outputs (s1.out) are available for executing the next service
(s2) in S, and so on. The composition provides outputs that are either annotated with
exactly the requested concepts R.out or with more specific ones (covariance). Assuming
that R.in ∩R.out = ∅, for each composition solving the request R, the predicate isGoal(S)
will hold. With Equation 22.2, we have defined the goal predicate which we can use in any
form of informed or uninformed state space search (see Chapter 17 on page 289).

isGoal(S)⇔ ∀A ∈ s1.in ∃B ∈ R.in : subsumes(A,B) ∧
∀A ∈ si.in, i ∈ {2..n} ∃B ∈ R.in ∪ si−1.out ∪ .. ∪ s1.out : subsumes(A,B) ∧
∀A ∈ R.out ∃B ∈ s1.out ∪ .. ∪ sn.out : subsumes(A,B) (22.2)

The Problem Definition

In the 2006 and 2007 Web Service Challenge, the composition software is provided with
three parameters:

1. A concept taxonomy to be loaded into the knowledge base of the system. This taxonomy
was stored in a file of the XML Schema format [641].

2. A directory containing the specifications of the service to be loaded into the service
registry. For each service, there was a single file given in WSDL format [249].

3. A query file containing multiple service composition requests R1, R2, . . . in a made-up
XML [284] format.

These formats are very common and allow the contestants to apply the solutions in
real world applications later as well as using customized versions of their already existing
applications. The expected result to be returned by the software was also a stream of data
in a proprietary XML dialect containing all possible service compositions that solved the
queries according to Equation 22.2. It was possible that a request Ri was resolved by multiple
service compositions. In the 2006 challenge, the communication between the jury and the
programs was via command line or other interfaces provided by the software, in 2007 a web
service interface was obligatory.

11 The set S is only partially ordered since, in principle, some services may be executed in parallel
if they do not depend on each other.
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We will not discuss the data formats used in this challenge any further since they are
replaceable and do not contribute to the way the composition queries are solved. Remarkably,
however, were the following restrictions in the challenge tasks:

1. There exists at least one solution for each query.
2. The services in the solutions are represented as a sequence of sets. Each set contains

equivalent services. Executing one service from each set forms a valid composition S.
This representation does not allow for any notation of parallelization.

Before we elaborate on the solution itself, let us define the operation “promising” which
obtains the set of all services s ∈ S that produce an output parameter annotated with the
concept A (regardless of their inputs).

∀A ∈ S,∀s ∈ promising(A)⇒ ∃B ∈ s.out : subsumes(A,B) (22.3)

The composition system that we have applied in the 2007 WSC consists of three types
of composition algorithms. The problem space X that they investigate is basically the set
of all possible permutations of all possible sets of services. The power set P(S) includes all
possible subsets of S. Xis the set of all possible permutations of the elements in such subsets,
in other words X ⊆ {∀ permutation(ξ) : ξ ∈ P(S)}.

An (Uninformed) Algorithm Based on IDDFS

The most general and straightforward approach to web service composition is the unin-
formed search, an iterative deepening depth-first search (IDDFS) algorithm as discussed
in Section 17.3.4 on page 294. Uninformed search algorithms do not make use of any in-
formation different from goal predicates as defined in Equation 22.2. We can build such a
composition algorithm based on iterative deepening depth-first search. It is only fast in find-
ing solutions for small service repositories but optimal if the problem requires an exhaustive
search. Thus, it may be used by the strategic planner in conjunction with another algorithm
that runs in parallel if the size of the repository is reasonable small or if it is unclear whether
the problem can actually be solved.

Algorithm 22.1 (webServiceCompositionIDDFS) builds a valid web service composition
starting from the back. In each recursion, its internal helper method dl dfs wsc tests all
elements A of the set wanted of yet unknown parameters. It then iterates over the set of all
services s that can provide A. For every single s, wanted is recomputed. If it becomes the
empty set ∅, we have found a valid composition and can return it. If dl dfs wsc is not able
to find a solution within the maximum depth limit (which denotes the maximum number
of services in the composition), it returns ∅. The loop in Algorithm 22.1 iteratively invokes
dl dfs wsc by increasing the depth limit step by step, until a valid solution is found.

An (Informed) Heuristic Approach

The IDDFS-algorithm just discussed performs an uninformed search in the space of possible
service compositions. As we know from Section 17.4 on page 295, we can increase the search
speed by defining good heuristics and using domain information. Such information can easily
be derived in this research area. Therefore, we will again need some further definitions.
Notice that the set functions specified in the following does not need to be evaluated every
time they are queried, since we can maintain their information as meta-data along with the
composition and thus save runtime.

Let us first define the set of unsatisfied parameters wanted(S) ⊆ M in a candidate
composition S as

wanted(S)⇔ {A : si ∈ S ∧A ∈ si.in ∧A 6∈ R.in ∧ (∄sj ∈ S : 0 ≤ j < i ∧A ∈ sj .out)}∪
R.out \

(
R.in ∪⋃∀s∈S s.out

)

(22.4)
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Algorithm 22.1: S ←− webServiceCompositionIDDFS(R)

Input: R: the composition request
Data: maxDepth, depth: the maximum and the current search depth
Data: in, out: current parameter sets
Output: S: a valid service composition solving R

begin1

maxDepth←− 22

repeat3

S ←− dl dfs wsc(R.in,R.out, ∅, 1)4

maxDepth←− maxDepth+ 15

until S 6= ∅6

Subalgorithm S ←− dl dfs wsc(in, out, composition, depth)7

begin8

foreach A ∈ out do9

foreach s ∈ promising(A) do10

wanted←− out11

foreach B ∈ wanted do12

if ∃C ∈ s.out : subsumes(B,C) then wanted←− wanted \ {B}13

foreach D ∈ s.in do14

if ∄E ∈ in : subsumes(D,E) then wanted←− wanted ∪ {D}15

comp←− s⊕ composition16

if wanted = ∅ then17

return comp18

else19

if depth < maxDepth then20

comp←− dl dfs wsc(in, wanted, comp, depth+ 1)
if comp 6= ∅ then return comp21

return ∅22

end23

end24

In other words, a wanted parameter is either an output concept of the composition query
or an input concept of any of the services in the composition candidate that has not been
satisfied by neither an input parameter of the query nor by an output parameter of any
service. Here we assume that the concept A wanted by service s is not also an output
parameter of s. This is done for simplification purposes – the implementation has to keep
track of this possibility.

The set of eliminated parameters of a service composition contains all input parameters
of the services of the composition and queried output parameters of the composition request
that already have been satisfied.

eliminated(S) =

(
R.out ∪

⋃

∀s∈S

s.in

)
\ wanted(S) (22.5)

Finally, the set of known concepts is the union of the input parameters defined in the
composition request and the output parameters of all services in the composition candidate.

known(S) = R.in ∪
⋃

∀s∈S

s.out (22.6)

Instead of using these sets to build a heuristic function h, we can derive a comparator
function cmpwsc directly. This comparator function has the advantage that we also can apply
randomized optimization methods like evolutionary algorithms based on it.
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Algorithm 22.2: r ←− cmpwsc(S1, S2)

Input: S1, S2: two composition candidates
Output: r ∈ Z: indicating whether S1 (r < 0) or S2 (r > 0) should be expanded next

begin1

i1 ←− len(wanted(S1))2

i2 ←− len(wanted(S2))3

if i1 = 0 then4

if i2 = 0 then return len(S1)− len(S2)5

else return −16

if i2 = 0 then return 17

e1 ←− len(eliminated(S1))8

e2 ←− len(eliminated(S2))9

if e1 > e2 then return 110

else if e1 < e2 then return −111

if i1 < i2 then return −112

else if i1 < i2 then return 113

if len(S1) 6= len(S2) then return len(S1)− len(S2)14

return len(known(S1))− len(known(S2))15

end16

Algorithm 22.2 defines cmpwsc which compares two composition candidates S1 and S2.
This function can be used by a greedy search algorithm in order to decide which of the two
possible solutions is more prospective. cmpwsc will return a negative value if S1 seems to be
closer to a solution than S2, a positive value if S2 looks as if it should be examined before
S1, and zero if both seem to be equally good.

First, it compares the number of wanted parameters. If a composition has no such un-
satisfied concepts, it is a valid solution. If both, S1 and S2 are valid, the solution involving
fewer services wins. If only one of them is complete, it also wins. Otherwise, both candidates
still have unsatisfied concepts. Only if both of them have the same number of satisfied pa-
rameters, we again compare the wanted concepts. For us, it was surprising that using the
number of already satisfied concepts as comparison criterion with a higher priority than the
number of remaining unsatisfied concepts. However, if we do so, the search algorithms per-
form significantly faster. If their numbers are also equal, we prefer the shorter composition
candidate. If even the compositions are of the same length, we finally base the decision of
the total number of known concepts. The interesting form of this comparator function is
maybe caused by the special requirements of the WSC data. Nevertheless, it shows which
sorts of information about a composition can be incorporated into the search.

Using such the comparator function cmpwsc, we can customize the greedy search ap-
proach defined it Algorithm 17.6 on page 296 for web service composition. The function
greedyComposition defined in Algorithm 22.3 performs such a greedy compositing by main-
taining an internal list which is descendingly sorted according to cmpwsc. In each iteration,
the last element is popped from the list and either returned (if it is a valid composition) or
expanded by appending services providing wanted concepts.

An Evolutionary Approach

In order to use a evolutionary algorithm to breed web service compositions, we first need
to define a proper genome G able to represent service sequences. A straightforward yet
efficient way is to use (variable-length) strings of service identifiers which can be processed
by standard genetic algorithms (see Section 3.5 on page 149). A service can be identified by
a number from N0 denoting its index in the list of all services in the registry. The genotype-
phenotype mapping transforming the genotypes g ∈ G which are sequences of such identifiers
to sequences of services, i. e., the phenotypes S ∈ X, is thus trivial.
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Algorithm 22.3: S ←− greedyComposition(R)

Input: R: the composition request
Data: X: the descendingly sorted list of compositions to explore
Output: S: the solution composition found, or ∅
begin1

X ←− ⋃∀A∈R.out promising(A)2

while X 6= ∅ do3

X ←− sortListd(X,wanted)4

S ←− X [len(X)−1]5

X ←− deleteListItem(X, len(X)− 1)6

if isGoal(S) then7

return S8

foreach A ∈ wanted(S) do9

foreach s ∈ promising(A) do10

X ←− addListItem(X, s⊕ S)11

return ∅12

end13

Because of the well-known string form, we could apply the standard creation, mutation,
and crossover operators. However, by specifying a specialized mutation operation, we can
make the search more efficient. This new operation either deletes the first service in S (via
mutatewsc1) or adds a promising service to S (as done in mutatewsc2). Using the adjustable
variable σ as a threshold we can tell the search whether it should prefer growing or shrinking
the solution candidates.

mutatewsc1(S) ≡
{{

s2, s3, .., slen(S)

}
if len(S) > 1

S otherwise
(22.7)

mutatewsc2(S) ≡ s⊕ S : A ∈ wanted(S) ∧ s ∈ promising(A) (22.8)

mutatewsc(S) ≡
{

mutatewsc1(S) if randomu() > σ
mutatewsc2(S) otherwise

(22.9)

A new create operation for building the initial random configurations can be defined as
a sequence of mutatewsc2 invocations of random length. Initially, mutatewsc2(∅) will return
a composition consisting of a single service that satisfies at least one parameter in R.out.
We iteratively apply mutatewsc2 to its previous result a random number of times in order to
create a new individual.

The Comparator Function and Pareto Optimization

As driving force for the evolutionary process we can reuse the comparator function cmpwsc

as specified as for the greedy search in Algorithm 22.2 on the preceding page. It combines
multiple objectives, putting pressure towards the direction of

1. compositions which are complete,
2. small compositions,
3. compositions that resolve many unknown parameters, and
4. compositions that provide many parameters.

On the other hand, we could as well separate these single aspects into different objective
functions and apply direct Pareto optimization. This has the drawback that it spreads the
pressure of the optimization process over the complete Pareto frontier12.

12 See Section 1.2.2 on page 33 for a detailed discussion on the drawbacks of pure Pareto optimiza-
tion.
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Figure 22.9: A sketch of the Pareto front in the genetic composition algorithm.

Figure 22.9 visualizes the multi-objective version of the optimization problem “web ser-
vice composition” by sketching a characteristic example for Pareto frontiers of several gen-
erations of an evolutionary algorithm. We concentrate on the two dimensions composition
size and number of wanted (unsatisfied) parameters. Obviously, we need to find compositions
which are correct, i. e., where the latter objective is zero. On the other hand, an evolution
guided only by this objective can (and will) produce compositions containing additional,
useless invocations of services not related to the problem at all. The size objective is thus
also required.

In the manufactured example depicted in Figure 22.9, the first five or so generations are
not able to produce good compositions yet. We just can observe that longer compositions
tend to provide more parameters (and have thus a lower number of wanted parameters).
In generation 20, the Pareto frontier is pushed farther forward and touches the abscissa
– the first correct solution is found. In the generations to come, this solution is improved
and useless service calls are successively removed, so the composition size decreases. There
will be a limit, illustrated as generation 50, where the shortest compositions for all possible
values of wanted are found. From now on, the Pareto front cannot progress any further and
the optimization process has come to a rest.

As you can see, pure Pareto optimization does not only seek for the best correct solution
but also looks for the best possible composition consisting of only one service, for the best
one with two service, with three services, and so on. This spreading of the population of
course slows down the progress into the specific direction where wanted(S) decreases.

The comparator function cmpwsc proven to be more efficient in focusing the evolution on
this part of the problem space. The genetic algorithm based on it is superior in performance
and hence, is used in our experiments.

Experimental Results

In Table 22.5, we illustrate the times that the algorithms introduced in this section needed
to perform composition tasks of different complexity13. We have repeated the experiments
multiple times on an off-the-shelf PC14 and noted the mean values. The times themselves
are not so important, rather are the proportions and relations between them.

13 The test sets used here are available at http://www.it-weise.de/documents/files/

BWG2007WSC_software.zip [accessed June 26, 2009]. Well, at least partly, I’ve accidentally deleted
set 12 and 13. Sorry.

14 2GHz, Pentium IV single core with Hyper-Threading, 1GiB RAM, Windows XP, Java 1.6.0. 03-
b05

http://www.it-weise.de/documents/files/BWG2007WSC_software.zip
http://www.it-weise.de/documents/files/BWG2007WSC_software.zip
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Test Depth of No. of No. of IDDFS Greedy GA
Solution Concepts Services (ms) (ms) (ms)

1 5 56 210 1000 241 34 376
2 12 56 210 1000 - 51 1011
3 10 58 254 10 000 - 46 1069
4 15 58 254 2000 - 36 974
5 30 58 254 4000 - 70 6870
6 40 58 254 8000 - 63 24 117
7 1 1590 118 ≤16 ≤16 290

8.1 2 15 540 4480 ≤16 ≤16 164
8.2 2 15 540 4480 ≤16 ≤16 164
8.3 2 15 540 4480 ≤16 ≤16 164
8.4 2 15 540 4480 ≤16 ≤16 234
8.5 3 15 540 4480 ≤16 ≤16 224
8.6 3 15 540 4480 ≤16 ≤16 297
8.7 4 15 540 4480 18 24 283
8.8 3 15 540 4480 ≤16 ≤16 229
8.9 2 15 540 4480 ≤16 ≤16 167

11.1 8 10 890 4000 - 31 625
11.3 2 10 890 4000 - 21 167
11.5 4 10 890 4000 22 021 ≤16 281
12.1 5 43 680 2000 200 320 ≤16 500
12.3 7 43 680 2000 99 31 375

13 6 43 680 2000 250 32 422

Table 22.5: Experimental results for the web service composers.

The IDDFS approach can only solve smaller problems and becomes infeasible very fast.
When building simpler compositions though, it is about as fast as the heuristic approach,
which was clearly dominating in all categories. A heuristic may be misleading and (although
this didn’t happen in our experiments) could lead to a very long computation time in the
worst case. Furthermore, if a problem cannot be solved, the heuristic will cannot be faster
than an uninformed search. Thus, we decided to keep both, the IDDFS and the heuristic
approach in our system and run them in parallel on each task if sufficient CPUs are available.

The genetic algorithm (population site 1024, tournament selection) was able to resolve
all composition requests correctly for all knowledge bases and all registry sizes. It was able
to build good solutions regardless how many services had to be involved in a valid solution
(solution depth). In spite of this correctness, it always was a magnitude slower than the
greedy search which provided the same level of correctness.

If the compositions would become more complicated or involve quality of service (QoS)
aspects, it is not clear if these can be resolved with a simple heuristic. Then, the genetic
algorithm could outperform greedy search approaches.

Architectural Considerations

In 2007, we introduced a more refined version [226] of our 2006 semantic composition system
[225]. The architecture of this composer, as illustrated in Figure 22.10, is designed in a
very general way, making it not only a challenge contribution but also part of the ADDO
web service brokering system [222, 223, 224]: In order to provide the functionality of the
composition algorithms to other software components, it was made accessible as a Web
Service shortly after WSC’06. The web service composer is available for any system where
semantic service discovery with the Ontology Web Language for Services (OWL-S) [71]
or similar languages is used. Hence, this contest application is indeed also a real-world
application.
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Figure 22.10: The WSC 2007 Composition System of Bleul et al. [225, 226].

An application accesses the composition system by submitting a service request (il-
lustrated by (b)) through its Web Service Interface. It furthermore provides the services
descriptions and their semantic annotations. Therefore, WSDL and XSD formatted files as
used in the WSC challenge or OWL-S descriptions have to be passed in ((a1) and (a2)).
These documents are parsed by a fast SAX-based Input Parser (c). The composition process
itself is started by the Strategy Planer (d). The Strategy Planer chooses an appropriate
composition algorithm and instructs it with the composition challenge document (e).

The software modules containing the basic algorithms all have direct access to the Knowl-
edge Base and to the Service Register. Although every algorithm and composition strategy
is unique, they all work on the same data structures. One or more composition algorithm
modules solve the composition requests and pass the solution to a SAX-based Output Writer,
an XML document generating module (f) faster than DOM serialization. Here it is also pos-
sible to transform it to, for example, BPEL4WS [989] descriptions. The result is afterwards
returned through the Web Service Interface (g).

One of the most important implementation details is the realization of the operation
“promising” since it is used by all composition algorithms in each iteration step. Therefore,
we transparently internally merge the knowledge base and the service registry. This step is
described here because it is very crucial for the overall system performance.

A semantic concept is represented by an instance of the class Concept. Each instance
of Concept holds a list of services that directly produce a parameter annotated with it
as output. The method getPromisingServices(A) of Concept, illustrated in Figure 22.11,
additionally returns all the Services that provide a specialization of the concept A as out-
put. In order to determine this set, all the specializations of the concept have to be tra-
versed and their promising services have to be accumulated. The crux of the routine is that
this costly traversal is only performed once per concept. Our experiments substantiated
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Figure 22.11: The Knowledge Base and Service Registry of our Composition System.

that the resource memory, even for largest service repositories, is not a bottleneck. Hence,
getPromisingServices caches its results.

This caching is done in a way that is thread-safe on one hand and does not need
any synchronization on the other. Each instance X of Concept holds an internal variable
promisingServices which is initially null. If X.getPromisingServices() is invoked, it first
looks up if X.promisingServices is null. If so, the list of promising services is computed,
stored in X.promisingServices, and returned. Otherwise, X.promisingServices is returned
directly. Since we do not synchronize this method, it may be possible that the list is com-
puted concurrently multiple times. Each of these computations will produce the same re-
sult. Although all parallel invocations of x.getPromisingServices() will return other lists,
their content is the same. The result of the computation finishing last will remain in x

.promisingServices whereas the other lists will get lost and eventually be freed by the
garbage collector. Further calls to x.getPromisingServices() always will yield the same,
lastly stored, result. This way, we can perform caching which is very important for the
performance and spare costly synchronization while still granting a maximum degree of
parallelization.

Conclusions

In order to solve the 2006 and 2007 Web Service Challenges, we utilized three different
approaches, an uninformed search, an informed search, and a genetic algorithm. The unin-
formed search proofed generally unfeasible for large service repositories. It can only provide
a good performance if the resulting compositions are very short.

However, in the domain of web service composition, the maximum number of services in
a composition is only limited by the number of services in the repositories and cannot be
approximated by any heuristic. Therefore, any heuristic or metaheuristic search cannot be
better than the uninformed search in the case that a request is sent to the composer which
cannot be satisfied. This is one reason why the uninformed approach was kept in our system,
along with its reliability for short compositions.

Superior performance for all test sets could be obtained by utilizing problem-specific
information encapsulated in a fine-tuned heuristic function to guide a greedy search. This
approach is more efficient than the other two tested variants by a magnitude.
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Genetic algorithms are much slower, but were also always able to provide correct results
to all requests. To put it simple, the problem of semantic composition as defined in the
context of the WSC is not complicated enough to fully unleash the potential of evolutionary
algorithms. They cannot cope with the highly efficient heuristic used in the greedy search.
We anticipate however, that, especially in practical applications, additional requirements will
be imposed onto a service composition engine. Such requirements could include quality of
service (QoS), the question for optimal parallelization, or the generation of complete BPEL
[1071] processes. In this case, heuristic search will most probably become insufficient but
genetic algorithms and Genetic Programming [1196] will still be able to deliver good results.
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Real-World Applications

In this chapter, we will explore real-world applications of global optimization techniques.
Such applications are well-researched and established to a point where people are willing to
bet money on them. They can safely be utilized in a productive system. Some of these areas
where global optimization algorithms are applied in a practical fashion, aiding scientists and
engineers with their work, are summarized in this chapter.

23.1 Symbolic Regression

In statistics, regression analysis examines the unknown relation ϕ :∈ Rn 7→∈ R of a depen-
dent variable y ∈ R to specified independent variables x ∈ Rm. Since ϕ is not known, the
goal is to find a reasonable good approximation ψ⋆.

Definition 23.1 (Regression). Regression1 [1150, 739, 631, 595] is a statistic technique
used to predict the value of a variable which is dependent one or more independent variables.

The result of the regression process is a function ψ⋆ : Rm 7→ R that relates the m
independent variables (subsumed in the vector x to one dependent variable y ≈ ψ⋆(x). The
function ψ⋆ is the best estimator chosen from a set Ψ of candidate functions ψ : Rm 7→ ψ.
Regression is strongly related to the estimation theory outlined in Section 28.7 on page 499.
In most cases, like linear2 or nonlinear3 regression, the mathematical model of the candidate
functions is not completely free. Instead, we pick a specific one from an array of parametric
functions by finding the best values for the parameters.

Definition 23.2 (Symbolic Regression). Symbolic regression [1196, 87, 2270, 1791, 1792,
606, 607, 1112, 1699] is one of the most general approaches to regression. It is not limited
to determining the optimal values for the set of parameters of a certain array of functions.
Instead, regression functions can be constructed by combining elements of a set of mathe-
matical expressions, variables and constants.

23.1.1 Genetic Programming: Genome for Symbolic Regression

One of the most widespread methods to perform symbolic regression is to apply Genetic
Programming. Here, the candidate functions are constructed and refined by an evolutionary
process. In the following we will discuss the genotypes (which are also the phenotypes) of the
evolution as well as the objective functions that drive it. As illustrated in Figure 23.1, the
solution candidates, i. e., the candidate functions, are represented by a tree of mathematical
expressions where the leaf nodes are either constants or the fields of the independent variable
vector x.
1 http://en.wikipedia.org/wiki/Regression_analysis [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Linear_regression [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Nonlinear_regression [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Nonlinear_regression
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Figure 23.1: An example genotype of symbolic regression of with x = x ∈ R1.

The set Ψ of functions ψ that can possible be evolved is limited by the set of expressions
Σ available to the evolutionary process.

Σ = {+,−, ∗, /, exp, ln, sin, cos,max,min, . . . } (23.1)

Another aspect that influences the possible results of the symbolic regression is the con-
cept of constants. In general, constants are not really needed since they can be constructed
indirectly via expressions. The constant 2.5, for example, equals the expression x

x+x
+ ln x∗x

ln x
.

The evolution of such artificial constants, however, takes rather long. Koza [1196] has there-
fore introduced the concept of ephemeral random constants.

Definition 23.3 (Ephemeral Random Constants). If a new individual is created and a
leaf in its expression-tree is chosen to be an ephemeral random constant, a random number
is drawn uniformly distributed from a reasonable interval. For each new constant leaf, a new
constant is created independently. The values of the constant leafs remain unchanged and
can be moved around and copied by crossover operations.

According to Koza’s idea ephemeral random constants remain unchanged during the
evolutionary process. In our work, it has proven to be practicable to extend his approach by
providing a mutation operation that changes the value c of a constant leaf of an individual. A
good policy for doing so is by replacing the old constant value cold by a new one cnew which
is a normally distributed random number with the expected value cold (see Definition 28.70
on page 528):

cnew = randomn

(
cold, σ

2
)

(23.2)

σ2 = e−randomu(0,10) ∗ |cold| (23.3)

Notice that the other reproduction operators for tree genomes have been discussed in
detail in Section 4.3 on page 162.

23.1.2 Sample Data, Quality, and Estimation Theory

In the following elaborations, we will reuse some terms that we have applied in our discussion
on likelihood in Section 28.7.2 on page 500 in order to find out what measures will make
good objective functions for symbolic regression problems.

Again, we are given a finite set of sample data A containing n = |A| pairs of (xi, yi)
where the vectors xi ∈ Rm are known inputs to an unknown function ϕ : Rm 7→ R and
the scalars yi are its observed outputs (possible contaminated with noise and measurement
errors subsumed in the term ηi, see Equation 28.237 on page 500). Furthermore, we can
access a (possible infinite large) set Ψ of functions ψ : Rm 7→ R ∈ Ψ which are possible
estimators of ϕ. For the inputs xi, the results of these functions ψ deviate by the estimation
error ε (see Definition 28.53 on page 499) from the yi.
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yi = ϕ(xi) + ηi ∀i ∈ [0..n− 1] (23.4)

yi = ψ(xi) + εi(ψ) ∀ψ ∈ Ψ, i ∈ [0..n− 1] (23.5)

In order to guide the evolution of estimators (in other words, for driving the regression
process), we need an objective function that furthers solution candidates that represent the
sample data A and thus, resemble the function ϕ, closely. Let us call this “driving force”
quality function.

Definition 23.4 (Quality Function). The quality function f(ψ,A) defines the quality of
the approximation of a function ϕ by a function ψ. The smaller the value of the quality
function is, the more precisely is the approximation of ϕ by ψ in the context of the sample
data A.

Under the conditions that the measurement errors ηi are uncorrelated and are all nor-
mally distributed with an expected value of zero and the same variance (see Equation 28.238,
Equation 28.239, and Equation 28.240 on page 500), we have shown in Section 28.7.2
that the best estimators minimize the mean square error MSE (see Equation 28.253 on
page 502, Definition 28.60 on page 503 and Definition 28.56 on page 499). Thus, if the
source of the values yi complies at least in a simplified, theoretical manner with these con-
ditions or even is a real measurement process, the square error is the quality function to
choose.

fσ 6=0(ψ,A) =

len(A)−1∑

i=0

(yi − ψ(xi))
2

(23.6)

While this is normally true, there is one exception to the rule: The case where the
values yi are no measurements but direct results from ϕ and η = 0. A common example
for this situation is if we apply symbolic regression in order to discover functional identities
[1785, 1527, 1196] (see also Section 23.1.3). Different from normal regression analysis or
estimation, we then know ϕ exactly and want to find another function ψ⋆ that is another,
equivalent form of ϕ. Therefore, we will use ϕ to create sample data set A beforehand,
carefully selecting characteristic points xi. Thus, the noise and the measurement errors ηi

all become zero. If we would still regard them as normally distributed, their variance s2

would be zero, too.
The proof for the statement that minimizing the square errors maximizes the likelihood

is based on the transition from Equation 28.248 to Equation 28.249 on page 502 where we
cut divisions by s2. This is not possible if σ becomes zero. Hence, we may or may not select
metrics different from the square error as quality function. Its feature of punishing larger
deviation stronger than small ones, however, is attractive even if the measurement errors
become zero. Another metric which can be used as quality function in these circumstances
are the sums of the absolute values of the estimation errors:

fσ=0(ψ,A) =

len(A)−1∑

i=0

|yi − ψ(xi)| (23.7)

23.1.3 An Example and the Phenomenon of Overfitting

If multi-objective optimization can be applied, the quality function should be comple-
mented by an objective function that puts pressure in the direction of smaller estimations
ψ. In symbolic regression by Genetic Programming, the problem of code bloat (discussed
in Section 4.10.3 on page 224) is eminent. Here, functions do not only grow large because they
include useless expressions (like x∗x+x

x
− x− 1). A large function may consist of functional
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expressions only, but instead of really representing or approximating ϕ, it is degenerated to
just some sort of misfit decision table. This phenomenon is called overfitting and has initially
been discussed in Section 1.4.8 on page 72.

Let us, for example, assume we want to find a function similar to Equation 23.8. Of
course, we would hope to find something like Equation 23.9.

y = ϕ(x) = x2 + 2x+ 1 (23.8)

y = ψ⋆(x) = (x+ 1)2 = (x+ 1)(x+ 1) (23.9)

i xi yi = ϕ(xi) f⋆
2 (xi)

01 −5 16 15.59
1 −4.9 15.21 15.40
2 0.1 1.21 1.11
3 2.9 15.21 15.61
4 3 16 16
5 3.1 16.81 16.48
6 4.9 34.81 34.54
7 5 36 36.02
8 5.1 37.21 37.56

Table 23.1: Sample Data A = {(xi, yi) : i ∈ [0..8]} for Equation 23.8

For testing purposes, we choose randomly the nine sample data points listed in Table 23.1.
As result of Genetic Programming based symbolic regression we may obtain something like
Equation 23.10, outlined in Figure 23.2, which represents the data points quite precisely but
has nothing to do with the original form of our equation.

ψ⋆
2(x) = (((((0.934911896352446 * 0.258746335682841) - (x * ((x / ((x -

0.763517999368926) + ( 0.0452368900127981 - 0.947318140392111))) / ((x - (x + x)) +
(0.331546588012695 * (x + x)))))) + 0.763517999368926) + ((x - ((( 0.934911896352446 *
((0.934911896352446 / x) / (x + 0.947390132934724))) + (((x * 0.235903629190878) * (x -
0.331546588012695)) + ((x * x) + x))) / x)) * ((((x - (x * (0.258746335682841 /
0.455160839551232))) / (0.0452368900127981 - 0.763517999368926)) * x) *
(0.763517999368926 * 0.947318140392111)))) - (((((x - (x * (0.258746335682841 /
0.455160839551232))) / (0.0452368900127981 - 0.763517999368926)) * 0.763517999368926)
* x) + (x - (x * (0.258746335682841 * 0.934911896352446))))) (23.10)

We obtained both functions ψ⋆
1 (in its second form) and ψ⋆

2 using the symbolic regression
applet of Hannes Planatscher which can be found at http://www.potschi.de/sr/ [accessed

2007-07-03]
4. It needs to be said that the first (wanted) result occurred way more often than

absurd variations like ψ⋆
2 . But indeed, there are some factors which further the evolution of

such eyesores:

1. If only few sample data points are provided, the set of prospective functions that have
a low estimation error becomes larger. Therefore, chances are that symbolic regression
provides results that only match those points but differ in all other points significantly
from ϕ.

2. If the sample data points are not chosen wisely, their expressiveness is low. We for
instance chose 4.9,5, and 5.1 as well as 2.9, 3 and 3.1 which form two groups with
members very close to each other. Therefore, a curve that approximately hits these two
clouds is rated automatically with a high quality value.

4 Another good applet for symbolic regression can be found at http://alphard.ethz.ch/gerber/
approx/default.html [accessed 2007-07-03]

http://www.potschi.de/sr/
http://alphard.ethz.ch/gerber/approx/default.html
http://alphard.ethz.ch/gerber/approx/default.html
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Figure 23.2: ϕ(x), the evolved ψ⋆
1(x) ≡ ϕ(x), and ψ⋆

2(x).

3. A small population size decreases the diversity and furthers “incest” between similar
solution candidates. Due to a lower rate of exploration, only a local minimum of the
quality value will often be yielded.

4. Allowing functions of large depth and putting low pressure against bloat
(see Section 4.10.3 on page 224) leads to uncontrolled function growth. The real laws ϕ
that we want to approximate with symbolic regression do usually not consist of more
than 40 expressions. This is valid for most physical, mathematical, or financial equations.
Therefore, the evolution of large functions is counterproductive in those cases.

Although we made some of these mistakes intentionally, there are many situations where
it is hard to determine good parameter sets and restrictions for the evolution and they occur
accidentally.

23.1.4 Limits of Symbolic Regression

Often, we cannot obtain an optimal approximation of ϕ, especially if ϕ cannot be repre-
sented by the basic expressions available to the regression process. One of these situations
has already been discussed before: the case where ϕ has no closed arithmetical expression.
Another possibility is that the regression method tries to generate a polynomial that ap-
proximates the ϕ, but ϕ does contain different expressions like sin or ex or polynomials
of an order higher than available. Yet another problem is that the values yi are often not
results computed by ϕ directly but could, for example, be measurements taken from some
physical entity and we want to use regression to determine the interrelations between this
entity and some known parameters. Then, the measurements will be biased by noise and
systematic measurement errors. In this situation, f(ψ⋆, A) will be greater than zero even
after a successful regression.

23.2 Global Optimization of Distributed Systems

23.2.1 Introduction

Optimization algorithms are methods for finding optimal configurations of different features
of their solution candidates. Many aspects of distributed systems are configurable or depend
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on parameter settings, such as the topology, security, and routing. Hence, there is a huge
potential for using global optimization algorithms in order to improve them.

And indeed, this potential is widely utilized. The study by Sinclair [1886] from 1999 re-
ported that more than 120 papers had been published on work which employed Evolutionary
Computation for optimizing network topologies and dimension, node placement, routing, and
wavelength or frequency allocation. The comprehensive master’s thesis by Kampstra from
2005 [1087, 1088] builds on this aforementioned study and classifies over 400 papers. Ac-
cording to Kampstra, communication networks was the field with the most researchers listed
in EvoWeb, the European Network of Excellence in Evolutionary Computing, in 2005. The
first workshop on this topic, Evolutionary Telecommunications [1889], took place in 1999.
In the year 2000 alone, two books ([450] and [1630]) have been published on the application
of Evolutionary Computation to networking. Further summary papers appeared around the
same time [1851, 1629, 2033, 2109]. The recent studies from Alba and Chicano [31] and
Cortés Achedad et al. [453] as well as the high number of papers published every year show
that the interest in applying global optimization techniques in this problem domain has by
no means decreased.

Most of the mentioned summaries concentrate on giving an overview in form of a more
prosaic version of paper listings. We [2186] provide such a listing in a condensed form in
Section 23.2.3, but focus on giving clear and detailed in-depth discussions of multiple example
applications and also introduce the optimization algorithms utilized in them. This way, the
subject becomes more tangible for audience which is rooted in only one the two involved
subject areas.

We studied more than 130 papers from two decades of research in evolutionary telecom-
munication. Figure 23.3 illustrates how these papers distribute over the time from 1987
to 2008. The papers are classified according to the area of application, their optimization

10

8

6

4

2

1987 1990 1992 1994 1996 1998 2000 2002 2004 Year 2008

Number of Papers
analyzed for this Survey

Figure 23.3: The number of papers studied for this survey per year.

goals, problem representations, and the optimization algorithms utilized. Figure 23.4 gives
an overview of which areas were tackled by the researchers and which optimization algo-
rithms were applied in the papers we studied. Here, it is important to notice that a paper
may deal with multiple applications at once (like routing algorithms which also perform load
balancing) and thus may appear in multiple columns. The complete subject catalog resulting
from our survey can be found in Section 23.2.3. Such a list, however, gives only a limited
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Figure 23.4: The number of papers analyzed, broken down to application area and optimiza-
tion method.

idea about the actual approaches that have been developed. Therefore, we will use the fol-
lowing sections to first take a deeper look into some interesting optimization approaches
from various areas of distributed systems which stand exemplary for the variety and the
potential of this field of research. Different methods to synthesize or to improve network
topologies are outlined in ??, adaptive or evolved routing protocols will be discussed in ??,
and different approaches to the generation of protocols with global optimization algorithms
are summarized in Section 23.2.2. In ??, we illustrate some security aspects and how they
were optimized by different research groups before ending our overview on applications with
software configuration and parameter adaption approaches in ??. After a representative list
of publications in from all these research areas (Section 23.2.3), we conclude this summary
in Section 23.2.4.

TODO some content temporarily
disabled

23.2.2 Synthesizing Protocols

Protocols like IP [1013] and TCP [362] are the rules for message and information exchange
in a network. Depending on the application, protocols can become arbitrarily complex and
strongly influence the efficiency and robustness of a distributed system.

TODO some content temporarily
disabled
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Evolving Fraglet-based Protocols

In Section 4.9.2, we have outlined the Fraglet language. This form of protocol representation
is predestined for automated synthesis via evolutionary algorithms: Fraglets have almost no
syntactical constraints and can represent complicated protocols in a compact manner. Sim-
ilar to us, Tschudin investigated the offline evolution of protocols using a genetic algorithm.

In his work, a complete communication system was simulated for a given number of
time steps during the evaluation of each Fraglet program. The objective values denote the
correlation of the behavior observed during the simulation and the target behavior. Tschudin
concluded that evolutionary methods are suitable to optimize existing Fraglet protocols,
but also indicated that the evolution of new distributed algorithms is difficult because of
a strong tendency to overfitting (see Section 1.4.8) and the all-or-nothing problem known
from Genetic Programming (see Section 4.10.2 on page 223).

Online Protocol Adaptation and Evolution with Fraglets

Autonomic networks are networks where manual management is not desired or hard to
realize, such as systems of hundreds of gadgets in an e-home, sensor networks, or arbitrary
mesh networks with wireless and wired links. Yamamoto and Tschudin [2275] pointed out
that software in such networks should be self-modifying so as to be able to react to unforeseen
network situations. They distinguish two forms of such reactions – adaption and evolution.
Adaption is the short-term reconfiguration of existing modules whereas evolution stands
for the modification of old and the discovery of new functionality and happens at a larger
timescale. Software with these abilities probably cannot predict whether the effects of a
modification are positive or negative in advance and therefore, needs to be resilient in order
to mitigate faulty code that could evolve. In [2059], Tschudin and Yamamoto showed that
such resilience can be achieved to a certain degree by introducing redundancy into Fraglet
protocols.

Complementing Tschudin’s work on offline protocol synthesis and optimization [2058],
Yamamoto and Tschudin [2275] describe online protocol evolution as a continuously ongo-
ing, decentralized, and asynchronous process of constant competition and selection of the
most feasible modules. Genetic Programming with mutation and homologous crossover is
chosen for accomplishing these features. The fitness measure (subject to maximization) is
the performance of the protocols as perceived by the applications running in the network.
The score of a solution candidate (i. e., a protocol) is incremented if it behaves correctly
and decremented whenever an error is detected. The resource consumption in terms of the
memory allocated by the protocols is penalized proportionally.

Yamamoto and Tschudin [2273, 2274] create populations containing a mix of different
confirmed delivery and reliable delivery protocols for messages. These populations were
then confronted with either reliable or unreliable transmission challenges and were able to
adapt to these conditions quickly. If the environment changes afterwards, when a formerly
reliable channel becomes unreliable, for example, the degree of re-adaptation was, however,
unsatisfying. The loss of diversity due to the selection of only highly fit protocols during the
adaptation phase could not yet be compensated by mutation in these first experiments.

Further information on approaches for evolutionary online optimization of communica-
tion protocols can be found in the report Framework for Distributed On-line Evolution of
Protocols and Services, 2nd Edition from the EU-sponsored project BIONETS [1429].

23.2.3 Paper List

In this section, we list the papers concerning the optimization of distributed systems. This
concise list groups the papers according to the area of application, the optimization goals,
the problem representations, and the optimization algorithms utilized. This collection lists
a wide variety of approaches developed by a large number of authors (nearly 200 authors
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are involved in the papers listed). In our opinion, this heterogeneity and distribution should
be interpreted as a clear indicator that the optimization of distributed systems lends itself
to heuristic and metaheuristic approaches. Many papers provide engineering-level solutions
which often deliver excellent results.

Topology Optimization and Terminal Assignment

General Networks or Theory

1. Abuali et al. [10, 11] (1994) aims: synthesis, costs; representation: integer strings; opti-
mization methods: evolutionary algorithms and local search, see also ??

2. Khuri and Chiu [1133] (1997) aims: synthesis, costs; representations: bit strings and
integer strings; optimization methods: evolutionary algorithms and local search, see also
??

3. Salcedo-sanz and Yao [1788] (2004) aims: synthesis, costs; representations: bit strings
and integer strings; optimization method : evolutionary algorithms

4. Lehmann and Kaufmann [1270, 2335] (2005–2007) aims: synthesis, self-organization,
QoS features, dynamic or adaptive behavior; representation: information distributed
over the network; optimization method : evolutionary algorithms, see also ??

Computer Networks in General

5. Michalewicz [1405] (1991) aims: synthesis, robustness; optimization method : evolution-
ary algorithms, see also ??

6. Kumar et al. [1220] (1993) aims: synthesis, robustness, QoS features; representation: bit
strings; optimization method : evolutionary algorithms, see also ??

7. Pierre and Legault [1644, 1645] (1996–1998) aims: synthesis, QoS features, costs; repre-
sentation: bit strings; optimization method : evolutionary algorithms

8. Ko et al. [1164] (1997) aims: synthesis, QoS features, costs; representation: bit strings;
optimization methods: evolutionary algorithms and local search

9. Dengiz et al. [555] (1997) aims: synthesis, robustness, costs; representation: integer
strings; optimization methods: evolutionary algorithms and Memetic Algorithms

10. Montana et al. [1445] (2002–2004) aims: QoS features, dynamic or adaptive behavior;
representation: integer strings; optimization method : evolutionary algorithms

11. Yao et al. [2286] (2005) aims: synthesis, costs; representation: trees; optimization meth-
ods: evolutionary algorithms and local search, see also ??

Wireless or Mobile Computer Networks

12. Lai et al. [1231, 1232] (2007) aims: synthesis, robustness; representation: integer strings;
optimization method : evolutionary algorithms

Telecommunication Networks in General

13. Dengiz et al., see entry 9.
14. Pierre and Elgibaoui [1641] (1997) aims: synthesis, robustness, QoS features, costs; op-

timization method : Tabu Search

Wireless or Mobile Telecommunication Networks

15. Pierre and Houéto [1643, 1642] (2002) aims: synthesis, costs; representation: bit strings;
optimization method : Tabu Search

16. Quintero and Pierre [1685, 1683, 1684] (2002–2003) aim: costs; representation: inte-
ger strings; optimization methods: evolutionary algorithms, local search, Memetic Algo-
rithms, Tabu Search, and Simulated Annealing
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17. St-Hilaire et al. [1953, 1952] (2006) aims: synthesis, costs; optimization methods: local
search and Tabu Search

18. Salcedo-Sanz et al. [1789, 1790] (2008) aims: synthesis, QoS features, costs; representa-
tion: bit strings; optimization methods: evolutionary algorithms and Memetic Algorithms

Optical Networks in General

19. Sinclair [1885, 23, 1887, 1888] (1995–2000) aims: synthesis, robustness, costs; represen-
tations: bit strings and trees plus genotype-phenotype mappings; optimization method :
evolutionary algorithms, see also ??

20. Brittain et al. [290] (1997) aims: synthesis, costs; representations: bit strings and integer
strings; optimization methods: evolutionary algorithms and local search

Node Placement

21. Alba et al. [35] (2002) aims: synthesis, robustness, costs; representation: bit strings;
optimization method : evolutionary algorithms

22. Salcedo-Sanz et al., see entry 18.

Dimensioning and Capacity Assignment

Computer Networks in General

23. Coombs and Davis [441] (1987) aim: QoS features; optimization method : evolutionary
algorithms, see also ??

24. Ko et al., see entry 8.
25. Martin et al. [1363] (2008) aim: synthesis; representation: integer strings; optimization

methods: evolutionary algorithms, Extremal Optimization, and Particle Swarm Opti-
mization

Telecommunication Networks in General

26. Martin et al., see entry 25.

Frequency and Channel Assignment

27. Tan and Sinclair [2004] (1995) aims: synthesis, costs; representation: bit strings; opti-
mization methods: evolutionary algorithms and local search

Protocol Generation and Optimization

General Networks or Theory

28. Mackin and Tazaki [1340, 1341, 1342] (1999–2002) aim: synthesis; representation: trees;
optimization method : evolutionary algorithms, see also ??

Computer Networks in General

29. El-Fakihy et al. [2272, 628] (1995–1999) aims: synthesis, QoS features; representation:
bit strings; optimization methods: evolutionary algorithms and Memetic Algorithms, see
also ??

30. Sharples and Wakeman [1860, 1862, 1861] (1999–2001) aims: synthesis, robustness, QoS
features; representation: bit strings plus genotype-phenotype mappings; optimization
method : evolutionary algorithms, see also ??
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31. Song et al. [1637, 1918] (2000–2001) aims: synthesis, QoS features; representation: trees;
optimization method : local search, see also ??

32. Grace [847] (2000) aims: synthesis, robustness, QoS features; representation: trees; op-
timization method : evolutionary algorithms, see also ??

33. Ye and Kalyanaraman [2290, 2289] (2001–2003) aims: QoS features, dynamic or adaptive
behavior; representation: real vectors

34. Van Belle et al. [2089, 2090] (2001–2003) aims: synthesis, robustness, QoS features;
representation: bit strings; optimization method : evolutionary algorithms, see also ??

35. de Araújo et al. [504, 505] (2003) aim: synthesis; representation: integer strings; opti-
mization method : evolutionary algorithms, see also ??

36. Tschudin [2058] (2003) aims: synthesis, robustness; representation: linear programs; op-
timization method : evolutionary algorithms, see also Section 23.2.2

37. Yamamoto and Tschudin [2274, 2275, 2273] (2005) aims: synthesis, robustness, dynamic
or adaptive behavior; representations: information distributed over the network and
linear programs; optimization method : evolutionary algorithms, see also Section 23.2.2

Wireless or Mobile Computer Networks

38. Montana and Redi [1444] (2005) aim: QoS features; representation: real vectors; opti-
mization method : evolutionary algorithms

39. Weise et al. [2180, 2187] (2007–2008) aims: synthesis, dynamic or adaptive behavior;
optimization method : evolutionary algorithms

Routing

General Networks or Theory

40. Christensen et al. [401] (1997) aims: QoS features, costs; representation: integer strings;
optimization method : evolutionary algorithms

41. Kirkwood et al. [1143] (1997) aims: synthesis, robustness; representation: trees; opti-
mization method : evolutionary algorithms, see also ??

42. Zhu et al. [2324] (1998) aim: synthesis; representation: integer strings; optimization
methods: evolutionary algorithms and local search

Computer Networks in General

43. Kirkwood et al., see entry 41.
44. Munetomo et al. [1487, 1488, 1489, 1484] (1997–1999) aims: self-organization, robust-

ness, dynamic or adaptive behavior; representations: integer strings and information
distributed over the network; optimization method : evolutionary algorithms, see also ??

45. Ko et al., see entry 8.
46. Di Caro and Dorigo [561, 560, 559] (1998–2004) aims: self-organization, robustness,

dynamic or adaptive behavior; representation: information distributed over the network;
optimization method : ACO/ant agents, see also ??

47. Bonabeau et al. [245] (1999) aim: dynamic or adaptive behavior; representation: infor-
mation distributed over the network; optimization method : ACO/ant agents

48. Fei et al. [647] (1999) aims: robustness, QoS features; representation: bit strings
49. Liang et al. [1281, 1282] (2002–2006) aims: robustness, dynamic or adaptive behavior;

representation: information distributed over the network; optimization methods: evolu-
tionary algorithms and ACO/ant agents, see also ??

50. Sim and Sun [1880] (2002) representation: information distributed over the network;
optimization method : ACO/ant agents
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Telecommunication Networks in General

51. Cox, Jr. et al. [461] (1991) aims: QoS features, costs, dynamic or adaptive behavior;
representation: integer strings; optimization method : evolutionary algorithms

52. Schoonderwoerd et al. [1832, 1833, 1834] (1996–1997) aims: synthesis, self-organization,
robustness, QoS features, dynamic or adaptive behavior; representation: information
distributed over the network; optimization method : ACO/ant agents, see also ??

53. Christensen et al., see entry 40.
54. Zhu et al., see entry 42.
55. Lukschandl et al. [1329, 1330, 1331] (1999–2000) aims: robustness, costs; representation:

linear programs; optimization method : evolutionary algorithms, see also Section 4.6.5
56. Galiasso and Wainwright [759] (2001) aims: synthesis, costs; representation: integer

strings; optimization methods: evolutionary algorithms and Memetic Algorithms
57. Sandalidis et al. [1798] (2001) aim: dynamic or adaptive behavior; representation: infor-

mation distributed over the network; optimization method : ACO/ant agents

Optical Networks in General

58. Wang et al. [2155] (2004) aim: QoS features; optimization method : evolutionary algo-
rithms

Load Balancing and Call Admission

Computer Networks in General

59. Munetomo et al., see entry 44.
60. Oates and Corne [1553] (2001) aim: QoS features; representation: integer strings; opti-

mization methods: evolutionary algorithms, local search, and Simulated Annealing
61. Zapf and Weise [2311, 2310] (2007) aims: synthesis, self-organization; representation: bit

strings; optimization method : evolutionary algorithms

Telecommunication Networks in General

62. Schoonderwoerd et al., see entry 52.

Peer-To-Peer Systems

63. Iles and Deugo [1011] (2002) aims: robustness, dynamic or adaptive behavior; represen-
tation: trees; optimization method : evolutionary algorithms, see also ??

64. Forestiero et al. [724, 725, 728, 727, 726, 729] (2005–2008) aims: self-organization, QoS
features, dynamic or adaptive behavior; representation: information distributed over the
network; optimization method : ACO/ant agents

Broadcast and Multicast

General Networks or Theory

65. Christensen et al., see entry 40.
66. Zhu et al., see entry 42.
67. Comellas and Giménez [434] (1998) aims: synthesis, QoS features; representation: trees;

optimization method : evolutionary algorithms, see also ??

Computer Networks in General

68. Fei et al., see entry 48.
69. Grace, see entry 32.
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Telecommunication Networks in General

70. Christensen et al., see entry 40.
71. Zhu et al., see entry 42.
72. Galiasso and Wainwright, see entry 56.

Other

73. Jaroš and Dvořák [1040] (2008) aims: synthesis, QoS features; representation: integer
strings; optimization methods: Memetic Algorithms and estimation of distribution algo-
rithms, see also ??

Security and Intrusion Detection

Computer Networks in General

74. Heady et al. [911] (1990) aim: synthesis; representation: bit strings; optimization method :
evolutionary algorithms, see also ??

75. Song et al., see entry 31.
76. Song et al. [1919, 1920] (2003) aim: synthesis; representation: linear programs; optimiza-

tion method : evolutionary algorithms, see also ??
77. Liu et al. [1296] (2004) aim: synthesis; optimization method : evolutionary algorithms
78. Mukkamala et al. [1482] (2004) aims: synthesis, robustness; representation: linear pro-

grams; optimization method : evolutionary algorithms, see also ??
79. Lu and Traore [1316] (2004) aim: synthesis; representation: integer strings plus genotype-

phenotype mappings; optimization method : evolutionary algorithms, see also ??
80. Folino et al. [710] (2005) aim: synthesis; representations: trees and linear programs;

optimization method : evolutionary algorithms, see also ??
81. Hansen et al. [887] (2007) aim: synthesis; representation: linear programs; optimization

method : evolutionary algorithms, see also ??

Wireless or Mobile Computer Networks

82. LaRoche and Zincir-Heywood [1257] (2005) aim: synthesis; representation: linear pro-
grams; optimization method : evolutionary algorithms, see also ??

Agent Cooperation (non-ant)

General Networks or Theory

83. Werner and Dyer [2194] (1992) aim: synthesis; representation: integer strings plus
genotype-phenotype mappings; optimization method : artificial life, see also ??

84. Andre [54] (1995) aim: synthesis; representation: trees; optimization method : evolution-
ary algorithms

85. Qureshi [1687, 1686, 1688] (1996–2001) aim: synthesis; representation: trees; optimiza-
tion method : evolutionary algorithms

86. Iba et al. [984, 987, 985, 986] (1996–1999) aims: synthesis, robustness; representation:
trees; optimization method : evolutionary algorithms, see also ??

87. Mackin and Tazaki, see entry 28.

Computer Networks in General

88. Nakano and Suda [1497, 1498, 1499] (2004–2007) aims: self-organization, QoS features,
dynamic or adaptive behavior; representations: real vectors and information distributed
over the network; optimization method : evolutionary algorithms, see also ??

89. Zapf and Weise, see entry 61.
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Telecommunication Networks in General

90. Schoonderwoerd et al., see entry 52.

Software Configuration

91. Grace, see entry 32.
92. Iles and Deugo, see entry 63.
93. Xi et al. [2268] (2004) aim: QoS features; representation: integer strings; optimization

methods: local search and Simulated Annealing, see also ??
94. Nakano and Suda, see entry 88.

Hardware Design and Configuration

Networks in General

95. Martin et al., see entry 25.

Wireless or Mobile Networks in General

96. Choo et al. [400] (2000) aim: synthesis; representation: bit strings; optimization method :
evolutionary algorithms

97. Lohn et al. [1307] (2004) aim: synthesis; representation: real vectors; optimization
method : evolutionary algorithms

98. Villegas et al. [2116] (2004) aim: synthesis; optimization method : evolutionary algorithms
99. Koza et al. [1212] (2005) aim: synthesis; representation: trees; optimization method :

evolutionary algorithms
100. John and Ammann [1057, 1058] (2006) aim: synthesis; representation: bit strings; opti-

mization method : evolutionary algorithms
101. Chattoraj and Roy [378] (2006) aim: synthesis; representation: bit strings; optimization

method : evolutionary algorithms

Algorithm Synthesis

Computer Networks in General

102. Weise et al. [2179, 2184] (2007–2008) aim: synthesis; representation: integer strings;
optimization methods: evolutionary algorithms and local search

103. Weise et al. [2181] (2007) aim: synthesis; representation: bit strings; optimization
method : evolutionary algorithms

Wireless or Mobile Computer Networks

104. Weise and Geihs [2176, 2175, 2177] (2001–2006) aims: synthesis, robustness; represen-
tation: linear programs; optimization method : evolutionary algorithms

105. Weise et al. [2182, 2183] (2007) aim: synthesis; representation: linear programs; opti-
mization method : evolutionary algorithms
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23.2.4 Conclusions

In this study, we gave a short overview on the wide variety of applications of global opti-
mization to distributed systems. For the last ten years, this has been one of the most active
research areas in Evolutionary Computation, with many researchers steadily contributing
new and enhanced approaches.

We not only provided a representative list and classification of publications, but also
introduced many interesting approaches in a detailed way. Yet, we can only offer a small
glimpse on the real amount of work available. The master’s thesis of Kampstra [1087] is
now already four years old and referenced over 400 papers. From the related work section of
the papers that we have summarized we know that there should exist at least another 200
contributions not mentioned in his list or not yet published when it was compiled.

Practitioners in the area of networking or telecommunication tend to feel skeptical when
it comes to the utilization of such eerie things like randomized or bio-inspired approaches
for optimizing, managing, or controlling their systems. One argument against the use of
metaheuristics is that the worse case results may be unpredictably bad although they may
provide good solutions in average.

Nevertheless, certain problems (like the Terminal Assignment Problem, see ??) are NP-
hard and therefore can only be solved efficiently with such approaches. This, of course, goes
hand in hand with a certain trade-off in terms of optimality, for instance. In static design
scenarios, the worst case situations in which an EA would create inferior solutions can be
ruled out by checking its results before the actual deployment or realization.

In practice, additional application-specific constraints are often imposed on standard
problems. The influence of these constraints on the problem hardness and the applicability
of the well-known solutions is not always easy to comprehend. Thus, incorporating the
constraints into a global optimization procedure tends to be much easier than customizing a
problem-specific heuristic algorithm. Assume that we want to find fast routes in a network
which are also robust against a certain fraction of failed links. If we have an EA with an
objective function that measures the time a message travels in a fully functional network,
it is intuitively clear that we can extend this approach by simply applying this function
to a couple of scenarios with randomly created link failures, too. Creating a corresponding
extension of Dijkstra’s algorithm, however, is less straightforward.

Nature-inspired approaches have not only shown their efficiency in static optimization
problems, but were proven to be especially robust in dynamic applications, too. This is
particularly interesting in the looming age of networks of larger scale. Wireless networks
[1707, 829, 1440], sensor networks [1012], wireless sensor networks [326]), Smart Home net-
works [899, 897], ubiquitous computing [850, 1218], and more require self-organization, effi-
cient routing, optimal parameter settings, and power management. We are sure that nature
and physics-inspired global optimization methods will provide viable answers to many of
these questions which will become more and more eminent in the near future.

When condensing the essence of this summary down to a single sentence, “Evolutionary
Computing in Telecommunications – A likely EC success story”, the title of Kampstra’s
thesis, maybe fits best. However, we believe that the likely is no longer required, since many
of the methods developed already reached engineering-level applicability.
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Research Applications

Research applications differ from real-world application by the fact that they have not yet
reached the maturity to be applied in the mainstream of their respective area. They initiate
a process of improvement and refinement, until we obtain solutions that are on par or at least
comparable with those obtained by the traditional methodologies. Such a process can, for
instance, be observed when following the progress in the area of Genetic Programming via
the book series of Koza [1196, 1195, 1210, 1212]. On the other hand, research applications
differ from toy problems because they are not intended to be used as sole demonstration
examples or benchmarks but are first steps into a new field of application.

The future of a research application is either to succeed and become a real-world appli-
cation or to fail. In case of a failure, it may turn into a toy application where some certain
features of global optimization methods like evolutionary algorithms can be tested.

24.1 Genetic Programming of Distributed Algorithms

24.1.1 Introduction

Distributed systems are one of the most vital components of our economy. While many
internet technologies, protocols, and applications grew into maturity and have widely been
researched, new forms of networks and distributed computing have emerged. Amongst them,
we can find wireless networks [1707, 829, 1440], sensor networks [1012] (and wireless sensor
networks [326]), Smart Home networks [899, 897], ubiquitous computing [850, 1218], and
ideas like amorphous computing [5, 313]. These distributed systems introduce new require-
ments like self-adaptation to change in the environment (nodes may enter and leave the
networks frequently) or change the priority of others (such as energy consumption).

It may be a bold statement to say that such new requirements ask for new programming
paradigms and future will shows whether it holds or not. Nobody will, however, argue
that developing applications for these new distributed systems is surely to become more
complicated than in traditional networks. Hence, exploring the utility of new programming
methodologies (and new representations for algorithms especially tailored to them) is a
demand of the current situation.

The design of a distributed algorithm is basically the transformation of a specification
of the behavior of a network on the global scale to a program that must be executed locally
on each of the nodes of the network in order to achieve this behavior. Up to now, no general
method for automating this process illustrated in Fig. 24.1.a has been developed and it is
unlikely that this will change in near future.

The transformation of global system behavior to local rules is no process specific only
to distributed algorithm design. Matter of fact, a widely studied example for are swarming
behaviors in nature [1723, 2033]. These behaviors have evolved for millions of years. By
allowing many individuals of a species to travel together in a configuration which has a
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Fig. 24.1.a: Design of distributed algorithms.

Fig. 24.1.b: Evolutionary behavior design.

Figure 24.1: Global → Local behavior transformations.

good volume/surface-ratio, they improve defense against predators, increase the chance of
finding mating partners, enhance foraging success, improve hydro or aerodynamics and so on.
Nature has evolved many efficient swarming behaviors, such as the shoaling of fish (depicted
in Fig. 24.1.b), flocking of birds, herding of cows, and swarming of locusts.

Evolutionary algorithms copy the evolutionary process itself for solving complex opti-
mization problems [99, 821] and Genetic Programmingis the family of EAs which can be
used for deriving programs [1196]. Here we will utilize it for breeding distributed algorithms
– in other words – for transforming descriptions of global behaviors to local algorithms.

These global descriptions are therefore encoded in objective functions, which rate “how
close” the behavior of an evolved program x comes to the wanted one. In order to approxi-
mate its quality, we execute x on nodes represented by virtual machines in a whole simulated
network. As in reality, many of these VMs run asynchronously at approximately the same
speed, which may differ from VM to VM and cannot be assumed to be constant either. For
different problems, different topologies are simulated.

We apply multi-objective Genetic Programming since it allows us to optimize the algo-
rithms for different aspects during the evolution. While the functional objective functions
perform the actual comparison of the observed behavior of the simulated network (running
the evolved algorithms) with the desired global behavior, non-functional objective functions
foster the economical use of resources, minimizing communication and program size, for
instance.

24.1.2 Evolving Proactive Aggregation Protocols

In this section we discuss what proactive aggregation protocols are and how we can evolve
them using a modified symbolic regression approach with Genetic Programming.
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Aggregation Protocols

Definition 24.1 (Aggregate). In computer science, an aggregate function1 α : Rm 7→ R
computes a single result α(x) from a set of input data x. This result represents some features
of the input like its arithmetic mean.

Other examples for aggregate functions are the variance and the number of points in
the input data. In general, an aggregate2 is a fusion of a (large) set of low-level data to one
piece of high-level information. Aggregation operations in databases and knowledge bases
[1284, 1595, 1152, 1309, 385, 551, 1904], be they local or distributed, for instance, have been
an active research area in the past decades. Here, large datasets from different tables are
combined to an aggregate by structured queries which need to be optimized for maximal
performance.

With the arising interest in peer-to-peer applications (see Section 30.2.2) and sensor
networks (discussed in Section 30.2.2), a whole new type of aggregation came into existence
in the form of aggregation protocols. These protocols are a key functional building block
by providing the processes in such distributed systems with access to global information
including network size, average load, mean uptime, location and description of hotspots,
and so on [2099, 1048]. Robust and adaptive applications often require this local knowledge
of such properties of the whole. If, for example, the average concentration of some toxin
(which is aggregated from the measurements of multiple sensors in a chemical laboratory)
exceeds a certain limit, an alarm should be triggered.

In aggregation protocols, the data vector x is no longer locally available but its elements
are spread all over the network. When computing the aggregate under these circumstances,
we cannot just evaluate α. Instead, some form of data exchange must be performed by the
nodes. This exchange can happen in two ways: either reactive or proactive. In a reactive
aggregation protocol, one of the nodes in the network issues a query to all other nodes. Only
this node receives the answer in form of the result (the aggregate) or the data needed to
compute the result as illustrated in Fig. 24.2.a. A proactive aggregation protocol, as sketched
in Fig. 24.2.b, on the other hand allows all nodes in the network to receive knowledge of
the aggregate. This is achieved by repetitive data exchange amongst the nodes and iterative
local refinement of the estimates of the wanted value. Notice that the trivial solution would
be that all nodes send their information to all other nodes. Generally, this is avoided since
it is not a viable approach and instead, the data is disseminated step by step as part of the
estimates.

Gossip-Based Aggregation

Jelasity et al. [1048] propose a simple yet efficient type of proactive aggregation protocols
[1123]. In their model, a network consists of many nodes in a dynamic topology where every
node can potentially communicate with every other node. Errors in communication may
occur, Byzantine faults not. The basic assumption of the protocol is that each node in the
network holds one numerical value x. This value represents some information about the node
or its environment, like, for example, the current work load. The task of the protocol is to
provide all nodes in the network with an up-to-date estimate of the aggregate function α(x)

of the vector of all values x = (xp, xq, . . . )
T

.
The nodes hold local states s (possibly containing x) which they can exchange via

communication. Therefore, each nodes knows picks its communication partners with the
getNeighbor() method.

The skeleton of the gossip-based aggregation protocol is specified in Algorithm 24.1 and
consists of an active and a passive part. Once in each δ > 0 time units, at a randomly
picked time, the active thread of a node p selects a neighbor q. Both partners exchange their

1 http://en.wikipedia.org/wiki/Aggregate_function [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Aggregate_data [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Aggregate_function
http://en.wikipedia.org/wiki/Aggregate_data
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Fig. 24.2.a: reactive aggregation Fig. 24.2.b: proactive aggregation

Figure 24.2: The two basic forms of aggregation protocols.

information and update their states with the update method: p calls update(sp, sq) in its
active thread and q calls update(sq, sp) in the passive thread. update is defined according
to the aggregate that we want to be computed

Algorithm 24.1: gossipBasedAggregation()

Data: p: the node running the algorithm
Data: sp: the local state of the node p
Data: sq, sr: states received as messages from the nodes q and r
Data: q, p, r: neighboring nodes in the network

begin1

Subalgorithm activeThread2

begin3

while true do4

do exactly once in every δ units at a randomly picked time:5

q ←− getNeighbor()6

sendTo(q, sp)7

sq ←− receiveFrom(q)8

sp ←− update(sp, sq)9

end10

Subalgorithm passiveThread11

begin12

while true do13

sr ←− receiveAny()14

sendTo(getSender(sr) , sp)15

sp ←− update(sp, sr)16

end17

end18

Example – Distributed Average

Assume that we have built a sensor network measuring the temperature as illustrated in
Figure 24.3. Each of our sensor nodes is equipped with a little display visible to the public.
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Figure 24.3: An example sensor network measuring the temperature.

The temperatures measured locally will fluctuate because of wind or light changes. Thus,
the displays should not only show the temperature measured by the sensor node they are
directly attached to, but also the average of all temperatures measured by all nodes. Then,
the network needs to execute a distributed aggregation protocol in order to estimate that
average.

If we therefore choose a gossip-based average protocol, each node will hold a state variable
which contains its local estimation of the mean. The update function, henceforth receiving
the local approximation and the estimate of another node, returns the mean of its inputs.

updateavg(sp, sq) =
sp + sq

2
(24.1)

If two nodes p and q communicate with each other, the new value of sp and sq will be
sp(t + 1) = sq(t + 1) = 0.5 ∗ (sp(t) + sq(t)). The sum – and thus also the mean – of both
states remains constant. Their variance, however, becomes 0 and so the overall variance in
the network gradually decreases.

5 6

7 8

Fig. 24.4.a: initial
state

6 7

6 7

Fig. 24.4.b: after step
1

6.5

6.5

6.5

6.5

Fig. 24.4.c: after step
2

Figure 24.4: An gossip-based aggregation of the average example.

In order to visualize how that type of protocol works, let us assume that we have a
network of four nodes with the initial values x = (5, 6, 7, 8)

T
as illustrated in Fig. 24.4.a.
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The arithmetic mean of its elements is

5 + 6 + 7 + 8

4
=

13

2
= 6.5 (24.2)

The initial variance is

(5− 6.5)2 + (6− 6.5)2 + (7− 6.5)2 + (8− 6.5)2

4
=

5

4
(24.3)

In the first step of the protocol, the nodes with the initial values 5 and 7 as well as the
other two exchange data with each other and update their values to 6 and 7 respectively
(see Fig. 24.4.b). Now the average of all estimates is still

6 + 6 + 7 + 7

4
= 6.5 (24.4)

but the variance has been reduced to

(6− 6.5)2 + (6− 6.5)2 + (7− 6.5)2 + (7− 6.5)2

4
= 1 (24.5)

After the second protocol step, outlined in Fig. 24.4.c, all nodes estimate the mean with the
correct value 6.5 (and thus, the variance is 0). The distributed average protocol is only one
example of gossip-based aggregation. Others are:

1. Minimum and Maximum. The minimum and maximum of a value in the network
can be computed by setting updatemin(sp, sq) = min {sp, sq} and updatemax(sp, sq) =
max {sp, sq} respectively.

2. Count. The number of nodes in a network N can be computed using the average
protocol: the initiator sets its state to 1 and all other nodes begin with 0. Then the
average is computed is then 1+0+0+...

numNodes(N) = 1
numNodes(N) where numNodes(N) is the

number of nodes in N. The nodes now just need to invert the computed value locally
and obtain 1

1
numNodes(N)

= numNodes(N).

3. Sum. The sum of all values in the network can be computed by estimating both, the
mean value x and the number of nodes numNodes(N) in the network N simultaneously
and multiplying both with each other: numNodes(N)x =

∑
x.

4. Variance. As declared in Equation 28.61 on page 474, the variance of a data set is
the difference of the mean of the squares of the values and the square of their means.
Therefore, if we compute x2 and x by using the average protocol, we can subtract them
var(x) ≈ x2 − x2 and, hence, obtain an estimation of the variance.

Further considerations are required if x is not constant but changes by and by. Both, peer-
to-peer networks as well as sensor networks, have properties (discussed in Section 30.2.2)
which are very challenging for distributed applications and lead to an inherent volatility
of x. According to Jelasity et al. [1048], a default approach to handle unstable data is
to periodically restart the aggregation protocols. In our research, we were able to provide
alternative aggregation protocols capable of dealing with dynamically changing data. This
approach is discussed in Section 24.1.2 on page 414.

The Solution Approach: Genetic Programming

In order to derive certain aggregate functions automatically, we could modify the Genetic
Programming approach for symbolic regression introduced in Section 23.1 on page 397 [2180,
2187]. Let α : Rm 7→ R be the exact aggregate function. It works on a vector of the dimension
m containing the data elements. m ∈ N is not a predetermined constant but depends on the
network size, i. e., m = numNodes(N) and α will return exact results for m = 1, 2, 3, . . . .
In Section 28.7.2 on page 503, we will show that the dimension m of the domain Rm of α
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plays no role when approximating it with a maximum likelihood estimator. The theorems
used there are again applied in symbolic regression (see Equation 23.6 on page 399), so the
value of m does not affect the correctness of the approach. Deriving aggregation functions for
distributed systems, however, exceeds the capabilities of normal symbolic regression. Each
of the m = numNodes(N) nodes in the network N holds exactly one element of the data
vector. α cannot be computed directly anymore since it requires access to all data elements
at once. Instead, each node has to execute local rules that define how data is exchanged
and how an approximation of the aggregate value is calculated. How to find these rules
automatically is the subject of our research here. There are three use cases for such an
automated aggregation protocol generation:

1. We may already know a valid aggregation protocol but want to find an equivalent proto-
col which has advantages like faster convergence or robustness in terms of input volatility.
This case is analogous to finding arithmetic identities in symbolic regression.

2. We do not know the aggregate function α nor the protocol but have a set of sample
data vectors xi (maybe differing in dimensionality) and corresponding aggregates yi.
Using Genetic Programming, we attempt to find an aggregation protocol that fits to
this sample information.

3. The most probable use case is that we know how to compute the aggregate locally
with a given function α but want to find a distributed protocol that does the same.
We, for example, are well aware of how to compute the arithmetic mean of a data set
(x1, x2, . . . , xm) – we just divide the sum of the single data items by their number m.
If these items, however, are distributed and not locally available, we cannot simply sum
them up. The correct solution described in Section 24.1.2 on page 416 is that each
node starts by approximating the mean with its locally known value. Now always two
nodes inform each other about their estimates and set their new approximation to be
that mean of the old and the received on. This way, the aggregate is approached by
iteratively refining the estimations.
The transformation of the local aggregate calculation rule α to the distributed one is
not obvious. Instead of doing it by hand, we can just use the local rule to create sample
data sets and then apply the approach of the second use case.

Network Model and Simulation

For gossip-based aggregation protocols, Jelasity et al. [1048] assume a topology where all
nodes can potentially communicate with each other. In this fully connected overlay network,
communication can be regarded as fault-free. Taking a look at the basic algorithm scheme
of such protocols introduced as Algorithm 24.1 on page 416, we see that the data exchange
happens once every δ time units at a randomly picked point in time. Even though being
asynchronous in reality, it will definitely happen in this time span. That is, we may simplify
the model to a synchronous network model where all communication happens simultaneously.

Another aspect of communication is how the nodes select their partners for the data
exchange. It is a simple fact that the protocol can only converge to the correct value if each
node has, maybe over multiple hops and calculations, been able to receive information from
all other nodes. Imagine a network N consisting of m = numNodes(N) = 4 nodes p, q, r,
and t. If the communication partners are always (p, q) and (r, t), the data dissemination is
insufficient since p will never be able to incorporate the knowledge of the states of r and t.
On the other hand, one data exchange between q and r will allow the protocol to work since
p would later on indirectly receive the required information from q.

Besides this basic fact, Jelasity et al. [1048] have shown that different forms of pair selec-
tion influence the convergence speed of the protocol. Correct protocols will always converge
if complete data dissemination is guaranteed. Knowing that, we should choose a partner
selection method that leads to fast convergence because we then can safe protocol steps in
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the evaluation process. The pair building should be deterministic, because randomized selec-
tion schemes lead to slow convergence [1048], and, more importantly, will produce different
outcomes in each test and make comparing the different evolved protocols complicated (as
discussed in Section 1.3.4 on page 55). Therefore, choosing a deterministic selection scheme
seems to be the best approach. Perfect matching according to Jelasity et al. [1048] means
that each node is present in exactly one pair per protocol cycle, i. e., always takes part in
the data exchange. If different pairs are selected in each cycle, the convergence speed will
increase. It can further be increased by selecting (different) pairs in a way that disseminates
the data fastest.
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Figure 24.5: Optimal data dissemination strategies.

From these ideas, we can derive a deterministic pair selection mechanism with best-case
convergence. Therefore, we first need to set the number of nodes in the simulated network
numNodes(N) = m = 2d as a power of two. In each protocol step t with t = 1, 2, . . . , we
compute a value ∆ = 2t mod d. Then we build pairs in the form (i, i+∆), where i and i+∆
are the indices identifying the nodes. This setup equals a butterfly graph and is optimal, as
you can see in Fig. 24.5.a. The data from node 0 (marked with a thick border) spreads in
the first step to node 1. In the second step, it reaches node 2 directly and node 3 indirectly
through node 1. Remember, if the average protocol would use this pair selection scheme,
node 3 would compute its new estimate at step 2 since

s3(t = 2) =
s3(t = 1) + s1(t = 1)

2
+

s3(t=0)+s2(t=0)
2 + s0(t=0)+s1(t=0)

2

2
(24.6)

In the third protocol step, the remaining four nodes receive knowledge of the information
from node 0 and the data is disseminated over the complete network. Now the cycle would
start over again and node 0 would communicate with node 1.

This pair selection method is bounded to networks of the size m = 2d. We can generalize
this approach by breaking up the strict pair-communication limitation. Therefore, we set
d = ⌈log2m⌉ while still leaving ∆ = 2t mod d and define that a node i sends its data to the
node (i+∆) mod m for all i as illustrated in Fig. 24.5.b. This general communication rule
abandons the strict pair-based data exchange but leaves any other feature of the aggregation
protocols, like the working of the update method, untouched. We should again visualize that
this rule is only defined so we can construct simulations where the protocols need as few
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as possible steps to converge to the correct value in order to spare us computation time.
Another important aspect also becomes obvious here: The time that an aggregation protocol
needs to converge will always depend on the number of nodes in the (simulated) network.

Node Model and Simulation

As important as modeling the network is the model of the nodes it consists of. In Figure 24.6,
we illustrate an abstraction especially suitable for fast simulation of aggregation protocols.
A node p executing a gossip-based aggregation protocol receives input in form of the locally

output: the estimate of
the aggregate value

sensor
input

processor

read from state,
compute, write to state

state

receive parts of the
state of another node

send parts of the state

other nodes in
the network

Figure 24.6: The model of a node capable to execute a proactive aggregation protocol.

known value (for example a sensor reading) and also in form of messages containing data
from other nodes in the network. The output of p consists of the local approximation of the
aggregate value and the information sent to its partners in the network. The computation
is done by a processor which updates the local state by executing the update function. The
local state sp of p can most generally be represented as vector sp ∈ Rn of the dimension n,
where n is the number of memory cells available on a node.

Like Jelasity et al. [1048], we until now have considered the states to be scalars. Gener-
alizing them to vectors allows us to specify or evolve more complicated protocols. The state
vector contains the approximation of the aggregate value at the position i : 1 ≤ i ≤ n. If the
state only consists of a single number, the messages between two nodes will always include
this single number and hence, the complete state.

A state vector not only serves as a container for the aggregate, but also as memory
capable of accumulating information. It is probably unnecessary or unwanted to exchange
the complete state during the communication. Therefore, we specify an index list e containing
the indices of the elements to be sent and a list r with the indices of the elements that shall
receive the values of the incoming messages. For a proper communication between the nodes,
the length of e and r must be equal and each index must occur at most once in e and also at
most once in r. Whenever a node p receives a message from node q, the following assignment
will be done, with sp[i] being the ithth component of the vector:

sp[rj ]←− sq [ej ] ∀j = 0 . . . len(r)− 1 (24.7)

In the original form of gossip-based aggregation protocols, the state is initialized with a
static input value which is stepwise refined to approximate the aggregate value [1048]. In our
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model, this restriction is no longer required. We specify an index I pointing at the element
of the state vector that will receive the input. This allows us to grow protocols for static
and for volatile input data. In the latter case, the inputs are refreshed in each protocol step.
A node p would then perform

sp[I](t)←− getInput(p, t) (24.8)

The function getInput(p, t) returns the input value of node p at time step t. With this
definition, the state vectors sp become time-dependent, written as sp(t). Finally, update is
now designed as a map Rn 7→ Rn to return the new state vector.

sp(t+ 1) = update(sp(t)) (24.9)

In the network simulation, we can put the state vectors of all nodes together to a single
n×m matrix S(t). The column k of this matrix contains the state vector sk of the node k.

S(t) = (s1, s2, . . . , sm) (24.10)

S[j,k] = sk[j] (24.11)

This notation is used in Algorithm 24.2 and Algorithm 24.3. In Algorithm 24.2 we spec-
ify how the model definitions just discussed can be used to build a network simulation for
gossip-based, proactive aggregation protocols. Here we also apply the general optimal com-
munication scheme explained in Section 24.1.2. In the practical realization, we can spare
creating a new matrix S(t) in each time step t by initial using two matrices S1, S2 which
we simple swap in each turn.

Evaluation and Objective Values

The models described before are the basis of the evaluation of the aggregation protocols
that we breed. In general, there are two functional features that we want to develop in the
artificial evolution:

1. We want to grow aggregation protocols where the deviation between the local estimates
and the global aggregate is as small as possible, ideally 0.

2. This deviation can surely not be 0 after the first iteration at t = 1, because the nodes
do not know all data at that time. However, the way how received data is incorporated
into the local state of a node can very well influence the speed of convergence to the
wanted value. Therefore, we want to find protocols that converge as quickly as possible.

In all use cases discussed in Section 24.1.2, we either already know the correct aggregation
values yi or the local aggregate function α : Rm 7→ R that calculates them from data vectors
of the length m. The objective is to find a distributed protocol that computes the same
aggregates in a network where the data vector is distributed over m nodes. In our model, the
estimates of the aggregate value can be found at the positions S[O, · ]⋆ ≡ sk[O] ∀k ∈ [1 . . .m]
in the state matrix or the state vectors respectively.

The deviation ε(k, t) of the local approximation of a node k from the correct aggregate
value y(t) at a point in time t denotes its estimation error.

y(t) = α
(

(getInput(1,t),..,getInput(m,t))
T
)

(24.12)

ε(k, t) = y(t)− S[O,k](t) = y(t)− sk[O] (24.13)

We have already argued that the mean square error is an appropriate quality function for
symbolic regression (see Equation 23.6). Analogously, the mean of the squares of the errors ε
over all simulated time steps and all simulated nodes is a good criterion for the utility of an
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Algorithm 24.2: simulateNetwork(m,T )

Input: m: the number of nodes in the simulation
Input: T : the maximum number of simulation steps
Input: [implicit] update: the update function
Input: [implicit] I: the index for the input values
Input: [implicit] O: the index for the output values
Input: [implicit] e: the index list for the send values
Input: [implicit] r: the index list for the receive values
Data: d: communication step base according to Fig. 24.5.b on page 420
Data: k: a node index
Data: S(t): the simulation state matrix at time step t
Data: ∆: the communication partner offset
Data: p: the communication partner node

begin1

d←− ⌈log2m⌉2

S(0)←− createMatrix(n×m)3

// initialize with local values

S(0)[ · ,k]←− getInputk04

t←− 15

while t ≤ T do6

S(t)←− copyMatrix(S(t− 1))7

∆←− 2t mod d
8

// perform communication according to Fig. 24.5.b on page 420

k ←− 19

while k ≤ m do10

p←− (k +∆) mod m11

foreach j ∈ [1..len(r)] do S(t)[rj ,p]←− S(t− 1)[ej ,k]12

k ←− k + 113

// set (possible) new input values and perform update

k ←− 114

while k ≤ m do15

S(t)[I,k]←− getInput(k, t)16

S(t)[ij ,k]←− update(S(t)[ · ,k])17

// ≡ sk(t)←− update(sk(t))
k ←− k + 118

t←− t+ 119

end20

aggregation protocol. It is even related to both functional aspects subject to optimization:
The larger it is, the greater is the deviation of the estimates from the correct value. If the
convergence speed of the protocol is low, these deviations will become smaller more slowly
by time. Hence, the mean square error will also be higher. For any evolved update function
u we define3:

f1(u, e, r) =
1

T ∗m
T∑

t=1

m∑

k=1

ε(k, t)
2

∣∣∣∣∣u, e, r (24.14)

This rather mathematical definition is realized indirectly in Algorithm 24.3, which returns
the value of f1 for an evolved update method u. It also applies the fast, convergence-friendly
communication scheme discussed in Section 24.1.2. Its realization in the Distributed Genetic
Programming Framework [2177] software allows us to evaluate even complex distributed
protocols in very short time: A protocol can be tested on 16 nodes for 300 protocol steps
less than 5 milliseconds on a normal, 3GHz off-the-shelf PC.

3 where · |u, e, r means “passing u, e, r as input to Algorithm 24.3”
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Algorithm 24.3: f1(u, e, r)←− evaluateAggregationProtocol(u,m, T )

Input: u: the evolved protocol update function to be evaluated
Input: m: the number of nodes in the simulation
Input: T : the maximum number of simulation steps
Input: [implicit] update: the update function
Input: [implicit] I: the index for the input values
Input: [implicit] O: the index for the output values
Input: [implicit] e: the index list for the send values
Input: [implicit] r: the index list for the receive values
Data: d: communication step base according to Fig. 24.5.b on page 420
Data: k: a node index
Data: S(t): the simulation state matrix at time step t
Data: ∆: the communication partner offset
Data: p: the communication partner node
Data: res: the variable accumulating the square errors
Output: f1(u, e, r): the sum of all square errors (deviations from the correct aggregate) over

all time steps

begin1

d←− ⌈log2m⌉2

S(0)←− createMatrix(n×m)3

// initialize with local values

S(0)[ · ,k]←− getInputk04

t←− 15

while t ≤ T do6

S(t)←− copyMatrix(S(t− 1))7

· · ·8

// perform communication according to Fig. 24.5.b on page 420

· · ·9

// set (possible) new input values and perform update

k ←− 110

while k ≤ m do11

S(t)[I,k]←− getInput(k, t)12

// u is the evolved update-function and thus, used here

S(t)[ · ,k]←− u(S(t)[ · ,k])13

res←− res+ (y(t)− S(t)[O,k])214

// ≡ res←− res+ (α(i(t))− S(t)[o,k])2

k ←− k + 115

t←− t+ 116

return res17

end18

Input Data

In Algorithm 24.3 we use sample α values in order to determine the errors ε. In two of our
initial use cases, we need to create these values before the evaluation process, either with
an existing protocol or with a known aggregate function α. Here we will focus on the latter
case.

If transforming a local aggregate function α to a distributed aggregation protocol, we
need to create sample data vectors for the getInput(k, t)-method. Here we can differentiate
between static and dynamic input data: for static input data, we just need to create the
samples for t = 0 since getInput(k, 0) = getInput(k, 1) = . . . agGetInputbkT ∀k ∈ [1..n]. If
we have dynamic inputs on the other hand, we need to ensure that at least some elements of
the input vectors x(t) = getInput · t will differ, i. e., ∃t1, t2 : x(t1) 6= x(t2). If this difference
is too large, an aggregation protocol cannot converge. It should be noted that it would
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be wrong to assume that we can measure this difference in terms of the sample data x –

restrictions like 0.9 <
∣∣∣ x[i](t)
x[i](t+1)

∣∣∣ < 1.1 are useless, because their impact on the value of α is

unknown. Instead, we must limit the variations in terms of the aggregation results, like

0.9 <

∣∣∣∣
α(x(t))

α(x(t))

∣∣∣∣ < 1.1 (24.15)

In both, the static and the dynamic case, we need to create multiple input datasets, dis-
tinguished by adding a dataset index to x(t): x(1, t),x(2, t), . . . ,x(l, t). Only if α(x(1, t)) 6=
α(x(2, t)) 6= · · · 6= αx(l, t) we can assure that the result are not just overfitted protocols
that simple always return one single learned value: the exact α of the sample data. The
single x(i, t) should differ in magnitude, sign, and distribution since this will lead to large
differences in the α-values:

(∣∣∣∣
α(x(i, t))

α(x(j, t))

∣∣∣∣≪ 1

)
∨
(∣∣∣∣
α(x(i, t))

α(x(j, t))

∣∣∣∣≫ 1

)
∀ i 6= j (24.16)

We use z such data sets to perform z runs of Algorithm 24.3 and compute the true value
of f1 as arithmetic mean of the single results.

f1(u, e, r) =
1

z

z∑

i=1

underConditionff (u, e, r)xi (24.17)

Of course, for each protocol that we evaluate we will use the same sample data sets be-
cause otherwise the results would not be comparable. It should be noted that overfitting
can furthermore be prevented by changing the sample vectors in each generation. In this
experiment series, generating the test data was too time consuming so we did not apply this
measure.

Volatile Input Data

The specification of getInput(k, t) which returns the input value of node k at time t ∈ [0..T ]
allows us to evolve aggregation protocols for static and such for volatile input. Traditional
aggregation protocols are only able to deal with constant inputs [1048]. These protocols
have good convergence properties, as illustrated in Fig. 24.7.a. They always converge to the
correct results but will simple ignore changes in the input data (see Fig. 24.7.b).

They would need to be restarted in a real application from time to time in order to provide
up-to-date approximations of the aggregate. This approach is good if the input values in the
real application that we evolve the protocols for change slowly. If these inputs are volatile, the
estimations of these protocols become more and more imprecise. The fact that an aggregation
protocol needs a certain number of cycles to converge is an issue especially in larger or mobile
sensor networks. One way to solve this problem is to increase the data rate of the network
accordingly and to restart the protocols more often. If this is not feasible, because of, for
example, energy restrictions in a low-power sensor network application prohibit increasing
the network traffic, dynamic aggregation protocols may help.

They represent a sliding average of the approximated parameter and are able to cope with
changing input data. In each protocol step, they will incorporate their old state, the received
information, and the current input data into the calculations. A dynamic distributed average
protocol like the one illustrated in Figure 24.8 is a weighted sum of the old estimate, the
received estimate, and the current value. The weights in the sum can be determined by the
Genetic Programming process according to the speed with which the inputs change. In order
to determine this speed for the simulations, a few real sample measurements would suffice
to produce customized protocols for each application situation. However, the incorporation
of the current input value is also the drawback of such an approach, since it cannot fully
converge to the correct result anymore.
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Figure 24.7: The behavior of the distributed average protocol in different scenarios.



24.1 Genetic Programming of Distributed Algorithms 427

0 28 56 84 112 140

protocol steps

local estimates of the
aggregate of the single nodes
correct aggregate

single sensor values

[1] 0.26

*[1]

+

*+

[3] 2.9[2] -

*

[1] 0.21

[2][1]

e=[1], r=[3]

Figure 24.8: A dynamic aggregation protocol for the distributed average.

Phenotypic Representations of Aggregation Protocols

We have to find a proper representation for gossip-based aggregation protocols. Such a pro-
tocol consists of two parts: the evolved update function and a specification of the properties
of the state vector – the variables I, O, r, and e.

Representation for the update Function

The function update as defined in the context of our basic model for aggregation protocols
receives the state vectors sk(t) ∈ Rn of time step t as input. It returns the new state vectors
sk(t + 1) ∈ Rn of time step t + 1. This function is indeed an algorithm by itself which can
be represented as a list of tuples l = (. . . , (uj , vj) , . . . ) of mathematical expressions uj and
vector element indices vj . This list l is processed sequentially for j = 1, 2, . . . , len(l). In each
step j, the result of the expression uj is computed and assigned to the vj

th element of the old
state vector s(t− 1). In the simplest case, l will have the length len(l) = 1. One example for
this is the well-known distributed average protocol illustrated in Figure 24.9: In the single
formula, the first element of s[1](t), [1], is assigned to 0.5 ∗ ([1] + [2]) which is the average
of its old value and the received information. Here, the value of the first element is send to
the partner and the received message is stored in the second element, i. e., r = [2], e = [1].
The terminal set of the expressions now does not contain the simple variable x anymore but
all elements of the state vectors. Finally, after all formulas in the list have been computed
and their return values are assigned to the corresponding memory cells, the modified old
state vector sk(t) becomes the new one sk(t + 1). Fig. 24.9.b shows a more complicated
protocol where update consists of len(l) = 4 formulas ((u1, 1) , (u2, 2) , (u3, 3) , (u4, 2)). We
will not elaborate deeper on these examples but just note that both are valid results of
Genetic Programming – a more elaborate discussion of them can be found in Section 24.1.2
on page 430, Section 24.1.2 on page 431, and [2187, 2180].
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Figure 24.9: Some examples for the formula series part of aggregation protocols.

The important point is that we are able to provide a notation for the first part of the
aggregation protocol specification that is compatible to normal symbolic regression and
which thus can be evolved using standard operators.

Besides this sequence of formulas computed repetitively in a cycle, we also need an
additional sequence that is executed only once, in the initialization phase. It is needed for
some other protocols than the distributed minimum, maximum, and average, which cannot
assume the approximation of the estimate to be the current input value. Here, another
sequence of instructions is needed which transforms the input value into an estimate which
then can be exchanged with other nodes and used as basis for subsequence calculations. This
additional sequence is evolved and treated exactly in the same way as the set of formulas
used inside the protocol cycle.

Experiments have shown that it is useful though to initialize all state elements in the
first time step with the input values. Therefore, both Algorithm 24.2 and Algorithm 24.3,
initially perform S(0)[ · ,k] ←− getInput(k, 0) instead of S(0)[i,k] ←− getInput(k, 0). In all
other time steps, only S(t)[i,k] is updated.

Straightforwardly, we can specify a non-functional objective function f2 that returns the
number of expressions in both sets and, hence, puts pressure into the direction of small
protocols with less computational costs.

Representation for I, O, e, and r

Like the update function, the parameters of the data exchange, r and e, become subject to
evolution. I and O are only single indices; we can assume them to be fixed as I = 1 and
O = 2. Allowing them to be changed will only result in populations of many incompatible
protocols. Although we could do the same with e and r, there is a very good reason to make
them variable. If e and r are built during the evolutionary process, different protocols with
different message lengths (len(e1) 6= len(e2)) can emerge. Hence, we can introduce a non-
functional objective function f3 that puts pressure into the direction of minimal message
lengths. The results of Genetic Programming will thus be optimal not only in accuracy of
the results but only in terms of communication costs.

For the lists e and r there are three possible representations. We can use either a bit string
of the fixed length 2n which contains two bits for each element of s: the first bit determines
if the value of the element should be sent, the second bit denotes if an incoming element
should be stored there. String genomes of a fixed length are explained in detail in Section 3.4
on page 147. By doing so, we implicitly define some restrictions on the message structure
since we need to define an order on the elements inside. If n = 4, a bit string 01011010

will be translated into e = (3, 4) and r = (1, 2). It is not possible to obtain something like
e = (3, 4) and r = (2, 1).

The second encoding scheme is to use two variable-length integer strings which represent
e and r directly. Such genomes are introduced in Section 3.5 on page 149. Now the latter
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case becomes possible. If the lengths of the two strings differ, for example for reproduction
reasons, the length of the shorter one is used solely.

The third approach would be to, again, evolve one single string z. This string is composed
of pairs z = ((e1, r1) , (e2, r2) , . . . , (rl, rl)). The second and the third approach are somewhat
equivalent,

In principle, all three methods are valid and correct since the impossibility of some
message structures in the first method does not necessarily imply that certain protocol
functionality cannot evolve. The standard reproduction operators for string genomes, be
they of fixed or variable length, can be applied.

When we closely examine our abstract protocol representation, we will see that it will
work with epidemic [1047] or SPIN-based [914] communication too, although we developed
it for a gossip-based communication model.

Reproduction Operators

As already pointed out when elaborating on the representation schemes for the two parts of
the aggregation protocols, well-known reproduction operators can be reused here.

1. The formulas in the protocol obey strictly a tree form, where the root always has two
child nodes, the formula sequences for the protocol cycle and the initialization, which, in
turn, may have arbitrarily many children: the formulas themselves. A formula is a tree
node which has stored one number which identifies the vector element its results will be
written to. It has exactly one child node, the mathematical expression which is a tree of
other expressions. We elaborate on tree-shaped genomes in Section 4.3 on page 162.

2. The communication behavior is described as either one fixed-length bit string or two
variable-length integer strings.

New protocols are created by first building a new formula tree and then combining it with
one (or two, according to the applied coding scheme) newly created string chromosomes. We
define the mutation operation as follows: If an aggregation protocol is mutated, with 80%
probability its formula tree is modified and with 20% probability its message pattern. When
performing a recombination operation, a new protocol is constructed by recombining the
formula tree as well as the message definition of both parents with the default means.

Results from Experiments

In Table 24.1, we list the configuration of the Genetic Programming algorithm applied to
breed aggregation protocols.

Parameter Short Description

Problem

Space

X The space of aggregation programs. (see Section 24.1.2)

Objective

Functions

F F = {f1, f2, f3}, see Algorithm 24.3, Section 24.1.2, Section 24.1.2

Search Space G (basically) identical with the problem space, i. e., G = X.
Search

Operations

Op mutation and crossover (see Section 24.1.2)

GPM gpm not needed
Optimization

Algorithm

alg elitist Genetic Programming

Comparison

Operator

cm cmpF,agg (see Equation 24.18)
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Population

Size

ps ps = 4096

Maximum

Archive Size

as The size of the archive with the best known individuals was limited
to as = 64. (see Definition 2.4)

Steady-State ss The algorithms were generational (not steady-state) (ss = 0). (see

Section 2.1.6)

Fitness

Assignment

Algorithm

fa For fitness assignment in the evolutionary algorithm, Pareto rank-
ing was used. (see Section 2.3.3)

Selection

Algorithm

sel A binary (k = 2) tournament selection was applied. (see Section 2.4.4)

Convergence

Prevention

cp No additional means for convergence prevention were used, i. e.,
cp = 0. (see Section 2.4.8)

Number of

Training

Cases

tc The number of training cases used for evaluating the objective func-
tions were tc = 22, where each run is granted 28 cycles in the static
and 300 cycles in the dynamic case.

ct ct The training cases were fixed, i. e., ct = 0.

Table 24.1: The settings of the Aggregation-Genetic Programming experiments.

In the simulations, 16 virtual machines were running, each holding a state vector s with
five elements. From all experiments, those with a tiered prevalence comparison performed
best and, hence, will be discussed in this section. Tiered prevalence comparison is similar to a
Pareto optimization which is performed level-wise. When comparing two solution candidates
x1 and x2, initially, the objective values of the first objective function f1 are considered only.
If one of the solution candidates has here a better value than the other, it wins. If both
values are equal, we compare the second objective values in the same way, and so on. The
comparator function defined in Equation 24.18 gives correctness (f1) precedence to protocol
size (f2). Its result indicates which of the two individuals won – a negative number denotes
the victory of x1, a positive one that x2 is better. The tiered structure of cmpF,agg leads to
optimal sets with few members that most often (but not always) have equal objective values
and only differ in their phenotypes.

cmpF,agg(x1, x2) =





−1 if (f1(x1) < f1(x2))∨
((f1(x1) = f1(x2)) ∧ (f2(x1) < f2(x2)))∨
((f1(x1) = f1(x2)) ∧ (f2(x1) = f2(x2))∧

(f3(x1) < f3(x2)))
1 if (f1(x2) < f1(x1))∨

((f1(x2) = f1(x1)) ∧ (f2(x2) < f2(x1)))∨
((f1(x2) = f1(x1)) ∧ (f2(x2) = f2(x1))∧

(f3(x2) < f3(x1)))
0 otherwise

(24.18)

We do not need more than five memory cells in our experiments. The message size was
normally one or two in all test series and if it was larger, it converged quickly to a minimum.
The objective function f3 that minimizes it thus shows no interesting behavior. It can be
assumed that it will have equal characteristics like f2 in larger problems.

Average – static

With this configuration, protocols for simple aggregates like minimum, maximum, and av-
erage can be obtained in just a few generation steps. We have used the distributed aver-
age protocol which computes αavg = x in many of the previous examples, for instance,
in Section 24.1.2 on page 416, Section 24.1.2 on page 425, and in Fig. 24.9.a. The evolution
of a static version such an algorithm is illustrated in Figure 24.10. The graphic shows how
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Figure 24.10: The evolutionary progress of the static average protocol.

the objective values of the first objective function (the mean square error sum) improve
with the generations in twelve independent runs of the evolutionary algorithm. All runs did
converge to the optimal solution previously discussed, most of them very quickly in less than
50 generations.

Figure 24.11 reveals the inter-relation between the first and second objective function for
two randomly picked runs. Most often, when the accurateness of the (best known) protocols
increases, the number of formula expressions also rises. These peaks in f2 are always followed
by a recession caused by stepwise improvement of the protocol efficiency by eliminating
unnecessary expressions. This phenomenon is rooted in the tiered comparison that we chose:
A larger but more precise protocol will always beat a smaller, less accurate one. If two
protocols have equal precision, the smaller one will prevail.

Root-Of-Average – static

In our past research, we used the evolution of the root-of-average protocol as benchmark
problem [2180]. Here, a distributed average protocol for the aggregate function αra is to be
evolved:

αra(x) =
√
|x| ∀x ∈ x (24.19)

One result of these experiments has already been sketched in Fig. 24.9.b. Figure 24.12
is a plot of eleven independent evolution runs. It also shows a solution found after only
84 generations in the quickest experiment. The values of the first objective function f1,
denoting the mean square error, improve so quickly in all runs at the beginning that a
logarithmic scale is needed to display them properly. This contrasts with the simple average
protocol evolution where the measured fitness is approximately proportional to the number
of generations. The reason is the underlying aggregate function which is more complicated
and thus, harder to approximate. Therefore, the initial errors are much higher and even
small changes in the protocols can lead to large gains in accurateness.
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Figure 24.11: The relation of f1 and f2 in the static average protocol.
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The example solution contains a useless initialization sequence. In the experiments, it
paradoxically did not vanish during the later course of the evolution although the secondary
(non-functional) objective function f2 puts pressure into the direction of smaller protocols.
For the inter-relation between the first and second objective function, the same observations
can be made than in the average protocol. Improvements in f1 often cause an increase in
f2 which is followed by an almost immediate decrease, as pictured in Figure 24.13 for the
84-generation solution.
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Figure 24.13: The relation of f1 and f2 in the static root-of-average protocol.

Average – dynamic

After verifying our approach for conventional aggregation protocols with static input data,
it is time to test it with dynamically changing inputs. This may turn out be a useful ap-
plication and is more interesting, since creating protocols for this scenario by hand is more
complicated.

So we first repeat the “average” experiment for two different scenarios with volatile input
data. The first one is depicted with solid lines in Figure 24.14. Here, the true values of the
aggregate α(x(t)) can vary in each protocol step by 1% and in one simulation by 50% in
total. In the second scenario, denoted by dashed lines, these volatility measures are increased
to 3% and 70% respectively. The different settings have a clear impact on the results of the
error functions – the more unsteady the protocol inputs, the higher will f1 be, as Figure 24.14
clearly illustrates. The evolved solution exhibits very simple behavior: In each protocol step,
a node first computes the average of its currently known value and the new sensor input.
Then, it sets the new estimate to the average of this value and the value received from its
partner node. Each node sends its current sensor value. This robust basic scheme seems to
work fine in a volatile environment. The course of the evolutionary process itself has not
changed significantly. Also the interactions between of f1 and f2 stay the same, as shown in
Figure 24.15.

Root-Of-Average – dynamic

Now we repeat the second experiment, evolving a protocol that computes the square root of
the average, with dynamic input data. Here we follow the same approach as for the dynamic
average protocol: Tests are run with the same two volatility settings as in Section 24.1.2.
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Figure 24.16 shows how f1 changes by time. Like in Figure 24.12, we have to use a logarithmic
scaling for f1 to illustrate it properly. For the tests with the slower changing data (solid
lines), an intermediate solution is included because the final results were too complicated
to be sketched here. The evolutions with the highly dynamic input dataset however did not
yield functional aggregation protocols. From this we can follow that there is a threshold of
volatility from which on Genetic Programming is no longer able to breed stable formulas.
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Figure 24.16: The evolutionary progress and one grown solution of the dynamic root-of-
average protocol.

The relation of f1 and f2, outlined in Figure 24.17, complies with our expectations. In
every experiment run, increasing f1 is usually coupled to a deterioration of f2 which means
that the protocol formulas become larger and include more sub-expressions. This is followed
by a recreation span where the formulas are reduced in size. After a phase of rest, where the
new protocol supposable spreads throughout the population, the cycle starts all over again
until the end of the evolution.

Conclusions

In this chapter, we have illustrated how Genetic Programming can be utilized for the au-
tomated synthesis of aggregation protocols. The transition to the evolution of protocols for
dynamically changing input data is a step towards a new direction. Especially in applica-
tions like large-scale sensor networks, it is very hard for a software engineer to decide which
protocol configuration is best. With our evolutionary approach, different solutions could be
evolved for different volatility settings which can then be selected by the network according
to the current situation.
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Introduction

Today, there exist many different optimization frameworks. Some of them are dedicated
to special purposes like spacecraft design [755] or trading systems [2302]. Others provide
multi-purpose functionality like GALib [2140], Evolutionary Objects (EO) [1114, 1336] or
the Java evolutionary computation library (ECJ) [1327].

In this part of the book, we want to introduce a new approach in global optimization
software, called Sigoa, the Simple Interface for Global Optimization Algorithms1. Based
on this library, we want to demonstrate how the optimization algorithms discussed in the
previous chapters can be implemented.

We decided to use Java [837, 838, 317] as programming language and runtime system for
this project since it is a very common, object-oriented, and platform independent. You can
find more information on Java technology either directly at the website http://java.sun.

com/ [accessed 2007-07-03] or in books like

1. Javabuch by Krüger [1217], the best German Java learning resource in my opinion, is
online available for download at http://www.javabuch.de/ [accessed 2007-07-03].

2. For the English reader, Thinking in Java by Eckel [618] would be more appropriate – its
free, third edition is online available at http://www.mindview.net/Books/TIJ/ [accessed

2007-07-03].
3. As same as interesting are the O’Reilly books Java in a Nutshell [687] and Java Examples

in a nutshell [686] by Flanagan, and Learning Java by Niemeyer and Knudsen [1534].
4. Java ist auch eine Insel by [2071] – another good resource written in German, is also

online available at http://www.galileocomputing.de/openbook/javainsel6/ [accessed

2007-07-03].

The source code of the binaries and the source files of the software described in this
book part can be found online at http://www.sigoa.org/. It is not only open-source,
but licensed very liberally under the LGPL (see appendix Chapter B on page 581) which
allows for the integration of Sigoa into all kinds of systems, from educational to commercial,
without any restrictions. Sigoa has features that aim to support optimizing complicated
types of individuals which require time-consuming simulation and evaluation procedures.

Genetic Programming of real distributed algorithms is one example for such problems.
In order to determine such an algorithm’s fitness, you need to simulate the algorithm2. The
evolution progresses step by step, so at first, we will not have any algorithm that works
properly for a specified problem. Some of the solution candidates whatsoever will be able to
perform some of the sub-tasks of the problem, or will maybe solve it partly. Since they may
work on some of the inputs while failing to process other inputs correctly, a single simulation
run will not be sufficient. We rather execute the algorithms multiple times and then use the
minimum, median, average, or maximum objective values encountered. In the case of growing

1 http://www.sigoa.org/
2 See Section 4.10 on page 219 for further discussions.

http://java.sun.com/
http://java.sun.com/
http://www.javabuch.de/
http://www.mindview.net/Books/TIJ/
http://www.galileocomputing.de/openbook/javainsel6/
http://www.sigoa.org/
http://www.sigoa.org/
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distributed algorithms, it is again not sufficient to simulate one processor. Instead, we need to
simulate a network of many processors in order to determine the objective values3. Hence,
it is simple to imagine that such a process may take some time. There are many other
examples of optimization problems that involve complicated and time-consuming processes
or simulations.

A framework capable of partially dealing with such aspects in an elegant manner has
already been developed by the author in the past, see Weise [2175], Weise and Geihs
[2176, 2177]. With the Sigoa approach, we use our former experiences to create a software
package that has a higher performance and is way more versatile: One of the key features of
Sigoa is the separation of specification from implementation, which allows heavyweight im-
plementations as required for the evolution of the distributed algorithms as well as creating
lightweight optimization algorithms which do not need simulations at all – like numerical
minimization or such and such. This clear division not only allows for implementing all the
optimization algorithms introduced in the previous parts but is good basis for including
new, experimental methods that may have not been discussed yet.

Before starting with the specification of the Sigoa approach, we performed a detailed
study on different global optimization methods and evolutionary algorithms. Additionally,
we used the lessons learned from designing the DGPF system to write down the following
major requirements:

25.1 Requirements Analysis

25.1.1 Multi-Objectivity

Almost all real-world problems involve contradicting objectives. A distributed algorithm
evolved should, for example, be efficient and yet simple. It should consume not much memory
and involve as little as possible communication between different processors but on the other
hand should ensure proper functionality and be robust against lost or erroneous messages.
The first requirement of an optimization framework is thus multi-objectivity.

25.1.2 Separation of Specification and Implementation

It should easily be possible to adapt the optimization framework to other problems or prob-
lem domains. The ability to replace the solution candidate representation forms is therefore
necessary. Furthermore, the API must allow the implementation of all optimization algo-
rithms discussed in the previous chapters in an easy and elegant manner. It should further be
modular, since most of the optimization algorithms also consist of different sub-algorithms,
as we have seen for example in Chapter 2 on page 95.

From this requirement we deduce that the software architecture used for the whole frame-
work should be component based. Each component should communicate with the others only
through clearly specified interfaces. This way, each module will be exchangeable and may
be even represented by proxies or such and such, granting a maximum of extensibility. If
we define a general interface for selection, we could modify the SPEA-algorithm (see ?? on
page ??) which originally uses tournament selection to use another selection algorithm.

Hence, we will define Java-interfaces for all parts of optimization algorithms such as
fitness assignment or clustering methods used for pruning the optimal sets. By doing so, we
reach a separation of the specification from the implementation. For all interfaces we will
provide a reference implementation which can easily be exchanged, allowing for different
levels of complexity in the realizations.

3 In Section 24.1.2 on page 414 you can find good example for this issue.
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25.1.3 Separation of Concerns

An optimization system consists not only of the optimization algorithms themselves. It needs
interfaces to simulators. If it is distributed, there must be a communication subsystem. Even
if the optimization system is not distributed, we will most likely make use of parallelism since
the processors inside of nowadays off-the-shelf PCs already offer supportive hyper-threading
or dual-core technology [570, 1891]. If Sigoa is utilized by multiple other software systems
which transfer optimization tasks to it, security issues arise. These aspects are orthogonal to
the mathematical task of optimizing and should therefore be specified at different places and
clearly be separated from the pure algorithms. Best practice commands to already consider
such aspects in the earliest software design phase of every project and thus, also in the Sigoa
library.

25.1.4 Support for Pluggable Simulations and Introspection

In most real-world scenarios, simulations are needed to evaluate the objective values of the
solution candidates. If we use the framework for multiple problem domains, we will need
to exchange these simulations or even want to rely on external modules. In some cases,
the value of an objective function is an aggregate of everything what happened during
the simulation. Therefore, they need a clear insight into what is going. Since we separate
the objective functions from the simulations by clearly specified interfaces (as discussed in
Section 25.1.3), these interfaces need to provide this required functionality of introspection.

In the use case of evolving a distributed algorithm, we can visualize the combination
with the separation of concerns and introspective simulations: Besides working correctly, a
distributed algorithm should use as few messages as possible or at least has stable demands
considering the bandwidth on the communication channel. We therefore could write an
objective function which inspects the number of messages underway in the simulation and
computes a long-term average and variance. The simulation itself then does not need to be
aware of that; it simple has to offer the functionality of counting the messages currently
in transmission. The catch is that we can now replace the objective function by another
one that maybe puts the pressure a little bit differently, leading to better results, without
modifying the simulation. On the other hand, we can also use different simulation models –
for example one where transmission errors can occur and one where this is not the case –
without touching the objective function.

25.1.5 Distribution utilities

As already said, there are many applications where the simulations are very complicated and
therefore, our architecture should allow us to distribute the arising workload to a network of
many computers. The optimization process then can run significantly faster because many
optimization techniques (especially evolutionary algorithms) are very suitable for parallel
and distributed execution as discussed in Chapter 18 on page 299.

25.2 Architecture

We want to design the Sigoa optimization system based on these requirements. In this
book part, we have assigned different chapters to the classes of different components of
Sigoa and their sub-algorithms. By specifying interfaces for all aspects of optimization and
implementing them elsewhere, the versatility to exchange all components is granted, so
customized optimizers can be built to obtain the best results for different problem domains.
Furthermore, interfaces allow us to implement components in different levels of detail: there
may be applications where the evaluation of objective functions involves massive simulations
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(like genetic programming) and applications, where the simple evaluation of mathematical
functions enough (like numerical minimizing). In the latter case, using a system that provides
extended support for simulations may result in performance degeneration since a lot of
useless work is performed. If the mechanism that computes the objective values could be
exchanged, an optimal approach can be used in each case.

As result from these considerations, we divide the Sigoa architecture in org.sigoa into two
main packages: org.sigoa.spec contains the specifications and org.sigoa.refimpl a reference
implementation. Figure 25.1 illustrates this top-level package hierarchy.

<< >>Import

org
<< >>Library

sigoa
<< >>Package

sfc
<< >>Library

spec
<< >>Package

refimpl
<< e>>Packag << >>Import

Figure 25.1: The top-level packages of the Sigoa optimization system.

The specification of the functionality of Sigoa is given by interfaces and a few basic
utility classes only. It is independent from any library or other software system and does
not require prerequisites. The interfaces can therefore also be implemented as wrappers that
bridge to other, existing optimizing systems. Most of these specification interfaces inherit
from java.io.Serializable and hence can be serialized using the Java Object Serialization
mechanisms4. This way, we provide the foundation for creating snapshots of a running
optimization algorithm which would allows for starting, stopping, restarting, and migrating
them.

The reference implementation uses an additional software package called Sfc, the Java
Software Foundation Classes – a LGPL-licensed open-source library available under the same
URL as Sigoa that provides some useful classes for tasks that are needed in many applications
like enhanced IO, XML support, extended and more efficient implementations of the Java
Collection Framework5-interfaces and so on. This utility collection is not directly linked to
optimization algorithms but provides valuable services that ease the implementation of the
Sigoa components.

The package hierarchy of the reference implementation is identical to the one of the
specifications. The package org.sigoa.spec.gp.reproduction, for example, contains the def-
inition of mutation and crossover operations whereas the package org.sigoa.refimpl.gp

.reproduction contains the reference implementation of these operations.

25.3 Subsystems

As illustrated in Figure 25.2, the Sigoa framework is constituted by nine subsystems:

4 http://java.sun.com/javase/6/docs/technotes/guides/serialization/ [accessed 2007-07-03]

5 http://java.sun.com/javase/6/docs/technotes/guides/collections/ [accessed 2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/serialization/
http://java.sun.com/javase/6/docs/technotes/guides/collections/
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org.sigoa.spec
<< >>Package

stoch
<< >>Package

simulation
<< >>Package

security
<< >>Package

pipe
<< >>Package

adaptation
<< >>Package

clustering
<< >>Package

events
<< >>Package

go
<< >>Package

jobsystem
<< >>Package

Figure 25.2: The subsystem specification of the optimization framework.

1. The adaptation package contains mechanisms that allow components to adapt them-
selves to a given situation based on rules. This can be used for example by optimization
algorithms in order to adjust their parameters. A very simple application is the termi-
nation criterion6: a rule could be defined that terminates an algorithm after a given
time.

2. In the clustering-package, interfaces for clustering-algorithms (as defined in Chapter 29
on page 535) are specified. Clustering algorithms can be used to reduce a large set of
solution candidates to a smaller one without loss of generality.

3. One way for optimization algorithms to report their status and statistics to the outside
world would be via events. As already said, we do not treat the optimization process as a
mere mathematical procedure – it will always be part of some application. As such, not
only the final results are interesting but also status messages and statistic evaluations
of its progress. The events package defines interfaces for events that can be generated
and may contain such information.

4. The largest subsystem is the go package, where all components and sub-algorithms for
global optimization are specified. Here you can find the interface specifications that cover
the all the algorithmic and mathematical functionality of global optimization algorithms.

5. In the jobsystem package, we place the specification of the means to run optimization
algorithms. An optimizer may be parallelized or run sequentially and therefore may use
multiple threads. The algorithm itself should be separated from the parallelism issues.
Applying the definitions of the jobsystem package, optimizers may divide their work into
parallelizable pieces which can be executed as jobs. Such jobs are then handled by the job
system, which decides if they should be run in different threads or performed sequentially.
This way, it also possible to manage multiple optimization algorithms in parallel and to
specify which one will be assigned to how many processors. The implementations of the

6 see Section 1.3.4 on page 54
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job system specifications could also perform accounting and performance monitoring of
the work load.

6. The concept of pipes defined in the pipe package is a very mighty approach for realizing
optimization. It does not only allow separating the different components of an optimizer
completely – totally new components, like statistic monitors can also easily be inserted
into a system with minimum changes.

7. The job system enables Sigoa to handle multiple optimization requests at once. Since it is
a plain component interface, these requests may come from anywhere, maybe even from
a web service interface built on top of it. It must somehow be ensured that such requests
do not interfere or even perform harmful or otherwise malicious actions. Therefore, a
security concept is mandatory. In the security package we specify simple interfaces that
build on the Java Security Technology7.

8. The behavior of solution candidates is often simulated in order to determine their ob-
jective values. The simulation package provides interfaces that specify how simulations
can be accessed, made available, and are managed.

9. Stochastic evaluations are a useful tool for optimization algorithms. As already said, the
application using the Sigoa system may regularly need information about the progress,
which normally can only be given in form of some sort of statistical evaluation. This
data may also be used by the optimization algorithms themselves or by adaptation
rules. Furthermore, most the global optimization methods discussed here are randomized
algorithms. They thus need random number generators as introduced in Section 28.9 on
page 526.

7 http://java.sun.com/javase/6/docs/technotes/guides/security [accessed 2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/security
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Examples

But before we are going into detail about the different packages and utilities of the Sigoa
software, we will present some application examples. These give a straightforward insight
into the usage and customization of the Sigoa components which most probably is good
enough to apply them to other problems. A more specific discussion of the Sigoa packages
following after this chapter then rounds up the view on this novel optimization system.

26.1 The 2007 DATA-MINING-CUP

As an application example for genetic algorithms, the 2007 Data-Mining-Cup Contest, has
been introduced in Section 22.1.2 on page 374. We strongly recommend reading this section
first. We there have discussed the basic principles behind the challenge and the structure
of one possible solution to it. Here we will only show how these ideas can be realized easily
using the Sigoa framework.

The objective of the contest is to classify a set of 50 000 data vectors containing 20
features (from which only 17 are relevant) each into one of the three groups A, B, and
N. In order to build classifiers that do so, another 50 000 datasets with already known
classifications are available as training data. Thus, let us start by representing the three
possible classification results using a simple Java enum like in Listing 26.1.

Our approach in Section 22.1.2 was to solve the task using a modified version of Learning
Classifier Systems C. For the contest, a function P (C) denoting the profit that could be
gained with a classifier C was already defined (see Equation 22.1). Thus, we simple strip the
LCSs from their learning capability and directly maximize the profit directly.

26.1.1 The Phenotype

The problem space X was thus composed of mere classifier systems, the phenotypes of a
genetic algorithm. They consist of a set of rules m_rules (the single classifiers) which we can

1 public enum EClasses {

2 /** class A */

3 A,

4 /** class B */

5 B,

6 /** class N */

7 N;

8 }

Listing 26.1: The enum EClasses with the possible DMC 2007 classifications.
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represent as byte arrays containing the conditions and rule outputs m_results (instances of
EClasses).

Listing 26.2 illustrates how the method classify works which classifies a set of 17 rele-
vant features (stored in the array data) into one of the three possible EClasses instances. It
iterates over all the rules in m_rules and checks if rule m_rules[i] fits perfectly according to
the definitions in Table 22.2 on page 378. If so, the corresponding classification m_results[i]

is returned. classify keeps also track on the rule which has the fewest violated conditions
in the variables lec and leci. If no perfectly matching rule could be found, the 1

5 -threshold
mentioned in Section 22.1.2 is checked: if lec <= 3, the classification m_results[leci] be-
longing to the rule with the least violations is returned. Otherwise, the class N represented
by EClasses.N is assigned to the data sample.

So this is basically what a phenotype can look like in Sigoa – you can clearly see that,
except from implementing java.io.Serializable, no further requirements are imposed on its
structure. The method classify is not mandatory, it is will just be part of the evaluation in
this particular optimization problem; other problems may need totally other functionality.

26.1.2 The Genotype and the Embryogeny

The genotype that belongs to the phenotypic individual representations is a variable-length
a bit string. Such genomes have been discussed in Section 3.5 on page 149 extensively. In
Figure 22.4, we have introduced the genotype-phenotype mapping in this particular appli-
cation: since there are four possible conditions and 17 conditions plus three possible classi-
fications (A, B, and N) per rule, we need 17 ∗ 2 + 2 = 36 bits to encode a single classifier
which is the granularity , i. e., the gene size of our genome. A classifier system in turn may
consist of an arbitrary number of such classifiers.

In Sigoa, we can represent variable-length as well as fixed-length bit strings as byte arrays
(byte[]) for which predefined creation, mutation, and crossover operators exist. Therefore,
we do not have to deal with the reproduction operations directly and can concentrate on the
translation of a genotype g ∈ byte[] into a corresponding phenotype which is an instance of
ClassifierSystem. Such translations is called genotype-phenotype mapping (see Section 3.8
on page 155) or artificial embryogeny (discussed in Section 3.8) for which Sigoa offers a core
interface IEmbryogeny (see ?? on page ??) and a reference implementation Embryogeny (see ??
on page ??) along with an extension for bitstrings, BitStringEmbryogeny (see ?? on page ??)
which provides special streams for input and output of structured data from and to bit
strings. We simply need to extend this class by providing (at least) the transformation func-
tion gpm from genotypes to phenotypes and (optionally) vice versa. Listing 26.3 shows this
extension in form of the class ClassifierEmbryogeny. The constant CLASSIFIER_EMBRYOGENY

provides a globally shared instance of this new embryogeny.

26.1.3 The Simulation

So now we need to find out how an evolved classifier system C behaves. Therefore we can
use the provided test datasets or better, only a good share of them while saving the rest
in order to check if our classifier system generalize well. For these training sets, we built a
matrix M(C) where the columns denote the classification results delivered by C and the
rows contain the true classes. For determining the zero-based indices into this matrix we
use the method ordinal() of the EClasses enum, i. e., m2,1 would represent those elements
in class N that were miss-classified into group B – 2799 in the example matrix Mex of
Equation 26.1. From Mex, we can furthermore read that 1087 of the samples belonging to
class B were correctly classified whereas 777 were assigned to class A and 1462 to class N.

Mex(C) =




4062 856 3794
777 1087 1462
5484 2799 29 679


 (26.1)
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1 public class ClassifierSystem extends JavaTextable implements

Serializable {

2 ...

3 private final byte [][] m_rules;

4 private final EClasses [] m_results;

5 ...

6 public ClassifierSystem (final byte [][] rules , final EClasses []

results) {

7 super ();

8 this.m_results = results;

9 this.m_rules = rules; }

10 ...

11 public EClasses classify(final byte[] data) {

12 byte [][] rules;

13 byte[] rule;

14 int i, j, ec , lec , leci;

15

16 rules = this.m_rules;

17 lec = Integer.MAX_VALUE;

18 leci = 0;

19

20 main: for (i = (rules.length - 1); i >= 0; i--) {

21 rule = rules[i];

22 ec = 0;

23 for (j = (rule.length - 1); j >= 0; j--) {

24 switch (rule[j]) {

25 case 0: {

26 if (data[j] != 0)

27 if ((++ec) > 3) continue main;

28 break;

29 }

30 case 1: {

31 if (data[j] < 1) // != 1

32 if ((++ec) > 3) continue main;

33 break;

34 }

35 case 2: {

36 if (data[j] <= 1)// <= 0)

37 if ((++ec) > 3) continue main;

38 break;

39 }

40 }

41 }

42 if (ec <= 0) return this.m_results[i];

43 if (ec < lec) {

44 lec = ec;

45 leci = i;

46 }

47 }

48 if (lec <= 3) return this.m_results[leci];

49 return EClasses.N;

50 }

51 ...

52 }

Listing 26.2: The structure of our DMC 2007 classifier system.
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1 public class ClassifierEmbryogeny extends

BitStringEmbryogeny <ClassifierSystem > {

2 /** the classes */

3 private static final EClasses [] CLASSES = EClasses.values();

4 /** The globally shared instance */

5 public static final IEmbryogeny <byte[], ClassifierSystem >

CLASSIFIER_EMBRYOGENY = new ClassifierEmbryogeny ();

6 ..

7 /** This method is supposed to compute an instance of

8 * the phenotype from an instance of the genotype.

9 * @param genotype The genotype instance to breed a

10 * phenotype from.

11 * @return The phenotype hatched from the genotype. */

12 @Override

13 public ClassifierSystem hatch(final byte[] genotype) {

14 int i, j, c;

15 byte [][] rules;

16 byte[] rule;

17 EClasses [] results;

18 BitStringInputStream bis;

19

20 if (genotype == null)

21 throw new NullPointerException ();

22 c = (( genotype.length * 8) / 36);

23 rules = new byte[c][17];

24 results = new EClasses[c];

25 bis = this.acquireBitStringInputStream ();

26 bis.init(genotype);

27

28 for (i = 0; i < c; i++) {

29 rule = rules[i];

30 for (j = 0; j < 17; j++) {

31 rule[j] = (byte) (bis.readBits (2));

32 }

33 results[i] = (CLASSES[bis.readBits (2) % 3]);

34 }

35 this.releaseBitStringInputStream(bis);

36 return new ClassifierSystem (rules , results);

37 }

38 ...

39 }

Listing 26.3: The embryogeny component of our DMC 2007 contribution.

From such matrices, we can easily compute the profit function P (C) as well as other
features, like how many As, Bs, and Ns were classified incorrectly. What we basically do
here is to simulate the behavior of the classifiers. And for simulations, Sigoa provides the in-
terface ISimulation (see ?? on page ??) and its standard implementation Simulation (see ??
on page ??). This default implementation just needs to be extended so it uses the train-
ing samples, which we load somewhere else (in a class called Datasets), and computes M .
Therefore, overriding the method beginIndividual is sufficient and other changes are not
needed.

Listing 26.4 shows the most important code of the new class ClassificationSimulation.
In order to allow us to publish the new simulation in the simulation manager of the optimiza-
tion job system, we also provide a globally shared factory in form of an ISimulationProvider-
instance with the constant PROVIDER in line 3.
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1 public class ClassificationSimulation extends

Simulation <ClassifierSystem > {

2 /** the shared provider for this simulation */

3 public static final ISimulationProvider PROVIDER = new

SimulationProvider(ClassificationSimulation .class);

4 /** the matrix M(C) */

5 private final int [][] m_classifications;

6 ...

7 public ClassificationSimulation () {

8 super ();

9 this.m_classifications = new int [3][3]; }

10

11 /** Here the matrix M(C) is computed

12 * @param what The classifier C to be simulated. */

13 @Override

14 public void beginIndividual(final ClassifierSystem what)

15 {

16 int i;

17 int [][] x = this.m_classifications;

18 super.beginIndividual(what);

19 for (i = (x.length - 1); i >= 0; i--)

20 Arrays.fill(x[i], 0);

21 for (i = (DATA.length - 1); i >= 0; i--)

22 x[CLASSES[i]. ordinal ()][ what.classify(DATA[i]).ordinal ()]++;

23 }

24 ...

25 /** Compute the profit value P (C). */

26 public int getProfit () {

27 int [][] data = this.m_classifications;

28 return (3 * data [0][0]) + (6 * data [1][1]) - (data [2][0] +

data [2][1] + data [0][1] + data [1][0]);

29 }

30 }

Listing 26.4: The simulation for testing the DMC 2007 classifier system.

26.1.4 The Objective Functions

On the foundation of the new simulation for classifier system, we can define the objective
functions that should guide the evolution. In Section 22.1.2 on page 379 we have introduced
the two most important objective functions: one that minimizes f1(C) = −P (C) and hence,
maximizes the profit, and f2(C) = |C| which minimizes the number of rules in the classifier
system.

All objective functions in Sigoa are instances of the interface IObjectiveFunction (see ??
on page ??). They can be derived from its default implementation ObjectiveFunction (see ??
on page ??) which implements the basic functionality so only the real mathematical compu-
tations need to be added.

In Listing 26.5, we implement f1. Therefore, the method endEvaluation needs to be
overridden. Here we store negated profit into a state record which is used by the optimization
system to compute the objective value and to store it into the individual records later on.

The only remaining question is: How will the optimizer system know that our objective
function needs an instance of ClassificationSimulation and that it has to call its method
beginIndividual beforehand? The answer is relatively simple: In line 3, we have defined an
instance of SimulationProvider for the ClassificationSimulation. This provider will later
be introduced to the optimization job system. It uses ClassificationSimulation.class as
identifier per default. With the method getRequiredSimulationId on line 16, we tell the
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1 public class ProfitObjectiveFunction extends

ObjectiveFunction <ClassifierSystem , ObjectiveState , Serializable ,

ClassificationSimulation > {

2 ...

3 /** This method is called after any simulation/

4 * evaluation is performed. It stores the negated

5 * profit −P (C) into the state -variable - that’s all.*/

6 @Override

7 public void endEvaluation(final ClassifierSystem individual , final

ObjectiveState state , final Serializable staticState , final

ClassificationSimulation simulation) {

8 state.setObjectiveValue(-simulation.getProfit ());

9 }

10 ..

11 /**

12 * Obtain the ID of the required simulator.

13 * @return The ID=class of our simulator */

14 @Override

15 public Serializable getRequiredSimulationId () {

16 return ClassificationSimulation .class;

17 }

18 }

Listing 26.5: The profit objective function f1(C) = −P (C) for the DMC 2007.

1 public class SizeObjectiveFunction extends

ObjectiveFunction <ClassifierSystem , ObjectiveState , Serializable ,

ISimulation <ClassifierSystem >> {

2 /** This method is called after any simulation/

3 * evaluation is performed. It stores the size of

4 * the \ClassS\ |C| into the state -

5 * variable - that’s all. */

6 @Override

7 public void endEvaluation(final ClassifierSystem individual , final

ObjectiveState state , final Serializable staticState , final

ISimulation <ClassifierSystem > simulation) {

8 state.setObjectiveValue(Math.max(individual.getSize (), 3));

9 }

10 }

Listing 26.6: The size objective function f2(C) = |C| for the DMC 2007.

job system that we need a simulation which is made available by an provider with exactly
this ID. Before passing the simulation to our objective function, the job system will call its
beginIndividual method which, in turn, builds the matrix M(C) holding the information
needed for its getProfit method. Now we can query the profit from this simulation.

For the secondary objective function f2 defined in Listing 26.6, we do not need any
simulation. Instead, we directly query the number of rules in the classifier system via the
method getSize. In Listing 26.2, we have omitted this routine for space reasons, it simply
returns m_rules.length. Again, this value is stored into the state record passed in from the
evaluator component of the job system which will then do the rest of the work.



26.1 The 2007 DATA-MINING-CUP 451

26.1.5 The Evolution Process

Now the work is almost done, we just need to start the optimization process. Listing 26.7
presents a main-method which is called on startup of a Java program and does so. There-
fore, we first have to decide which global optimization algorithm should be used and pick
ElitsitEA1, an elitist evolutionary algorithm (per default steady-state) with a population
size of 10 ∗ 1024 and mutation and crossover rates of 0.4 in line 8.

Then we construct an IOptimizationInfo-record with all the information that will guide
the evolution2. Part of this information is how the solution candidates should be evaluated.
For this, we use an instance of Evaluator3 (line 15) which is equipped with a List con-
taining the two new objective functions from 10 and 12. We furthermore tell the system
to perform a pure Pareto-optimization as discussed in Section 1.2.2 on page 31 by passing
the globally shared instance of ParetoComparator4 (line 16) into the info record. We then
define that our embryogeny component should be used to translate the bit string genotypes
into ClassifierSystem phenotypes in line 17. These genotypes are produced by the default
reproduction operators for variable-length bit string genomes5 added in lines 18 to 20. All of
them are created with a granularity of 36 which means that it is ensured that all genotypes
have sizes of multiples of 36 bits and that all crossover operations only occur at such 36 bit
boundaries.

After this is done, we instantiate SimulationManager6 and publish the new simulation that
we have developed in Section 26.1.3 on page 446 by adding its provider to the simulation
manager in line 27. The job system created in line 28 allows the evaluator to access the simu-
lation manager, an instance of the interface ISimulationManager7. The evaluator will then ask
its objective functions which simulations they need – in our case a ClassificationSimulation

– and then query the simulation manager to provide them.
In line 28, we decided to use a multi-processor job system which is capable of trans-

parently parallelizing the optimization process. The different types of job systems which
are instances of the interface IJobSystem specified in ?? on page ?? are discussed in ?? on
page ??. We add our optimizer to the system in line 29 and finally start it in 30. Since we
have added no termination criterion, the system will basically run forever in this example.

In order to get information on its progress, we have provided two special output pipes
(see ?? on page ??) in lines 23 and 24 to the optimizer’s non-prevalence pipe. Through this
pipe, in each generation all non-prevailed (in our case, non-dominated) individuals will be
written and thus, pass our two pipes. In each generation, new text files with information
about them are created. The first one, the IndividualPrinterPipe, uses the directory c and
creates files that start with a c followed by the current generation index. It writes down
the full information about all individuals. From these files, we can later easily reconstruct
the complete individuals and, for instance, integrate them into the real applications. The
second printer pipe, an instance of ObjectivePrinterPipe, stores only the objective values in
a comma-separated-values format. The output files are put into the directories bo and also
start with bo followed by the generation index. Such files are especially useful for getting
a quick overview on how the evolution progresses. Later, they may also read into spread
sheets or graphical tools in order to produce fancy diagrams like Figure 22.5 on page 380.

1 see ?? on page ??
2 IOptimizationInfo is discussed in ?? on page ??, its reference implementation
OptimizationInfo in ?? on page ??.

3 The class Evaluator, discussed in ?? on page ??, is the default implementation of the interface
IEvaluator specified in ?? on page ??.

4 The class ParetoComparator, elaborated on in ?? on page ??, implements the interface
IComparator defined in ?? on page ??.

5 These operations are introduced in ?? on page ?? implement the interfaces ICreator, IMutator,
and ICrossover specified in ?? on page ??.

6 see ?? on page ??
7 see ?? on page ??
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1 public static void main(String [] args) {

2 EA <byte[], ClassifierSystem > opt;

3 IOptimizationInfo <byte[], ClassifierSystem > oi;

4 IJobSystem s;

5 SimulationManager m;

6 List <IObjectiveFunction <ClassifierSystem , ?, ?,

ISimulation <ClassifierSystem >>> l;

7

8 opt = new ElitistEA <byte[], ClassifierSystem >(10 * 1024, 0.4d,

0.4d);

9

10 l = new ArrayList <IObjectiveFunction <ClassifierSystem , ?, ?,

ISimulation <ClassifierSystem >>>();

11 l.add(new ProfitObjectiveFunction ());

12 l.add(new SizeObjectiveFunction ());

13

14 oi = new OptimizationInfo <byte[], ClassifierSystem >(

15 new Evaluator <ClassifierSystem >(l),

16 ParetoComparator .PARETO_COMPARATOR ,

17 ClassifierEmbryogeny.CLASSIFIER_EMBRYOGENY ,

18 new VariableLengthBitStringCreator (36),

19 new VariableLengthBitStringMutator (36),

20 new VariableLengthBitStringNPointCrossover (36),

21 null);

22

23 opt.addNonPrevailedPipe (new IndividualPrinterPipe <byte[],

ClassifierSystem >(new FileTextWriterProvider(new

File("c"),"c"), false));

24 opt.addNonPrevailedPipe (new ObjectivePrinterPipe <byte[],

ClassifierSystem >(new FileTextWriterProvider(new File("bo"),

"bo"), false));

25

26 m = new SimulationManager ();

27 m.addProvider(ClassificationSimulation .PROVIDER);

28 s = new MultiProcessorJobSystem (m);

29 s.executeOptimization (opt , new JobInfo <byte[],

ClassifierSystem >(oi));

30 s.start ();

31 }

Listing 26.7: A main method that runs the evolution for the 2007 DMC.
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Set Theory

Set theory1 [550, 880, 1967] is an important part of the mathematical theory. Numerous
other disciplines like algebra, analysis and topology are based up on it. Since set theory
(and the topics to follow) is not the topic of this book but a mere prerequisite, this chapter
(and the ones to follow) will just briefly introduce it. We make heavy use of wild definitions
and in some cases even use roughly cut stuff short. More information on the topics discussed
can be retrieved from the literature references.

Set theory can be divided into näıve set theory2 and axiomatic set theory3. The first
approach, the näıve set theory, is inconsistent and therefore not regarded in this book.

Definition 27.1 (Set). A set is a collection of objects considered as a whole4. The objects
of a set are called elements or members. They can be anything, from numbers and vectors,
to complex data structures, algorithms, or even other sets. Sets are conventionally denoted
with capital letters, A, B, C, etc. while their elements are usually referred to with small
letters a, b, c.

27.1 Set Membership

The expression a ∈ A means that the element a is a member of the set A while y 6∈ A means
that y is not a member of A. There are three common forms to define sets:

1. With their elements in braces: A = {1, 2, 3} defines a set A containing the three elements
1, 2, and 3. {1, 1, 2, 3} = {1, 2, 3} since the curly braces only denote set membership.

2. The same set can be specified using logical operators to describe its elements: ∀b ∈ N :
(b ≥ 1) ∧ (b < 4)⇔ b ∈ B.

3. A shortcut for the previous form is to denote the logical expression in braces, like C =
{(c ≥ 1) ∧ (c < 4), c ∈ N}.
The cardinality of a set A is written as |A| and stands for the count of elements in the

set.

27.2 Relations between Sets

Two sets A and B are said to be equal, written A = B, if they have the same members.
They are not equal (A 6= B) if either a member of A is not an element of B or an element

1 http://en.wikipedia.org/wiki/Set_theory [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Naive_set_theory [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Axiomatic_set_theory [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Set_%28mathematics%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Naive_set_theory
http://en.wikipedia.org/wiki/Axiomatic_set_theory
http://en.wikipedia.org/wiki/Set_%28mathematics%29
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of B is not a member of A. If all elements of the set A are also elements of the set B, A
is called subset of B and B is the superset of A. We write A ⊂ B if A is a (true) subset of
but not equal to B. A ⊆ B means the A is a subset of B and may be equal to B. If A is no
subset of but may be equal to B, A 6⊂ B is written. A 6⊆ B means that A is neither a subset
of nor equal to B.

A = B ≡ x ∈ A⇔ x ∈ B (27.1)

A 6= B ≡ (∃x : x ∈ A ∧ x 6∈ B) ∨ (∃y : y ∈ B ∧ y 6∈ A) (27.2)

A ⊆ B ≡ x ∈ A⇒ x ∈ B (27.3)

A ⊂ B ≡ A ⊆ B ∧ ∃y : y ∈ B ∧ y 6∈ A (27.4)

A 6⊆ B ≡ ∃x : x ∈ A ∧ x 6∈ B (27.5)

A 6⊂ B ≡ (A = B) ∨ (∃x : x ∈ A ∧ x 6∈ B) (27.6)

27.3 Special Sets

Special sets used in the context of this book are

1. The empty set ∅ = {} contains no elements (|∅| = 0).
2. The natural numbers5 N include all whole numbers bigger than 0. (N = {1, 2, 3, ..})
3. The natural numbers including 0 (N0) include all whole numbers bigger than or equal

to 0. (N0 = {1, 2, 3, ..})
4. Z is the set of all integers, positive and negative. (Z = {..,−2,−1, 0, 1, 2, ..})
5. The rational numbers6 Q are defined as Q =

{
a
b

: a, b ∈ Z, b 6= 0
}

.

6. All real numbers7 R include all rational and rational numbers (such as
√

2).
7. R+ denotes the positive real numbers including 0: (R+ = [0,∞)).
8. C is the set of complex numbers8. When needed in the context of this book, we abbreviate

the immaginary unit with i, and the real and imaginary parts of a complex number z
with Rez and Imz.

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C (27.7)

N ⊂ N0 ⊂ R+ ⊂ R ⊂ C (27.8)

For these numerical sets, special subsets, so called intervals, can be specified. [1, 5) is a
set which contains all the numbers starting from (including) 1 up to (exclusively) 5. (1, 5]
on the other hand contains all numbers bigger than 1 and up to inclusively 5. In order to
avoid ambiguities, such sets will always used in a context where it is clear if the numbers in
the set are natural or real.

27.4 Operations on Sets

Let us now define the possible unary and binary operations on sets, some of which are
illustrated in Figure 27.1.

5 http://en.wikipedia.org/wiki/Natural_numbers [accessed 2008-01-28]

6 http://en.wikipedia.org/wiki/Rational_number [accessed 2008-01-28]

7 http://en.wikipedia.org/wiki/Real_numbers [accessed 2008-01-28]

8 http://en.wikipedia.org/wiki/Complex_number [accessed 2008-01-29]

http://en.wikipedia.org/wiki/Natural_numbers
http://en.wikipedia.org/wiki/Rational_number
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Complex_number
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A B

A BÈ

A BÇ

A

B

A

B A

Figure 27.1: Set operations performed on sets A and B inside a set A

Definition 27.2 (Set Union). The union9 C of two sets A and B is written as A∪B and
contains all the objects that are element of at least one of the sets.

C = A ∪B ⇔ ((c ∈ A) ∨ (c ∈ B)⇔ (c ∈ C)) (27.9)

A ∪B = B ∪A (27.10)

A ∪ ∅ = A (27.11)

A ∪A = A (27.12)

A ⊆ A ∪B (27.13)

Definition 27.3 (Set Intersection). The intersection10 D of two sets A and B, denoted
by A∩B, contains all the objects that are elements of both of the sets. If A∩B = ∅, meaning
that A and B have no elements in common, they are called disjoint.

D = A ∩B ⇔ ((d ∈ A) ∧ (d ∈ B)⇔ (d ∈ D)) (27.14)

A ∩B = B ∩A (27.15)

A ∩ ∅ = ∅ (27.16)

A ∩A = A (27.17)

A ∩B ⊆ A (27.18)

Definition 27.4 (Set Difference). The difference E of two sets A and B, A \B, contains
the objects that are element of A but not of B.

E = A \B ⇔ ((e ∈ A) ∧ (e 6∈ B)⇔ (e ∈ E)) (27.19)

A \ ∅ = A (27.20)

∅ \A = ∅ (27.21)

A \A = ∅ (27.22)

A \B ⊆ A (27.23)

9 http://en.wikipedia.org/wiki/Union_%28set_theory%29 [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Intersection_%28set_theory%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29


458 27 Set Theory

Definition 27.5 (Set Complement). The complementary set A of the set A in a set A
includes all the elements which are in A but not element of A:

A ⊆ A⇒ A = A \A (27.24)

Definition 27.6 (Cartesian Product). The Cartesian product11 P of two sets A and B,
denoted P = A×B is the set of all ordered pairs (a, b) whose first component is an element
from A and the second is an element of B.

P = A×B ⇔ P = {(a, b) : a ∈ A, b ∈ B} (27.25)

An = A×A× ..×A︸ ︷︷ ︸
n times

(27.26)

Definition 27.7 (Countable Set). A set S is called countable12 if there exists an injective
function13 ∃f : S 7→ N.

Definition 27.8 (Uncountable Set). A set is uncountable if it is not countable, i. e., no
such function exists for the set. N, Z, and Q are countable, R and R+are not.

Definition 27.9 (Power Set). The power set14 P(A) of the set A is the set of all subsets
of A.

∀p ∈ P(A)⇔ p ⊆ A (27.27)

27.5 Tuples

Definition 27.10 (Type). A type is a set of values that a variable, constant, function, or
similar entity may take on.

We can, for instance, specify the type T = {1, 2, 3}. A variable x which is an instance of
this type then can take on the values 1, 2, or 3.

Definition 27.11 (Tuple). A tuple15 is an ordered, finite sequence of elements, where each
element is an instance of a certain type.

To each position in i a tuple t, a type Ti is assigned. The element t[i] at a position i must
then be an element of Ti. Other than sets, tuples may contain the same element twice. Since
every item of a tuple may be of a different type, (Monday, 23, {a, b, c}) is a valid tuple.

In the context of this book, we define tuples with parenthesis like (a, b, c) whereas sets
are specified using braces {a, b, c}.

Definition 27.12 (Tuple Type). To formalize this relation, we define the tuple type T .
T specifies the basic sets for the elements of its tuples. If a tuple t meets the constraints
imposed to its values by T , we can write t ∈ T which means that the tuple t is an instance
of T .

T = (T1, T2, ..Tn) , n ∈ N (27.28)

t = (t1, t2, ..tn) ∈ T ⇔ ti ∈ Ti ∀0 ≤ i < n ∧ len(t) = len(T ) (27.29)

11 http://en.wikipedia.org/wiki/Cartesian_product [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/Countable_set [accessed 2007-07-03]

13 see definition of function on page 462
14 http://en.wikipedia.org/wiki/Axiom_of_power_set [accessed 2007-07-03]

15 http://en.wikipedia.org/wiki/Tuple [accessed 2007-07-03]
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27.6 Lists

Definition 27.13 (List). Lists16 are abstract data types which can be regarded as special
tuples. They are sequences where every item is of the same type.

Other than our discussions on set theory, the following text about the data structure list
is strictly local to this book and not to be understood as a general mathematical theory.
All the functions and operations defined on lists in this book are only given in order to
allow for a clear and well-defined notation in the other parts of the book, when specifying
optimization algorithms, for instance. They are not founded on related work by any other
scientist.

We introduce functions that will add elements to or remove elements from lists; that sort
lists or search within them. Like tuples, lists can be defined using parenthesis in this book.
The single elements of a list are accessed by their index written in brackets ((a, b, c) [1] = b)
where the first element has the index 0 and the last element has the index n− 1 (while n is
the count of elements in the list: n = len((a, b, c)) = 3). The empty list is abbreviated with
().

Definition 27.14 (createList). The l = createList(n, q) method creates a new list l of the
length n filled with the item q.

l = createList(n, q)⇔ len(l) = n ∧ ∀0 ≤ i < n⇒ l[i] = q (27.30)

Definition 27.15 (insertListItem). The function m = insertListItem(l, i, q) creates a new
list m by inserting one element q in a list l at the index 0 ≤ i ≤ len(l). By doing so, it shifts
all elements located at index i and above to the right by one position.

m = insertListItem(l, i, q)⇔ len(m) = len(l) + 1 ∧m[i] = q ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j] ∧
∀j : i ≤ j < len(l)⇒ m[j+1] = l[j] (27.31)

Definition 27.16 (addListItem). The addListItem function is a shortcut for inserting one
item at the end of a list:

addListItem(l, q) ≡ insertListItem(l, len(l) , q) (27.32)

Definition 27.17 (deleteListItem). The function m = deleteListItem(l, i) creates a new
list m by removing the element at index 0 ≤ i < len(l) from the list l (len(l) ≥ i+ 1).

m = deleteListItem(l, i)⇔ len(m) = len(l)− 1 ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j]

∀j : i < j < len(l)⇒ m[j−1] = l[j] (27.33)

Definition 27.18 (deleteListRange). The method m = deleteListRange(l, i, c) creates a
new list m by removing c elements beginning at index 0 ≤ i < len(l) from the list l (len(l) ≥
i+ c).

m = deleteListRange(l, i, c)⇔ len(m) = len(l)− c ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j] ∧
∀j : i+ c ≤ j < len(l)⇒ m[j−c] = l[j] (27.34)

Definition 27.19 (appendList). The function appendList(l1, l2) is a shortcut for adding
all the elements of a list l2 to a list l1. We define it recursively as:

appendList(l1, l2) ≡
{

l1 if len(l2) = 0
appendList(addListItem(l1, l2[0]) ,deleteListItem(l2, 0)) otherwise

(27.35)

16 http://en.wikipedia.org/wiki/List_%28computing%29 [accessed 2007-07-03]
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Definition 27.20 (countOccurences). The function countOccurences(x, l) returns the
number of occurrences of the element x in the list l.

countOccurences(x, l) = |{i ∈ 0 . . . len(l)− 1 : l[i] = x}| (27.36)

Definition 27.21 (subList). The method subList(l, i, c) extracts c elements from the list l
beginning at index i and returns them as a new list.

subList(l, i, s) ≡ deleteListRange(deleteListRange(l, 0, i) , c, |l| − i− c) (27.37)

Definition 27.22 (Sorting Lists). It is often useful to have sorted lists17. Thus we define
the functions S = sortLista(U, cmp) and S = sortListd(U, cmp) which sort a list U in
ascending or descending order using a comparator function cmp(u1, u2).

S = sortLista(U, cmp) (27.38)

∀u ∈ U ∃i ∈ [0, len(U)− 1] : S[i] = u (27.39)

len(S) = len(U) (27.40)

∀0 ≤ i < len(U)− 1 ⇒ cmp(S[i], S[i+1],≤) 0 (27.41)

For S = sortListd(U, cmp), only Equation 27.41 changes, the rest stays valid:

S = sortListd(U, s) (27.42)

∀0 ≤ i < len(U)− 1⇒ cmp(S[i], S[i+1],≥) 0 (27.43)

The concept of comparator functions has been introduced in Definition 1.15 on page 38.
cmp(u1, u2) returns a negative value if u1 is smaller than u2, a positive number if u1 is greater
than u2, and 0 if both are equal. Comparator functions are very versatile, they from the
foundation of the sorting mechanisms of the Java framework [838, 837], for instance. In global
optimization, they are perfectly suited to represent the Pareto dominance or prevalence
relations introduced in Section 1.2.2 on page 31 and Section 1.2.4. Sorting according to a
specific function f of only one parameter can easily be performed by building the comparator
cmp(u1, u2) ≡ (f(u1)− f(u2)). Thus, we will furthermore synonymously use the sorting
predicate also with unary functions f .

sortList(U, f) ≡ sortList(U, cmp(u1, u2) ≡ (f(u1)− f(u2))) (27.44)

A list U can be sorted in O(len(U) log len(U)) time complexity. For concrete examples
of sorting algorithms, see [1163, 446, 1850].

Definition 27.23 (Searching in Unsorted Lists). Searching an element u in an unsorted
list U means walking through it until either the element is found or the end of the whole
list has been scanned, which corresponds to complexity O(len(U)).

searchItemu(u,U) =

{
i : U [i] = u if u ∈ U

−1 otherwise
(27.45)

Definition 27.24 (Searching in Sorted Lists). Searching an element s in sorted list S
means to perform a binary search18 returning the index of the element if it is contained in S.
If s 6∈ S, a negative number is returned indicating the position where the element could be
inserted into the list without violating its order. The function searchItemas(s, S, )searches in
an ascending sorted list, searchItemds(s, S, )searches in a descending sorted list. Searching
in a sorted list is done in O(log len(S)) time. For concrete algorithm examples, again see
[1163, 446, 1850].

17 http://en.wikipedia.org/wiki/Sorting_algorithm [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Binary_search [accessed 2007-07-03]
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searchItemas(s, S) =





i : S[i] = s if s ∈ S
(−i− 1) : (∀j ≥ 0, j < i⇒ S[j] ≤ s)∧

(∀j < len(S) , j ≥ i⇒ S[j] > s)
otherwise (27.46)

searchItemds(s, S) =





i : S[i] = s if s ∈ S
(−i− 1) : (∀j ≥ 0, j < i⇒ S[j] ≥ s)∧

(∀j < len(S) , j ≥ i⇒ S[j] < s)
otherwise (27.47)

Definition 27.25 (removeListItem). The function removeListItem(l, q) finds one occur-
rence of an element q in a list l by using the appropriate search algorithm and deletes it
(returning a new list m).

m = removeListItem(l, q)⇔
{

l if searchItem(q, l) < 0
deleteListItem(l, searchItem(q, l)) otherwise

(27.48)

We can further define transformations between sets and lists which will implicitly be used
when needed in this book. It should be noted that “setToList” is not the inverse function of
listToSet.

B = setToList(set A)⇒ ∀a ∈ A ∃i : B[i] = a ∧
∀i ∈ [0, len(B)− 1]⇒ B[i] ∈ A ∧
len(setToList(A)) = |A| (27.49)

A = listToSet(list B)⇒ ∀i ∈ [0, len(B)− 1]⇒ B[i] ∈ A ∧
∀a ∈ A ∃i ∈ [0..len(B)− 1] : B[i] = a ∧
|listToSet(B) | ≤ len(B) (27.50)

27.7 Binary Relations

Definition 27.26 (Binary Relation). A binary19 relation20 R is defined as an ordered
triple (A,B, P ) where A and B are arbitrary sets, and P is a subset of the Cartesian product
A× B (see Equation 27.25). The sets A and B are called the domain and codomain of the
relation and P is called its graph. The statement (a, b) ∈ P : a ∈ A ∧ b ∈ B is read “a
is R-related to b” and is written as R(a, b). The order of the elements in each pair of P is
important: If a 6= b, then R(a, b) and R(b, a) both can be true or false independently of
each other.

Some types and possible properties of binary relations are listed below and illustrated in
Figure 27.2. A binary relation can be [673]:

1. Left-total if
∀a ∈ A ∃b ∈ B : R(a, b) (27.51)

2. Surjective21 or right-total if

∀b ∈ B ∃a ∈ A : R(a, b) (27.52)

19 http://en.wikipedia.org/wiki/Binary_relation [accessed 2007-07-03]

20 http://en.wikipedia.org/wiki/Relation_%28mathematics%29 [accessed 2007-07-03]

21 http://en.wikipedia.org/wiki/Surjective [accessed 2007-07-03]
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left-total
surjective
non-injective
functional
non-bijective

A B

left-total
surjective
injective
functional
bijective

A B

left-total
surjective
injective
non-functional
non-bijective

A B

left-total
non-surjective
injective
functional
non-bijective
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not left-total
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non-bijective
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non-injective
functional
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non-functional
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A B

Figure 27.2: Properties of a binary relation R with domain A and codomain B.

3. Injective22 if
∀a1, a2 ∈ A, b ∈ B : R(a1, b) ∧R(a2, b)⇒ a1 = a2 (27.53)

4. Functional if
∀a ∈ A, b1, b2 ∈ B : R(a, b1) ∧R(a, b2)⇒ b1 = b2 (27.54)

5. Bijective23 if it is left-total, right-total and functional.
6. Transititve24 if

∀a ∈ A, ∀b ∈ B, ∀c ∈ A ∩B : R(a, c) ∧R(c, b)⇒ R(a, b) (27.55)

27.7.1 Functions

Definition 27.27 (Function). A function f is a binary relation with the property that
for an element x of the domain25 X there is no more than one element y in the codomain
Y such that x is related to y. This uniquely determined element y is denoted by f(x). In
other words, a function is a functional binary relation and we can write:

∀x ∈ X, y1, y2 ∈ Y : f(x, y1) ∧ f(x, y2)⇒ y1 = y2 (27.56)

A function maps each element of X to one element in Y . The domain X is the set of
possible input values of f and the codomain Y is the set its possible outputs. The set of all
actual outputs {f(x) : x ∈ X} is called range. This distinction between range and codomain
can be made obvious with a small example. The sine function can be defined as a mapping
from the real numbers to the real numbers sin : R 7→ R, making R its codomain. Its actual
range however is just the real interval [−1, 1].

22 http://en.wikipedia.org/wiki/Injective [accessed 2007-07-03]

23 http://en.wikipedia.org/wiki/Bijective [accessed 2007-07-03]

24 http://en.wikipedia.org/wiki/Transitive_relation [accessed 2007-07-03]

25 http://en.wikipedia.org/wiki/Domain_%28mathematics%29 [accessed 2007-07-03]
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Monotonicity

Real functions are monotone, i. e., have the property of monotonicity26, if they preserve a
given order27.

Definition 27.28 (Monotonically Increasing). A function f : X 7→ Y that maps a
subset of the real numbers X ⊆ R to a subset of the real numbers Y ⊆ R is called monotonic,
monotonically increasing, increasing, or non-decreasing, if and only if Equation 27.57 holds.

∀x1 < x2, x1, x2 ∈ X ⇒ f(x1) ≤ f(x2) (27.57)

Definition 27.29 (Monotonically Decreasing). A function f : X 7→ Y that maps a sub-
set of the real numbers X ⊆ R to a subset of the real numbers Y ⊆ R is called monotonically
decreasing, decreasing, or non-increasing, if and only if Equation 27.58 holds.

∀x1 < x2, x1, x2 ∈ X ⇒ f(x1) ≥ f(x2) (27.58)

27.7.2 Order Relations

All of us have learned the meaning and the importance of order since the earliest years in
school. The alphabet is ordered, the natural numbers are ordered, the marks on our school
reports are ordered, and so on. Matter of fact, we come into contact with orders even way
before entering school by learning to distinguish things according to their size, for instance.

Order relations28 are another type of binary relations which is used to express the order
amongst the elements of a set A. Since order relations are imposed on single sets, both their
domain and their codomain are the same (A, in this case). For such relations, we can define
an additional number of properties which can be used to characterize and distinguish the
different types of order relations:

1. Antisymmetrie:
R(a1, a2) ∧R(a2, a1)⇒ a1 = a2 ∀a1, a2 ∈ A (27.59)

2. Asymmetrie
R(a1, a2)⇒ ¬R(a2, a1) ∀a1, a2 ∈ A (27.60)

3. Reflexivenss
R(a, a) ∀a ∈ A (27.61)

4. Irreflexivenss
6 ∃a ∈ A : R(a, a) (27.62)

All order relations are transitive29, and either antisymmetric or symmetric and either
reflexive or irreflexive:

Definition 27.30 (Partial Order). A binary relation R defines a (non-strict, reflexive)
partial order if and only if it is reflexive, antisymmetric, and transitive.

The ≤ and ≥ operators, for instance, represent non-strict partial orders on the set of the
complex numbers C. Partial orders that correspond to the > and < comparators are called
strict. The Pareto dominance relation introduced in Definition 1.13 on page 31 is another
example for such a strict partial order.

Definition 27.31 (Strict Partial Order). A binary relation R defines a strict (or irreflex-
ive) partial order if it is irreflexive, asymmetric, and transitive.

26 http://en.wikipedia.org/wiki/Monotonic_function [accessed 2007-08-08]

27 Order relations are discussed in Section 27.7.2.
28 http://en.wikipedia.org/wiki/Order_relation [accessed 2007-07-03]

29 See Equation 27.55 on the facing page for the definition of transitivity.
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Definition 27.32 (Total Order). A total order30 (or linear order, simple order) R on the
set A is a partial order which is complete/total.

R(a1, a2) ∨R(a2, a1) ∀a1, a2 ∈ A (27.63)

The real numbers R for example are totally ordered whereas on the set of complex
numbers C, only (strict or reflexive) partial (non-total) orders can be defined because it is
continuous in two dimensions.

27.7.3 Equivalence Relations

Another important class of relations are equivalence relations31 [2093, 2141] which are often
abbreviated with ≡ or ∼, i. e., a1 ≡ a2 and a1 ∼ a2 mean R(a1, a2) for the equivalence
relation R imposed on the set A and a1, a2 ∈ A. Unlike order relations, equivalence relations
are symmetric, i. e.,

R(a1, a2)⇒ R(a2, a1) ∀a1, a2 ∈ A (27.64)

Definition 27.33 (Equivalence Relation). The binary relation R defines an equivalence
relation on the set A if and only if it is reflexive, symmetric, and transitive.

Definition 27.34 (Equivalence Class). If an equivalence relation R is defined on a set A,
the subset A′ ⊆ A of A is an equivalence class32 if and only if ∀a1, a2 ∈ A′ ⇒ R(a1, a2) (a1 ∼
a2).

30 http://en.wikipedia.org/wiki/Total_order [accessed 2007-07-03]

31 http://en.wikipedia.org/wiki/Equivalence_relation [accessed 2007-07-28]

32 http://en.wikipedia.org/wiki/Equivalence_class [accessed 2007-07-28]
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Stochastic Theory and Statistics

In this chapter we give a rough introduction into stochastic theory1 [1720, 1264, 1043, 1044],
which subsumes

1. probability2 theory3, the mathematical study of phenomena characterized by random-
ness or uncertainty, and

2. statistics4, the art of collecting, analyzing, interpreting, and presenting data.

28.1 General Information

28.1.1 Books

Some books about (or including significant information about) Stochastic Theory and Statis-
tics are:

Kallenberg [1084]: Foundations of modern probability
Rényi [1720]: Probability Theory
Tijms [2041]: Understanding Probability: Chance Rules in Everyday Life
Feller [649]: An Introduction to Probability Theory and Its Applications
Kallenberg [1085]: Probabilistic symmetries and invariance principles
Jaynes [1043, 1044]: Probability Theory: The Logic of Science
Lawler [1264]: Introduction to Stochastic Processes
Casella and Berger [350]: Statistical Inference
Lowry [1310]: Concepts and Applications of Inferential Statistics
Lowry [1313]: VassarStats: Web Site for Statistical Computing
Siegel and Castellan Jr. [1878]: Nonparametric Statistics for The Behavioral Sciences
Sheskin [1866]: Handbook of Parametric and Nonparametric Statistical Procedures
Bhattacharyya and Johnson [205]: Statistical Concepts and Methods
Bortz, Lienert, and Boehnke [252]: Verteilungsfreie Methoden in der Biostatistik
Polasek [1652]: Schließende Statistik – Einführung in die Schätz- und Testtheorie für
Wirtschaftswissenschaftler
Edgington [619]: Randomization tests
Harlow, Mulaik, and Steiger [898]: What If There Were No Significance Tests?
Dallal [478]: The Little Handbook of Statistical Practice

1 http://en.wikipedia.org/wiki/Stochastic [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Probability [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Probability_theory [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Statistics [accessed 2007-07-03]
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Heath [912]: An introduction to experimental design and statistics for biology
Kanji [1091]: 100 Statistical Tests
Neyman and Pearson [1523]: Joint Statistical Papers
Lindley and Scott [1290]: New Cambridge Statistical Tables
Rice [1727]: Mathematical Statistics and Data Analysis
Panik [1607]: Advanced Statistics from an Elementary Point of View
Kay [1105]: Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory
Box, Hunter, and Hunter [263]: Statistics for Experimenters: Design, Innovation, and Dis-
covery
Fisher [682]: The design of experiments
Cox and Reid [460]: The Theory of the Design of Experiments
Fisher [684]: Statistical methods and scientific inference
Fisher [680]: Statistical Methods for Research Workers
Casella and Berger [351]: Statistical Inference
Robert and Casella [1744]: Monte Carlo Statistical Methods
Liu [1294]: Monte Carlo Strategies in Scientific Computing
Yates [2288]: The Design and Analysis of Factorial Experiments
Snyder and Miller [1914]: Random Point Processes in Time and Space
Devroye [556]: Non-Uniform Random Variate Generation
Poor [1668]: An Introduction to Signal Detection and Estimation
Van Trees [2100]: Detection, Estimation, and Modulation Theory, Part I
Simon [1882]: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
Kleinbaum, Kupper, and Muller [1150]: Applied regression analysis and other multivariable
methods
Draper and Smith [595]: Applied regression analysis
Fox [739]: Applied Regression Analysis, Linear Models, and Related Methods
Banks [134]: Handbook of Simulation: Principles, Methodology, Advances, Applications, and
Practice
Mackeown [1339]: Stochastic Simulation in Physics
Osborne and Rubinstein [1587]: A Course in Game Theory
Fudenberg and Tirole [752]: Game Theory
Kindermann and Snell [1139]: Markov Random Fields and Their Applications
Bennett [178]: The Collected Papers of R.A. Fisher

28.2 Probability

Probability theory is used to determine the likeliness of the occurrence of an event under
ideal mathematical conditions. [1084, 1085]

Definition 28.1 (Random Experiment). Random experiments can be repeated arbi-
trary often, their results cannot be predicted.

Definition 28.2 (Elementary Event). The possible outcomes of random situations are
called elementary events or samples ω.

Definition 28.3 (Sample Space). The set of all possible outcomes (elementary events,
samples) of a random situation is the sample space Ω = {ωi : i ∈ 1..N = |Ω|}.

When throwing dice5, for example, the sample space will be Ω = ω1, ω2, ω3, ω4, ω5, ω6

whereas ωi means that the number i was thrown.

Definition 28.4 (Random Event). A random event A is a subset of the sample space Ω
(A ⊆ Ω). If ω ∈ A occurs, then A is occurs too.

5 Throwing a dice is discussed as example for stochastic extensively in Section 28.6 on page 497.
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Definition 28.5 (Certain Event). The certain event is the random event will always
occur in each repetition of a random experiment. Therefore, it is equal to the whole sample
space Ω.

Definition 28.6 (Impossible Event). The impossible event will never occur in any rep-
etition of a random experiment, it is defined as ∅.

Definition 28.7 (Conflicting Events). Two conflicting events A1 and A2 can never occur
together in a random experiment. Therefore, A1 ∩A2 = ∅.

28.2.1 Probabily as defined by Bernoulli (1713)

In some idealized situations, like throwing ideal coins or ideal dice, all elementary events of
the sample space have the same probability de Laplace [523].

P (ω) =
1

|Ω| ∀ω ∈ Ω (28.1)

Equation 28.1 is also called the Laplace-assumption. If it holds, the probability of an
event A can be defined as:

P (A) =
number of possible events in favor of A

number of possible events
=
|A|
|Ω| (28.2)

For many random experiments of this type, we can use combinatorical6 approaches in
order to determine the number of possible outcomes. Therefore, we want to shortly outline
the mathematical concepts of factorial numbers, combinations, and permutations.7

Definition 28.8 (Factorial). The factorial8 n! of a number n ∈ N0 is the product of n
and all natural numbers smaller than it. It is a specialization of the Gamma function for
positive integer numbers, see Section 28.10.1 on page 532.

n! =

n∏

i=1

i (28.3)

0! = 1 (28.4)

In combinatorial mathematics9, we often want to know in how many ways we can ar-
range n ∈ N elements from a set Ω with M = |Ω| ≥ n elements. We can distinguish between
combinations, where the order of the elements in the arrangement plays no role, and permu-
tations, where it is important. (a, b, c) and (c, b, a), for instance, denote the same combination
but different permutations of the elements {a, b, c}. We furthermore distinguish between ar-
rangements where each element of Ω can occurred at most once (without repetition) and
arrangements where the same elements may occur multiple time (with repetition).

Combinations

The number of possible combinations10 C(M,n) of n ∈ N elements out of a set Ω with
M = |Ω| ≥ n elements without repetition is

6 http://en.wikipedia.org/wiki/Combinatorics [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Combinations_and_permutations [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Factorial [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Combinatorics [accessed 2008-01-31]

10 http://en.wikipedia.org/wiki/Combination [accessed 2008-01-31]
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C(M,n) =

(
M

n

)
=

M !

n! (M − n)!
(28.5)

(
M

n

)
=
M

n
∗ M − 1

n− 1
∗ M − 2

n− 2
∗ .. ∗ M − n+ 1

1
(28.6)

C(M + 1, n) = C(M,n) + C(M,n− 1) =

(
M + 1

n

)
=

(
M

n

)
+

(
M

n− 1

)
(28.7)

If the elements of Ω may repeatedly occur in the arrangements, the number of possible
combinations becomes

M + n− 1!

n! (M − 1)!
=

(
M + n− 1

n

)
=

(
M + n− 1

n− 1

)
= C(M + n− 1, n) = C(M + n− 1, n− 1)

(28.8)

Permutations

The number of possible permutations11 Perm(M,n) of n ∈ N elements out of a set Ω with
M = |Ω| ≥ n elements without repetition is

Perm(M,n) = (M)n =
M !

(M − n)!
(28.9)

If an element from Ω can occur more than once in the arrangements, the number of possible
permutations is

Mn (28.10)

28.2.2 The Limiting Frequency Theory of von Mises

If we repeat a random experiment multiple times, the number of occurrences of a certain
event should somehow reflect its probability. The more often we perform the experiment,
the more reliable will the estimations of the event probability become. We can express this
relation using the notation of frequency.

Definition 28.9 (Absolute Frequency). The number H(A,n) denoting how often an
event A occurred during n repetitions of a random experiment is its absolute frequency12.

Definition 28.10 (Relative Frequency). The relative frequency h(A,n) of an event A
is its absolute frequency normalized to the total number of experiments n. The relative
frequency has the following properties:

h(A,n) =
H(A,n)

n
(28.11)

0 ≤ h(A,n) ≤ 1 (28.12)

h(Ω,n) = 1 ∀n ∈ N (28.13)

A ∩B = ∅ ⇒ h(A ∪B,n) =
H(A,n) +H(B,n)

n
= h(A,n) + h(B,n) (28.14)

According to von Mises [2120], the (statistical) probability P (A) of an event A computing
the limit of its relative frequency h(A,n) as n approaching infinity. This is the limit of the
quotient of the number of elementary events favoring A and the number of all possible
elementary events for infinite many repetitions. [2120, 2121]

P (A) = lim
n→∞

h(A,n) = lim
n→∞

nA

n
(28.15)

11 http://en.wikipedia.org/wiki/Permutations [accessed 2008-01-31]

12 http://en.wikipedia.org/wiki/Frequency_%28statistics%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Permutations
http://en.wikipedia.org/wiki/Frequency_%28statistics%29


28.2 Probability 469

28.2.3 The Axioms of Kolmogorov

Definition 28.11 (σ-algebra). A subset S of the power set P(Ω) is called σ-algebra13, if
the following axioms hold:

Ω ∈ S (28.16)

∅ ∈ S (28.17)

A ∈ S ⇔ A ∈ S (28.18)

A ∈ S ∧B ∈ S ⇒ (A ∪B) ∈ S (28.19)

From these axioms others can be deduced, for example:

A ∈ S ∧B ∈ S ⇒ A ∈ S ∧B ∈ S (28.20)

⇒ A ∪B ∈ S
⇒ A ∪B ∈ S
⇒ A ∩B ∈ S

(28.21)

A ∈ S ∧B ∈ S ⇒ (A ∩B) ∈ S (28.22)

Definition 28.12 (Probability Space). A probability space (or random experiment) is
defined by the triple (Ω,S, P ) whereas

1. Ω is the sample space, a set of elementary events,
2. S is a σ-algebra defined on Ω, and
3. Pω defines a probability measure14 that determines the probability of occurrence for

each event ω ∈ Ω. (Kolmogorov [1169] axioms15)

Definition 28.13 (Probability). A mapping P which maps a real number to each el-
ementary event ω ∈ Ω is called probability measure if and only if the σ-algebra S on Ω
holds:

∀A ∈ S ⇒ 0 ≤ P (A) ≤ 1 (28.23)

P (Ω) = 1 (28.24)

∀disjoint Ai ∈ S ⇒ P (A) = P

(
⋃

∀i

Ai

)
=
∑

∀i

P (Ai) (28.25)

From these axioms, it can be deduced that:

P (∅) = 0 (28.26)

P (A) = 1− P
(
A
)

(28.27)

P
(
A ∩B

)
= P (A)− P (A ∩B) (28.28)

P (A ∪B) = P (A) + P (B)− P (A ∩B) (28.29)

28.2.4 Conditional Probability

Definition 28.14 (Conditional Probability). The conditional probability16 P (A |B ) is
the probability of some event A, given the occurrence of some other event B. P (A |B ) is
read “the probability of A, given B”.

13 http://en.wikipedia.org/wiki/Sigma-algebra [accessed 2007-07-03]

14 http://en.wikipedia.org/wiki/Probability_measure [accessed 2007-07-03]

15 http://en.wikipedia.org/wiki/Kolmogorov_axioms [accessed 2007-07-03]

16 http://en.wikipedia.org/wiki/Conditional_probability [accessed 2007-07-03]
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P (A|B) =
P (A ∩B)

P (B)
(28.30)

P (A ∩B) = P (A|B)P (B) (28.31)

Definition 28.15 (Statistical Independence). Two events A and B are (statistically)
independent if and only if P (A ∩B) = P (A)P (B) holds. If two events A and B are statis-
tically independent, we can deduce:

P (A ∩B) = P (A)P (B) (28.32)

P (A |B ) = P (A) (28.33)

P (B |A ) = P (B) (28.34)

28.2.5 Random Variable

Definition 28.16 (Random Variable). The function X which relates the sample space
Ω to the real numbers R is called random variable17 in the probability space (Ω,S, P ).

X : Ω 7→ R (28.35)

Using such a random variable, we can replace the sample space Ω with the new sample
space ΩX . Furthermore, the σ-algebra S can be replaced with a σ-algebra SX , which consists
of subsets of ΩX instead of Ω. Last but not least, we replace the probability measure P which
relates the ω ∈ Ω to the interval [0, 1] by a new probability measure PX which relates the
real numbers R to this interval.

Definition 28.17 (Probability Space of a Random Variable). Is X : Ω 7→ R a random
variable, then the probability space of X is defined as the triplet

(ΩX , SX , PX) (28.36)

One example for such a new probability measure would be the probability that a random
variable X takes on a real value which is smaller or equal a value x:

PX(X ≤ x) = P ({ω : ω ∈ Ω ∧X(ω) ≤ x}) (28.37)

28.2.6 Cumulative Distribution Function

Definition 28.18 (Cumulative Distribution Function). If X is a random variable of
a probability space (ΩX = R, SX , PX), we call the function FX : R 7→ [0, 1] the (cumulative)
distribution function18 (CDF) of the random variable Xif it fulfills Equation 28.38.

FX := PX(X ≤ x)︸ ︷︷ ︸
definition rnd. var.

≡ P ({ω : ω ∈ Ω ∧X(ω) ≤ x})︸ ︷︷ ︸
definition probability space

(28.38)

A cumulative distribution function FX has the following properties:

1. FX(X) is normalized:

lim
x→−∞

FX(x) = 0
︸ ︷︷ ︸

impossible event

, lim
x→+∞

FX(x) = 1
︸ ︷︷ ︸

certain event

(28.39)

17 http://en.wikipedia.org/wiki/Random_variable [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Cumulative_distribution_function [accessed 2007-07-03]
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2. FX(X) is monotonously19 growing:

FX(x1) ≤ FX(x2) ∀x1 ≤ x2 (28.40)

3. FX(X) is (right-sided) continuous20:

lim
h→0

FX(x+ h) = FX(x) (28.41)

4. The probability that the random variable X takes on values in the interval x0 ≤ X ≤ x1

can be computed using the CDF:

P (x0 ≤ X ≤ x1) = FX(x1)− FX(x0) (28.42)

5. The probability that the random variable X takes on the value of a single random
number x:

P (X = x) = FX(x)− lim
h→0

FX(x− h) (28.43)

We can further distinguish between sample spaces Ω which contain at most countable
infinite many elements and such that are continuums. Hence, we there are discrete21 and
continuous22 random variables.

Definition 28.19 (Discrete Random Variable). A random variable X (and its proba-
bility measure PX(X) respectively) is called discrete if it takes on at most countable infinite
many values. Its cumulative distribution function FX(X) therefore has the shape of a stair-
way.

Definition 28.20. A random variable X (and its probability measure PX respectively) is
called continuous if it can take on uncountable infinite many values and its cumulative
distribution function FX(X) is also continuous.

28.2.7 Probability Mass Function

Definition 28.21 (Probability Mass Function). The probability mass function23

(PMF) fX is defined discrete distributions only and assigns a probability to each value
a discrete random variable X can take on.

fX : Z 7→ [0, 1] : fX(x) := PX(X = x) (28.44)

Therefore, we can specify the relation between the PMF and its corresponding(discrete)
CDF in Equation 28.45 and Equation 28.45. We can further define the probability of an
event A in Equation 28.47 using the PMF.

PX(X ≤ x) = FX(x) =

x∑

i=−∞

fX(x) (28.45)

PX(X = x) = fX(x) = FX(x)− FX(x− 1) (28.46)

PX(A) =
∑

∀x∈A

fX(x) (28.47)

19 http://en.wikipedia.org/wiki/Monotonicity [accessed 2007-07-03]

20 http://en.wikipedia.org/wiki/Continuous_function [accessed 2007-07-03]

21 http://en.wikipedia.org/wiki/Discrete_random_variable [accessed 2007-07-03]

22 http://en.wikipedia.org/wiki/Continuous_probability_distribution [accessed 2007-07-03]

23 http://en.wikipedia.org/wiki/Probability_mass_function [accessed 2007-07-03]
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28.2.8 Probability Density Function

The probability density function24 (PDF) is the counterpart of the PMF for continuous
distributions. The PDF does not represent the probabilities of the single values of a random
variable. Since a continuous random variable can take on uncountable many values, each
distinct value itself has the probability 0. If we, for instance, picture the current temperature
outside as (continuous) random variable, the probability that it takes on the value 18 for
18◦C is zero. It will never be exactly 18◦C outside, we can at most declare with a certain
probability that we have a temperature between 17.99999◦C and 18.00001◦C.

Definition 28.22 (Probability Density Function). If a random variable X is continu-
ous, its probability density function fX is defined as

fX : R 7→ [0,∞) : FX(x) =

∫ +∞

−∞

fX(ξ) dξ ∀x ∈ R (28.48)

28.3 Stochastic Properties

Each random variable X which conforms to a probability distribution FX may have certain
properties such as a maximum and a mean value, a variance, and a value which will be taken
on by X most often. If the cumulative distribution function FX of X is known, these values
can usually be computed directly from its parameters. On the other hand, it is possible that
we only know the values A[i] which X took on during some random experiments. From this
set of sample data A, we can estimate the properties of the underlying (possibly unknown)
distribution of X using statistical methods (with a certain error, of course).

In the following, we will elaborate on the properties of a random variable X ∈ R both
from the viewpoint of knowing the PMF/PDF fX(x) and the CDF FX(x) as well as from
the statistical perspective, where only a sample A of past values of X is known. In the
latter case, we define the sample as a list A with the length n = len(A) and the elements
A[i] : i ∈ [0, n− 1].

28.3.1 Count, Min, Max and Range

The most primitive features of a random distribution are the minimum, maximum, and the
range of its values, as well as the number of values A[i] in a data sample A.

Definition 28.23 (Count). n = len(A) is the number of elements in the data sample A.

This item count is only defined for data samples, not for random variables, since random
variables represent experiments which can infinitely be repeated and thus stand for infinitely
many values. The number of items should not be mixed up with the possible number of dif-
ferent values the random variable may take on. A data sample A may contain the same value
a multiple times. When throwing a dice seven times, one may throw A = (1, 4, 3, 3, 2, 6, 1),
for example25.

Definition 28.24 (Minimum). There exists no smaller element in the sample data A
than the minimum sample ǎ ≡ min (A) when speaking statistics. From the perspective
of the cumulative distribution function FX , the minimum is the lower boundary x̌ of the
random variable X(or negative infinity, if no such boundary exists). Both definitions are
fully compliant to Definition 1.10 on page 25.

min (A) ≡ ǎ ∈ A : ∀a ∈ A⇒ ǎ ≤ A (28.49)

x̌ = min (X)⇔ FX(x̌) > 0 ∧ FX(x) ≥ FX(x̌) ∀x ∈ R (28.50)

24 http://en.wikipedia.org/wiki/Probability_density_function [accessed 2007-07-03]

25 Throwing a dice is discussed as example for stochastic extensively in Section 28.6 on page 497.
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Definition 28.25 (Maximum). In statistically evaluated sample data, exists element big-
ger than the maximum â = max (A) in A. The value x̂ is the upper boundary of the values
a random variable X may take on (or positive infinity, if X is unbounded). This definition
is compliant with Definition 1.9 on page 25.

max (A) ≡ â ∈ A : ∀a ∈ A⇒ â ≥ A (28.51)

x̂ = max (X)⇔ FX(x̂) ≥ FX(x) ∀x ∈ R (28.52)

Definition 28.26 (Range).
The range range(A) of the sample data A is the difference of the maximum max (A)

and the minimum min (A) of A and therefore represents the span covered by the data. If a
random variable X is limited in both directions, it has a finite range range(X), otherwise
this range is infinite too.

range(A) = â− ǎ = max (A)−min (A) (28.53)

range(X) = x̂− x̌ = max (X)−min (X) (28.54)

28.3.2 Expected Value and Arithmetic Mean

The expected value EX and the a are basic measures for random variables and data samples
that help us to estimate the regions where their values will be distributed around.

Definition 28.27 (Expected Value). The expected value26 of a random variable X is
the sum of the probability of each possible outcome of the random experiment multiplied
by the outcome value. It is abbreviated by EX or µ. For discrete distributions it can be
computed using Equation 28.55 and for continuous ones Equation 28.56 holds.

EX =

∞∑

x=−∞

xfX(x) (28.55)

EX =

∫ ∞

−∞

xfX(x) dx (28.56)

If the expected value EX of a random variable X is known, the following statements can
be derived the expected values of some related random variables as follows:

Y = a+X ⇒ EY = a+ EX (28.57)

Z = bX ⇒ EZ = bEX (28.58)

Definition 28.28 (Sum). The sum(A) represents the sum of all elements in a set of data
samples A. This value does, of course, only exist in statistics.

sum(A) =
n−1∑

i=0

A[i] (28.59)

Definition 28.29 (Arithmetic Mean). The arithmetic mean27 a is the sum of all el-
ements in the sample data A divided by the total number of values. In the spirit of the
limiting frequency method of von Mises [2120], it is an estimation of the expected value
a ≈ EX of the random variable X that produced the sample data A.

a =
sum(A)

n
=

1

n

n−1∑

i=0

A[i] =

n−1∑

i=0

h(A[i], n) (28.60)

26 http://en.wikipedia.org/wiki/Expected_value [accessed 2007-07-03]

27 http://en.wikipedia.org/wiki/Arithmetic_mean [accessed 2007-07-03]
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28.3.3 Variance and Standard Deviation

The variance28 [677] is a measure of statistical dispersion. It illustrates how close the results
of a random variable or the elements a in a data sample A are to their expected value EX
or their arithmetical mean a.

Definition 28.30 (Variance of a Random Variable). The variance D2X ≡ var(X) ≡
σ2 of a random variable X is defined as

var(X) = D2X = E
[
(X − EX)

2
]

= E
[
X2
]
− (EX)

2
(28.61)

The variance of a discrete random variable X can be computed using Equation 28.62
and for continuous distributions, Equation 28.63 will hold.

D2X =

∞∑

x=−∞

fX(x) (x− EX)2 =

∞∑

x=−∞

x2fX(x)−
[

∞∑

x=−∞

xfX(x)

]2

=

[
∞∑

x=−∞

x2fX(x)

]
− (EX)

2
(28.62)

D2X =

∫ ∞

−∞

(x− EX)
2
dx =

∫ ∞

−∞

x2fX(x) dx−
[∫ ∞

−∞

xfX(x) dx

]2

=

[∫ ∞

−∞

x2fX(x) dx

]
− (EX)

2
(28.63)

If the variance D2X of a random variable X is known, we can derive the variances of
some related random variables as follows:

Y = a+X ⇒ D2Y = D2X (28.64)

Z = bX ⇒ D2Z = b2D2X (28.65)

Definition 28.31 (Sum of Squares). The function sumSqrs(A) is only defined for sta-
tistical data and represents the sum of the squares of all elements in the data sample A.

sumSqrs(A) =

n−1∑

i=0

(A[i])
2

(28.66)

Definition 28.32 (Variance Estimator). We define the (unbiased) estimator29 s2 of
the variance of the random variable which produced the sample values A according to
Equation 28.67. The variance is zero for all samples with (n = len(A)) ≤ 1.

s2 =
1

n− 1

n−1∑

i=0

(A[i]− a)
2

==
1

n− 1

(
sumSqrs(A)− (sum(A))

2

n

)
(28.67)

Definition 28.33 (Standard Deviation). The standard deviation30 is the square root of
the variance. The standard deviation of a random variable X is abbreviated with DX and
σ, its statistical estimate is s.

DX =
√
D2X (28.68)

s =
√
s2 (28.69)

The standard deviation is zero for all samples with n ≤ 1.

28 http://en.wikipedia.org/wiki/Variance [accessed 2007-07-03]

29 see Definition 28.55 on page 499
30 http://en.wikipedia.org/wiki/Standard_deviation [accessed 2007-07-03]
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Definition 28.34 (Coefficient of Variation). The coefficient of variation31 cV of a ran-
dom variable X is the ratio of the standard deviation by expected value of X. For data
samples, its estimate c≈V is defined as the ration of the estimate of the standard deviation
and the arithmetic mean.

cV =
DX

EX
=
σ

µ
(28.70)

c≈V =
n

sum(A)

√
sumSqrs(A)− (sum(A))2

n

n− 1
(28.71)

Definition 28.35 (Covariance). The covariance32 cov(X,Y ) of two random variables X
and Y is a measure for how much they are related. It exists if the expected values EX2 and
EY 2 exist and is defined as

cov(X,Y ) = E[X − EX] ∗ E[Y − EY ] (28.72)

= E[X ∗ Y ]− EX ∗ EY (28.73)

(28.74)

If X and Y are statistically independent, then their covariance is zero, since

E[X ∗ Y ] = EX ∗ EY (28.75)

Furthermore, the following formulas hold for the covariance

D2X = cov(X,X) (28.76)

D2[X + Y ] = cov(X + Y,X + Y ) = D2X +D2Y + 2cov(X,Y ) (28.77)

D2[X − Y ] = cov(X − Y,X + Y ) = D2X +D2Y − 2cov(X,Y ) (28.78)

cov(X,Y ) = cov(Y,X) (28.79)

cov(aX, Y ) = a cov(Y,X) (28.80)

cov(X + Y,Z) = cov(X,Z) + cov(Y,Z) (28.81)

cov(aX + b, cY + d) = a c cov(X,Y ) (28.82)

28.3.4 Moments

Definition 28.36 (Moment). The kth moment33 µ′
k(c) about a value c is defined for a

random distribution X as
µ′

k(c) = E
[
(X − c)k

]
(28.83)

It can be specified for discrete (Equation 28.84) and continuous (Equation 28.85) probability
distributions using Equation 28.55 and Equation 28.56 as follows.

µ′
k(c) =

∞∑

x=−∞

fX(x) (x− c)k
(28.84)

µ′
k(c) =

∫ ∞

−∞

fX(x) (x− c)k
dx (28.85)

Definition 28.37 (Statistical Moment). The kth statistical moment µ′
k of a random

distribution is its kth moment about zero, i. e., the expected value of its values raised to the
kth power.

µ′
k = µ′

k(0) = E
[
Xk
]

(28.86)

Definition 28.38 (Central Moment). The kth moment about the mean (or central mo-
ment)34 is the expected value of the difference between elements and their expected value

31 http://en.wikipedia.org/wiki/Coefficient_of_variation [accessed 2007-07-03]

32 http://en.wikipedia.org/wiki/Covariance [accessed 2008-02-05]

33 http://en.wikipedia.org/wiki/Moment_%28mathematics%29 [accessed 2008-02-01]

34 http://en.wikipedia.org/wiki/Moment_about_the_mean [accessed 2007-07-03]
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raised to the kth power.

µk = E
[
(X − EX)

k
]

(28.87)

Hence, the variance D2X equals the s central moment µ2.

Definition 28.39 (Standardized Moment). The kth standardized moment µσ,k is the
quotient of the kth central moment and the standard deviation raised to the kth power.

µσ,k =
µk

σk
(28.88)

28.3.5 Skewness and Kurtosis

The two other most important moments of random distributions are the skewness γ1 and
the kurtosis γ2 and their estimates G1 and G2.

Definition 28.40 (Skewness). The skewness35 γ1, the third standardized moment, is
a measure of asymmetry of a probability distribution. If γ1 > 0, the right part of the
distribution function is either longer or fatter (positive skew, right-skewed). If γ1 < 0, the
distribution’s left part is longer or fatter.

γ1 = µσ,3 =
µ3

σ3
(28.89)

For sample data A the skewness of the underlying random variable is approximated with
the estimator G1 where s is the estimated standard deviation. The sample skewness is only
defined for sets A with at least three elements.

G1 =
n

(n− 1)(n− 2)

n−1∑

i=0

(
A[i]− a

s

)3

(28.90)

Definition 28.41 (Kurtosis). The excess kurtosis36 γ2 is a measure for the sharpness
of a distribution’s peak. A distribution with a high kurtosis has a sharper “peak” and
fatter “tails”, while a distribution with a low kurtosis has a more rounded peak with wider
“shoulders”. The normal distribution (see Section 28.5.2) has a zero kurtosis.

γ2 = µσ,4 − 3 =
µ4

s3
− 3 (28.91)

For sample data A which represents only a subset of a greater amount of data, the sample
kurtosis can be approximated with the estimator G2 where s is the estimate of the sample’s
standard deviation. The kurtosis is only defined for sets with at least four elements.

G2 =

[
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n−1∑

i=0

(
A[i]− a

s

)4
]
− 3(n− 1)2

(n− 2)(n− 3)
(28.92)

28.3.6 Median, Quantiles, and Mode

Definition 28.42 (Median). The median m = med(X) is the value right in the middle
of a sample or distribution, dividing it into two equal halves. Therefore, the probability of
drawing an element less than med(X) is equal to the probability of drawing an element
larger than m.

P (X ≤ m) ≥ 1

2
∧ P (X ≥ m) ≥ 1

2
∧ P (X ≤ m) ≤ P (X ≥ m) (28.93)

35 http://en.wikipedia.org/wiki/Skewness [accessed 2007-07-03]

36 http://en.wikipedia.org/wiki/Kurtosis [accessed 2008-02-01]

http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
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We can determine the median m of continuous and discrete distributions by solving
Equation 28.94 and Equation 28.95 respectively.

1

2
=

∫ m

−∞

fX(x) dx (28.94)

m−1∑

i=−∞

fX(x) ≤ 1

2
≤

∞∑

i=m

fX(x) (28.95)

(28.96)

If a sample A has an odd element count, the median m is the element in the middle,
otherwise (in a set with an even element count there exists no single “middle”-element),
the arithmetic mean of the two middle elements. The median represents the dataset in an
unbiased manner. If you have, for example, the dataset A = (1, 1, 1, 1, 1, 2, 2, 2, 500 000), the
arithmetic mean, biased by the large element 500 000 would be very high (55556.7). The
median however would be 1 and thus represents the sample better. The median of a sample
can be computed as:

As ≡ sortLista(A,>) (28.97)

med(A) =

{
As[ n−1

2 ] if n = len(A) is odd
1
2

(
As[ n

2 ] +As[ n
2 −1]

)
otherwise

(28.98)

Definition 28.43 (Quantile). Quantiles37 are points taken at regular intervals from a
sorted dataset (or a cumulative distribution function). The q-quantiles divide a distribution
function FX or data sample A into q parts Ti with equal probability. They can be regarded
as the generalized median, or vice versa, the median is the 2-quantile.

∀ x ∈ R, i ∈ [0, q − 1]⇒ 1

q
≤ P (x ∈ Ti) (28.99)

A sorted data sample is divided into q subsets of equal length by the q-quantiles. The
cumulative distribution function of a random variable X is divided by the q-quantiles into q
subsets of equal area. The quantiles are the boundaries between the subsets/areas. Therefore,
the kth q-quantile is the value ζ so that the probability that the random variable (or an
element of the data set) will take on a value less than ζ is at most k

q
and the probability

that it will take on a value greater than or equal to ζ is at most q−k
q

. There exist q − 1

q-quantiles (k spans from 1 to q− 1). The kth q-quantile quantilek
q (A) of a dataset A can be

computed as:

As ≡ sortLista(A,>) (28.100)

quantilek
q (A) = As[⌊ k∗n

q ⌋] (28.101)

For some special values of q, the quantiles have been given special names too (see Ta-
ble 28.1).

Definition 28.44 (Interquartile Range). The interquartile range38 is the range between
the first and the third quartile and defined as quantile34(X)− quantile14(X).

Definition 28.45 (Mode). The mode39 is the value that most often occurs in a data sam-
ple or is most frequently assumed by a random variable. There exist unimodal distribution-
s/samples that have one mode value and multimodal distributions/samples with multiple
modes.

In [2119, 258] you can find further information of the relation between the mode, the mean
and the skewness.
37 http://en.wikipedia.org/wiki/Quantiles [accessed 2007-07-03]

38 http://en.wikipedia.org/wiki/Inter-quartile_range [accessed 2007-07-03]

39 http://en.wikipedia.org/wiki/Mode_%28statistics%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Quantiles
http://en.wikipedia.org/wiki/Inter-quartile_range
http://en.wikipedia.org/wiki/Mode_%28statistics%29


478 28 Stochastic Theory and Statistics

q name

100 percentiles
10 deciles
9 noniles
5 quintiles
4 quartiles
2 median

Table 28.1: Special Quantiles

28.3.7 Entropy

Definition 28.46 (Information Entropy). The information entropy40 H(X)defined by
Shannon [1858] is a measure of uncertainty for discrete probability mass functions fX of
random variables X or data sets A. It is defined in as follows. The h(a, n) in Equation 28.103
denotes the relative frequency of the value a amongst the n samples in A.

H(X) =
∞∑

x=−∞

fX(x) log2

(
1

fX(y)

)
= −

∞∑

x−∞

fX(x) log2 fX(x) (28.102)

H(A) = −
∑

∀a∈A

h(a, n) log2 h(a, n) (28.103)

Definition 28.47 (Differential Entropy). The differential (also called continuous) en-
tropy h(X) is a generalization of the information entropy to continuous probability density
functions fX of random variables X. [1266]

h(X) = −
∫ ∞

−∞

fX(x) ln fX(x) dx (28.104)

28.3.8 The Law of Large Numbers

The law of large numbers (LLN) combines statistics and probability by showing that if an
event e with the probability P (e) = p is observed in n independent repetitions of a random
experiment, its relative frequency h(e, n) (see Definition 28.10) converges to its probability
p if n becomes larger.

In the following, assume that the A is an infinite sequence of samples from equally
distributed and pairwise independent random variables Xi with the (same) expected value
EX. The weak law of large numbers states that the mean a of the sequence A converges to
a value in (EX − ε,EX + ε) for each positive real number ε > 0, ε ∈ R+.

lim
n→∞

P (|a− EX| < ε) = 1 (28.105)

In other words, the weak law of large numbers says that the sample average will converge
to the expected value of the random experiment if the experiment is repeated many times.

According to the strong law of large numbers, the mean a of the sequence A even con-
verges to the expected value EX of the underlying distribution for infinite large n

P
(

lim
n→∞

a = EX
)

= 1 (28.106)

The law of large numbers implies that the accumulated results of each random experi-
ment will approximate the underlying distribution function if repeated infinitely (under the
condition that there exists an invariable underlying distribution function).

40 http://en.wikipedia.org/wiki/Information_entropy [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Information_entropy
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28.4 Some Discrete Distributions

In this section we will introduce some common discrete distributions. Discrete probability
distributions assign probabilities to the elements of a finite (or, at most, countable infinite)
set of discrete events/outcomes of a random experiment.

Parts of the information provided in this and the following section have been obtained
from Wikipedia [2219].

28.4.1 Discrete Uniform Distribution

The uniform distribution exists in a discrete41 as well as in a continuous form. In this
section we want to discuss the discrete form whereas the continuous form is elaborated on
in Section 28.4.1.

All possible outcomes ω ∈ Ω of a random experiment which obeys the uniform distri-
bution have exactly the same probability. In the discrete uniform distribution, Ω has at
most countable infinite elements (although normally being finite). The best example for this
distribution is throwing an ideal dice. This experiment has six possible outcomes ωi where
each has the same probability P (ωi) = 1

6 . Throwing ideal coins and drawing one element
out of a set of n possible elements are other examples where a discrete uniform distribution
can be assumed. Table 28.2 contains the characteristics of the discrete uniform distribu-
tion. In Figure 28.1 you can find some example uniform probability mass functions and in
Figure 28.2 we have outlined their according cumulative distribution functions.

parameter definition

parameters a, b ∈ Z, a > b (28.107)
|Ω| |Ω| = r = range = b− a+ 1 (28.108)

PMF P (X = x) = fX(x) =

{
1
r

if a ≤ x ≤ b, x ∈ Z
0 otherwise

(28.109)

CDF P (X ≤ x) = FX(x) =





0 if x < a
⌊x−a+1

r
⌋ if a ≤ x ≤ b
1 otherwise

(28.110)

mean EX = a+b
2

(28.111)
median med = a+b

2
(28.112)

mode mode = ∅ (28.113)

variance D2X = r2−1
12

(28.114)
skewness γ1 = 0 (28.115)

kurtosis γ2 = − 6(r2+1)

5(r2−1)
(28.116)

entropy H(X) = ln r (28.117)

mgf MX(t) = eat−e(b+1)t

r(1−et)
(28.118)

char. func. ϕX(t) = eiat−ei(b+1)t

r(1−eit)
(28.119)

Table 28.2: Parameters of the discrete uniform distribution.

41 http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
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28.4.2 Poisson Distribution πλ

The Poisson distribution42 πλ [20] complies with the reference model telephone switchboard.
It describes a process where the number of events that occur (independently of each other)
in a certain time interval only depends on the duration of the interval and not of its position
(prehistory). Events do not have any aftermath and thus, there is no mutual influence of non-
overlapping time intervals (homogeneity). Furthermore, only the time when an even occurs
is considered and not the duration of the event. In the telephone switchboard example, we
would only be interested in the time at which a call comes in, not in the length of the call.
In this model, no events occur in infinitely short time intervals. The features of the Poisson

42 http://en.wikipedia.org/wiki/Poisson_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Poisson_distribution
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distribution are listed in Table 28.343 and examples for its PDF and CDF are illustrated in
Figure 28.3 and Figure 28.4.

parameter definition

parameters λ = µt > 0 (28.120)

PMF P (X = x) = fX(x) = (µt)x

x!
e−µt = λx

x!
e−λ (28.121)

CDF P (X ≤ x) = FX(x) = Γ (⌊k+1⌋,λ)
⌊k⌋! =

∑x
i=0

e−λλi

i!!
(28.122)

mean EX = µt = λ (28.123)
median med ≈ ⌊λ+ 1

3
− 1

5λ
⌋ (28.124)

mode mode = ⌊λ⌋ (28.125)
variance D2X = µt = λ (28.126)

skewness γ1 = λ− 1
2 (28.127)

kurtosis γ2 = 1
λ

(28.128)

entropy H(X) = λ (1− lnλ) + e−λ∑∞
k=0

λk ln(k!)
k!

(28.129)

mgf MX(t) = eλ(et−1) (28.130)

char. func. ϕX(t) = eλ(eit−1) (28.131)

Table 28.3: Parameters of the Poisson distribution.
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Figure 28.3: The PMFs of some Poisson distributions

Poisson Process

The Poisson process44 [1914] is a process that obeys the Poisson distribution – just like the
example of the telephone switchboard mentioned before. Here, λ is expressed as the product
of the intensity µ and the time t. µ normally describes a frequency, for example µ = 1

min .
Both, the expected value as well as the variance of the Poisson process are λ = µt. In

43 The Γ in Equation 28.122 denotes the (upper) incomplete gamma function. More information
on the gamma function Γ can be found in Section 28.10.1 on page 532.

44 http://en.wikipedia.org/wiki/Poisson_process [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Poisson_process
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Equation 28.132, the probability that k events occur in a Poisson process in a time interval
of the length t is defined.

P (Xt = k) =
(µt)

k

k!
e−µt =

λk

k!
e−λ (28.132)

The probability that in a time interval [t, t+∆t]

1. no events occur is 1− λ∆t+ o(∆t).
2. exactly one event occurs is λ∆t+ o(∆t).
3. multiple events occur o(∆t).

Here we use an infinitesimal version the small-o notation. 45 The statement that f ∈
o(ξ) ⇒ |f(x)| ≪ |ξ(x)| is normally only valid for x → ∞. In the infinitesimal variant, it
holds for x → 0. Thus, we can state that o(∆t) is much smaller than ∆t. In principle, the
above equations imply that in an infinite small time span either no or one event occurs, i. e.,
events do not arrive simultaneously:

lim
t→0

P (Xt > 1) = 0 (28.133)

The Relation between the Poisson Process and the Exponential Distribution

It is important to know that the (time) distance between two events of the Poisson process is
exponentially distributed (see Section 28.5.3 on page 489). The expected value of the number
of events to arrive per time unit in a Poisson process is EXpois, then the expected value of
the time between two events 1

EXpois
. Since this is the excepted value EXexp = 1

EXpois
of the

exponential distribution, its λexp-value is λexp = 1
EXexp

= 1
1

EXpois

= EXpois. Therefore, the

λexp-value of the exponential distribution equals the λpois-value of the Poisson distribution
λexp = λpois = EXpois. In other words, the time interval between (neighboring) events of the

45 See Section 30.1.3 on page 550 and Definition 30.16 on page 551 for a detailed elaboration on
the small-o notation.



28.4 Some Discrete Distributions 483

Poisson process is exponentially distributed with the same λ value as the Poisson process,
as illustrated in Equation 28.134.

Xi ∼ πλ ⇔ (t(Xi+1)− tXi) ∼ exp(λ) ∀i ∈ N (28.134)

28.4.3 Binomial Distribution B(n, p)

The binomial distribution46 B(n, p) is the probability distribution that describes the prob-
ability of the possible numbers successes of n independent experiments with the success
probability p each. Such experiments is called Bernoulli experiments or Bernoulli trials. For
n = 1, the binomial distribution is a Bernoulli distribution47.

Table 28.448 points out some of the properties of the binomial distribution. A few ex-
amples for PMFs and CDFs of different binomial distributions are given in Figure 28.5 and
Figure 28.6.

parameter definition

parameters n ∈ N0, 0 ≤ p ≤ 1, p ∈ R (28.135)

PMF P (X = x) = fX(x) =
(

n
x

)
px (1− p)n−x (28.136)

CDF P (X ≤ x) = FX(x) =
∑⌊x⌋

i=0 fX(x) = I1−p(n− ⌊x⌋, 1 + ⌊x⌋) (28.137)
mean EX = np (28.138)
median med is one of {⌊np⌋ − 1, ⌊np⌋, ⌊np⌋+ 1} (28.139)
mode mode = ⌊(n+ 1)p⌋ (28.140)
variance D2X = np(1− p) (28.141)
skewness γ1 = 1−2p√

np(1−p)
(28.142)

kurtosis γ2 = 1−6p(1−p)
np(1−p)

(28.143)

entropy H(X) = 1
2

ln (2πn e p (1− p)) + O
(

1
n

)
(28.144)

mgf MX(t) = (1− p+ pet)n (28.145)
char. func. ϕX(t) = (1− p+ peit)n (28.146)

Table 28.4: Parameters of the Binomial distribution.

For n → ∞, the binomial distribution approaches a normal distribution. For large n,
B(n, p) can therefore often be approximated with the normal distribution (see Section 28.5.2)
N(np, np(1 − p)). Whether this approximation is good or not can be found out by rules of
thumb, some of them are:

np > 5 ∧ n(1− p) > 5

µ± 3σ ≈ np± 3
√
np(1− p) ∈ [0, n]

In case these rules hold, we still need to transform a continuous distribution to a discrete
one. In order to do so, we add 0.5 to the x values, i. e., FX,bin(x) ≈ FX,normal(x+ 0.5).

46 http://en.wikipedia.org/wiki/Binomial_distribution [accessed 2007-10-01]

47 http://en.wikipedia.org/wiki/Bernoulli_distribution [accessed 2007-10-01]

48 I1−p in Equation 28.137 denotes the regularized incomplete beta function.

http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Bernoulli_distribution
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28.5 Some Continuous Distributions

In this section we will introduce some common continuous distributions. Unlike the discrete
distributions, continuous distributions have an uncountable infinite large set of possible out-
comes of random experiments. Thus, the PDF does not assign probabilities to certain events.
Only the CDF makes statements about the probability of a sub-set of possible outcomes of
a random experiment.
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28.5.1 Continuous Uniform Distribution

After discussing the discrete uniform distribution in Section 28.4.1, we now elaborate on its
continuous form49.

In a uniform distribution, all possible outcomes in a range [a, b], b > a have exactly the
same probability. The characteristics of this distribution can be found in Table 28.5. Exam-
ples of its probability density function is illustrated in Figure 28.7 whereas the according
cumulative density functions are outlined Figure 28.8.

parameter definition

parameters a, b ∈ R, a ≥ b (28.147)

PDF fX(x) =

{
1

b−a
if x ∈ [a, b]

0 otherwise
(28.148)

CDF P (X ≤ x) = FX(x) =





0 if x < a
x−a
b−a

if x ∈ [a, b]

1 otherwise
(28.149)

mean EX = 1
2
(a+ b) (28.150)

median med = 1
2
(a+ b) (28.151)

mode mode = ∅ (28.152)
variance D2X = 1

12
(b− a)2 (28.153)

skewness γ1 = 0 (28.154)
kurtosis γ2 = − 6

5
(28.155)

entropy h(X) = ln (b− a) (28.156)

mgf MX(t) = etb−eta

t(b−a)
(28.157)

char. func. ϕX(t) = eitb−eita

it(b−a)
(28.158)

Table 28.5: Parameters of the continuous uniform distribution.
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49 http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 [accessed 2007-07-03]
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28.5.2 Normal Distribution N
(
µ, σ2

)

Many phenomena in nature, like the size of chicken eggs, noise, errors in measurement, and
such and such, can be considered as outcomes of random experiments with properties that
can be approximated by the normal distribution50 N

(
µ, σ2

)
[2312]. Its probability density

function, shown for some example values in Figure 28.9, is symmetric to the expected value
µ and becomes flatter with rising standard deviation σ. The cumulative density function
is outline for the same example values in Figure 28.10. Other characteristics of the normal
distribution can be found in Table 28.6.

parameter definition

parameters µ ∈ R, σ ∈ R+ (28.159)

PDF fX(x) = 1

σ
√

2π
e
− (x−µ)2

2σ2 (28.160)

CDF P (X ≤ x) = FX(x) = 1

σ
√

2π

∫ x

−∞ e
− (z−µ)2

2σ2 dz (28.161)

mean EX = µ (28.162)
median med = µ (28.163)
mode mode = µ (28.164)
variance D2X = σ2 (28.165)
skewness γ1 = 0 (28.166)
kurtosis γ2 = 0 (28.167)

entropy h(X) = ln
(
σ
√

2πe
)

(28.168)

mgf MX(t) = eµt+ σ2t2

2 (28.169)

char. func. ϕX(t) = eµit+ σ2t2

2 (28.170)

Table 28.6: Parameters of the normal distribution.

Definition 28.48 (Standard Normal Distribution).
For the sake of simplicity, the standard normal distribution N(0, 1) with the CDF Φ(x) is

defined with µ = 0 and σ = 1. Values of this function are listed in tables. You can compute

50 http://en.wikipedia.org/wiki/Normal_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Normal_distribution
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the CDF of any normal distribution using the one of the standard normal distribution by
applying Equation 28.171.

Φ(x) =
1√
2π

∫ x

−∞

e−
z2

2 dz (28.171)

P (X ≤ x) = Φ

(
x− µ
σ

)
(28.172)

Some values of Φ(x) are listed in Table 28.7. For the sake of saving space by using two
dimensions, we compose the values of x as a sum of a row and column value. If you want to
look up Φ(2.13) for example, you’d go to the row which starts with 2.1 and the column of
0.03, so you’d find Φ(2.13) ≈ 0.9834.
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Table 28.7: Some values of the standardized normal distribution.

Definition 28.49 (probit). The inverse of the cumulative distribution function of the stan-
dard normal distribution is called the probit function. It is also often denoted as z-quantile
of the standard normal distribution.

z(y) ≡ probit(y) ≡ Φ−1(y) (28.173)

y = Φ(x)⇒ Φ−1(y) = z(y) = x (28.174)

The values of the quantiles of the standard normal distribution can also be looked up in
Table 28.7. Therefore, the previously discussed process is simply reversed. If we wanted to
find the value z(0.922), we locate the closest match in the table. In Table 28.7, we will find
0.9222 which leads us to x = 1.4 + 0.02. Hence, z(0.922) ≈ 1.42.

The probability density function PDF of the multivariate normal distribution51 [2005,
1899, 1772] is illustrated in Equation 28.175 and Equation 28.176 in the general case (where
Σ is the covariance matrix) and in Equation 28.177 in the uncorrelated form. If the dis-
tributions, additionally to being uncorrelated, also have the same parameters σ and µ, the
probability density function of the multivariate normal distribution can be expressed as it
is done in Equation 28.178.

51 http://en.wikipedia.org/wiki/Multivariate_normal_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Multivariate_normal_distribution
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fX(x) =

√
Σ−1

(2π)
n
2
e−

1
2 (x−µ)T Σ−1(x−µ) (28.175)

=
1

(2π)
n
2 Σ

1
2

e−
1
2 (x−µ)T Σ−1(x−µ) (28.176)

fX(x) =

n∏

i=1

1√
2πσi

e
−

(xi−µi)
2

2σ2
i (28.177)

fX(x) =

n∏

i=1

1√
2πσ

e−
(xi−µi)

2

2σ2

=

(
1

2πσ2

)n
2

e−
∑n

i=1(xi−µ)2

2σ2 (28.178)

Definition 28.50 (Central Limit Theorem). The central limit theorem52 (CLT) states
that the sum Sn =

∑n
i=1Xi of i identically distributed random variables Xi with finite

expected values E[Xi] and non-zero variances D2[Xi] > 0 approaches a normal distribution
for n→ +∞. [675, 1084, 2041]

28.5.3 Exponential Distribution exp(λ)

The exponential distribution53 exp(λ) [556] is often used if the probabilities of lifetimes of
apparatuses, half-life periods of radioactive elements, or the time between two events in
the Poisson process (see Section 28.4.2 on page 482) has to be approximated. Its PDF is
sketched in Figure 28.11 for some example values of λ the according cases of the CDF are
illustrated Figure 28.12. The most important characteristics of the exponential distribution
can be obtained from Table 28.8.

parameter definition

parameters λ ∈ R+ (28.179)

PDF fX(x) =

{
0 if x ≤ 0

λe−λx otherwise
(28.180)

CDF P (X ≤ x) = FX(x) =

{
0 if x ≤ 0

1− e−λx otherwise
(28.181)

mean EX = 1
λ

(28.182)
median med = ln 2

λ
(28.183)

mode mode = 0 (28.184)
variance D2X = 1

λ2 (28.185)
skewness γ1 = 2 (28.186)
kurtosis γ2 = 6 (28.187)
entropy h(X) = 1− lnλ (28.188)

mgf MX(t) =
(
1− t

λ

)−1
(28.189)

char. func. ϕX(t) =
(
1− it

λ

)−1
(28.190)

Table 28.8: Parameters of the exponential distribution.

52 http://en.wikipedia.org/wiki/Central_limit_theorem [accessed 2008-08-19]

53 http://en.wikipedia.org/wiki/Exponential_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Exponential_distribution
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Figure 28.11: The PDFs of some exponential distributions
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Figure 28.12: The CDFs of some exponential distributions

28.5.4 Chi-square Distribution

The chi-square (or χ2) distribution54 is a steady probability distribution on the set of pos-
itive real numbers. It is a so-called sample distribution which is used for the estimation of
parameters like the variance of other distributions. We can also describe the sum of indepen-
dent standardized normal distributions with it. Its sole parameter, n, denotes the degrees of
freedom.

In Table 28.955, the characteristic parameters of the χ2 distribution are outlined. A few
examples for the PDF and CDF of the χ2 distribution are illustrated in Figure 28.13 and
Figure 28.14.

54 http://en.wikipedia.org/wiki/Chi-square_distribution [accessed 2007-09-30]

55 γ(n, z) in Equation 28.193 is the lower incomplete Gamma function and Pγ(n, z) is the regularized
Gamma function.

http://en.wikipedia.org/wiki/Chi-square_distribution
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Table 28.10 provides some selected values of the χ2 distribution. The table’s headline
contains results of the cumulative distribution function FX(x) of a χ2 distribution with n
degrees of freedom (values in the first column). The cells now denote the x values that belong
to these (m,FX(x)) combinations.

parameter definition

parameters n ∈ R+, n > 0 (28.191)

PDF fX(x) =

{
0 if x ≤ 0

2−
n/2

Γ (n/2)
x

n/2−1e−
x/2 otherwise

(28.192)

CDF P (X ≤ x) = FX(x) = γ(n/2,x/2)
Γ (n/2)

= Pγ(n/2, x/2) (28.193)

mean EX = n (28.194)
median med ≈ n− 2

3
(28.195)

mode mode = n− 2 if n ≥ 2 (28.196)
variance D2X = 2n (28.197)

skewness γ1 =
√

8
n

(28.198)

kurtosis γ2 = 12
n

(28.199)
entropy h(X) = n

2
+ ln (2Γ (n/2)) + (1− n/2)ψ(n/2) (28.200)

mgf MX(t) = (1− 2t)−
n/2 for 2t < 1 (28.201)

char. func. ϕX(t) = (1− 2it)−
n/2 (28.202)

Table 28.9: Parameters of the χ2 distribution.
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n 0.995 .99 .975 .95 .9 .1 .05 .025 .01 .005

1 – – 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

Table 28.10: Some values of the χ2 distribution.
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28.5.5 Student’s t-Distribution

The Student’s t-distribution56 is based on the insight that the mean of a normally distributed
feature of a sample is no longer normally distributed if the variance is unknown and needs
to be estimated from the data samples [840, 841, 679]. It has been design by Gosset [840]
who published it under the pseudonym Student.

The parameter n of the distribution denotes the degrees of freedom of the distribution.
If n approaches infinity, the t-distribution approaches the standard normal distribution.

The characteristic properties of Student’s t-distribution are outlined in Table 28.1157

and examples for its PDF and CDF are illustrated in Figure 28.15 and Figure 28.16.
Table 28.12 provides some selected values for the quantiles t1−α,n of the t-distribution

(one-sided confidence intervals, see Section 28.7.3 on page 503). The headline of the table
contains results of the cumulative distribution function FX(x) of a Student’s t-distribution
with n degrees of freedom (values in the first column). The cells now denote the x values
that belong to these (n, FX(x)) combinations.

parameter definition

parameters n ∈ R+, n > 0 (28.203)

PDF fX(x) = Γ ((n+1)/2)√
nπΓ (n/2)

(
1 + x2

/n
)−(n+1)/2

(28.204)

CDF P (X ≤ x) = FX(x) = 1
2

+ xΓ
(

n+1
2

) 2F1

(
1
2

, n+1
2

, 3
2

,− x2

n

)

√
nπΓ( n

2 )
(28.205)

mean EX = 0 (28.206)
median med = 0 (28.207)
mode mode = 0 (28.208)
variance D2X = n

n−2
for n > 2, otherwise undefined (28.209)

skewness γ1 = 0 for n > 3 (28.210)
kurtosis γ2 = 6

n−4
for n > 4 (28.211)

entropy h(X) = n
2

[
ψ
(

n+1
2

)
− ψ

(
n
2

)]
+ log

[√
nB
(

n
2
, 1

2

)]
(28.212)

mgf undefined (28.213)

Table 28.11: Parameters of the Student’s t- distribution.

56 http://en.wikipedia.org/wiki/Student%27s_t-distribution [accessed 2007-09-30]

57 More information on the gamma function Γ used in Equation 28.204 and Equation 28.205 can
be found in Section 28.10.1 on page 532. 2F1 in Equation 28.205 stands for the hypergeometric
function, ψ and B in Equation 28.212 are the digamma and the beta function.

http://en.wikipedia.org/wiki/Student%27s_t-distribution
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n 0.75 .8 .85 .875 .9 .95 .975 .99 .995 .9975 .999 .9995

1 1.000 1.376 1.963 2.414 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.605 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.423 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.344 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.301 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.273 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.254 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.240 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.230 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.221 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.214 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.209 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.204 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.200 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.197 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.194 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.191 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.189 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.066 1.187 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.185 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.183 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.182 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.180 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.685 0.857 1.059 1.179 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.178 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.177 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.176 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.175 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.174 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.173 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.167 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.164 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.162 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.159 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.158 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 0.845 1.041 1.157 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.674 0.842 1.036 1.150 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Table 28.12: Table of Student’s t-distribution with right-tail probabilities.
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28.6 Example – Throwing a Dice

Let us now discuss the different parameters of a random variable at the example of throwing
a dice. On a dice, numbers from one to six are written and the result of throwing it is the
number written on the side facing upwards. If a dice is perfect, the numbers one to six will
show up with exactly the same probability, 1

6 . The set of all possible outcomes of throwing
a dice Ω is thus

Ω =
{

1 , 2 , 3 , 4 , 5 , 6
}

(28.214)

We define a random variable X : Ω 7→ R that assigns real numbers to the possible
outcomes of throwing the dice in a way that the value of X matches the number on the dice:

X : Ω 7→ {1, 2, 3, 4, 5, 6} (28.215)

It is obviously a uniformly distributed discrete random variable (see Section 28.4.1 on
page 479) that can take on six states. We can now define the probability mass function PMF
and the according cumulative distribution function CDF as follows (see also Figure 28.17):

FX(x) = P (X ≤ x) =





0 if x < 1
x
6 if 1 ≤ x ≤ 6
1 otherwise

(28.216)

fX(x) = P (X = x) =





0 if x < 1
1
6 if 1 ≤ x ≤ 6
0 otherwise

(28.217)
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Figure 28.17: The PMF and CMF of the dice throw

We now can discuss the statistical parameters of this experiment. This is a good oppor-
tunity to compare the real parameters and their estimates. We therefore assume that the
dice was thrown ten times (n = 10) in an experiment. The following numbers have been
thrown as illustrated in Figure 28.18):

A = {4, 5, 3, 2, 4, 6, 4, 2, 5, 3} (28.218)

Table 28.13 outlines how the parameters of the random variable are computed. The real
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Figure 28.18: The numbers thrown in the dice example

parameter true value estimate

count non existent n = len(A) = 10 (28.219)
minimum a = min {x : fX(x) > 0} = 1 ã = minA = 2 ≈ a (28.220)

maximum b = max {x : fX(x) > 0} = 6 b̃ = maxA = 6 ≈ b (28.221)
range range = r = b− a+ 1 = 6 r̃ = b− a+ 1 = 6 ≈ range (28.222)

mean EX = a+b
2

= 7
2

= 3.5 a = 1
n

∑n−1
i=0 A[i] = 19

5
= 3.8 ≈ EX (28.223)

median med = a+b
2

= 7
2

= 3.5
As = sortLista(A,>)

m̃ed =
As[ n

2 ]+As[ n
2

−1]
2

= 4 ≈ med
(28.224)

mode mode = ∅ m̃ode = {4} ≈ mode (28.225)

variance D2X = r2−1
12

= 35
12
≈ 2.917 s2 = 1

n−1

∑n−1
i=0 (A[i]− a)2 = 26

15
≈ 1.73 ≈ D2X (28.226)

skewness γ1 = 0 G1 ≈ 0.0876 ≈ γ1 (28.227)

kurtosis γ2 = − 6(r2+1)
5(r2−1)

= − 222
175
≈ −1.269 G2 ≈ −0.7512 ≈ γ2 (28.228)

Table 28.13: Parameters of the dice throw experiment.

values of the parameters are defined using the PMF or CDF functions, while the estimations
are based on the sample data obtained from our experiment solely.

As you can see, the estimations of the parameters sometimes differ significantly from
their true values. More information about estimation can be found in the following section.
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28.7 Estimation Theory

28.7.1 Introduction

Estimation theory is the science of approximating the values of parameters based on mea-
surements or otherwise obtained sample data [1727, 1105, 1668, 2100, 1882]. The center of
this branch of statistics is to find good estimators in order to approximate the real values
the parameters as good as possible.

Definition 28.51 (Estimator). An estimator58 θ̃ is a rule (most often a mathematical
function) that takes a set of sample data A as input and returns an estimation of one
parameter θ of the random distribution of the process sampled with this data set.

We have already discussed some estimators in Section 28.3 – the arithmetic mean of
a sample data set (see Definition 28.29 on page 473) for example is an estimator for the
expected value (see Definition 28.27 on page 473) and in Equation 28.67 on page 474 we
have introduced an estimator for the sample variance.

Obviously, the estimator θ̃ is the better the closer its results (the estimates) come to the
real values of the parameter θ.

Definition 28.52 (Point Estimator). We define a point estimator θ̃ to be an estimator

which is a mathematical function θ̃ : Rn 7→ R. This function takes the data sample A (here
considered as a real vector A ∈ Rn) as input and returns the estimate in the form of a (real)
scalar value.

Definition 28.53 (Error). The absolute (estimation) error ε59 is the difference between

the value returned by a point estimator θ̃ of a parameter θ for a certain input A and its real
value. Notice that the error ε can be zero, positive, or negative.

εA

(
θ̃
)

= θ̃(A)− θ (28.229)

In the following, we will most often not explicitly refer to the data sample A as basis of
the estimation θ̃ anymore. We assume that it is implicitly clear that estimations are usually
based on such samples and that subscripts like the A in εA in Equation 28.229 are not
needed.

Definition 28.54 (Bias). The bias Bias
(
θ̃
)

of an estimator θ̃ is the expected value of

the difference of the estimate and the real value. This mean error is null for all unbiased
estimators.

Bias
(
θ̃
)

= E
[
θ̃ − θ

]
= E

[
ε
(
θ̃
)]

(28.230)

Definition 28.55 (Unbiased Estimator). An unbiased estimator has a zero bias.

Bias
(
θ̃
)

= E
[
θ̃ − θ

]
= E

[
ε
(
θ̃
)]

= 0⇔ Eθ̃ = θ (28.231)

Definition 28.56 (Mean Square Error). The mean square error60 MSE
(
θ̃
)

of an es-

timator θ̃ is the expected value of the square of the estimation error ε. It is also the sum
of the variance of the estimator and the square of its bias. The MSE is a measure for how
much an estimator differs from the quantity to be estimated.

58 http://en.wikipedia.org/wiki/Estimator [accessed 2007-07-03], http://mathworld.wolfram.com/
Estimator.html [accessed 2007-07-03]

59 http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics [accessed 2007-07-03]

60 http://en.wikipedia.org/wiki/Mean_squared_error [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Estimator
http://mathworld.wolfram.com/Estimator.html
http://mathworld.wolfram.com/Estimator.html
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Mean_squared_error
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MSE
(
θ̃
)

= E

[(
θ̃ − θ

)2
]

= E

[(
ε
(
θ̃
))2

]
(28.232)

MSE
(
θ̃
)

= D2θ̃ +
(

Bias
(
θ̃
))2

(28.233)

Notice that the MSE of unbiased estimators coincides with the variance D2θ̃ of θ̃. For
estimating the mean square error of an estimator θ̃, we use the sample mean:

M̃SE
(
θ̃
)

=
1

n

n∑

i=1

(
θ̃i − θ̃

)
(28.234)

28.7.2 Likelihood and Maximum Likelihood Estimators

Definition 28.57 (Likelihood). Likelihood61 is a mathematical expression complementary
to probability. Whereas probability allows us to predict the outcome of a random experiment
based on known parameters, likelihood allows us to predict unknown parameters based on
the outcome of experiments.

Definition 28.58 (Likelihood Function). The likelihood function L returns a value that
is proportional to the probability of a postulated underlying law or probability distribution
ϕ according to an observed outcome (denoted as the vector y). Notice that L not necessarily
represents a probability density/mass function and its integral also does not necessarily
equal to 1.

L[ϕ |y ] ∝ P (y|ϕ) (28.235)

In many sources, L is defined in dependency of a parameter θ instead of the function ϕ.
We preferred the latter notation since it is a more general superset of the first one.

Observation of an Unknown Process ϕ

Assume that we are given a finite set A of n sample data points.

A = {(x1, y1) , (x2, y2) , .., (xn, yn)} , xi, yi ∈ R ∀i ∈ [1, n] (28.236)

The xi are known inputs or parameters of an unknown process defined by the function
ϕ : R 7→ R. By observing the corresponding outputs of the process, we have obtained the yi

values. During our observations, we make the measurement errors62 ηi.

yi = ϕ(xi) + ηi ∀i : 0 < i ≤ n (28.237)

About this measurement error η we make the following assumptions:

Eη = 0 (28.238)

η ∼ N(0, σ2) : 0 < σ <∞ (28.239)

cov(ηi, ηj) = 0 ∀i, j ∈ N : i 6= j, 0 < i ≤ n, 0 < j ≤ n (28.240)

1. The expected values of η in Equation 28.238 are all zero. Our measurement device thus
gives us, in average, unbiased results. If the expected value of η was not zero, we could
simple recalibrate our (imaginary) measurement equipment in order to subtract Eη from
all measurements and would obtain unbiased observations.

61 http://en.wikipedia.org/wiki/Likelihood [accessed 2007-07-03]

62 http://en.wikipedia.org/wiki/Measurement_error [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Likelihood
http://en.wikipedia.org/wiki/Measurement_error
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2. Furthermore, Equation 28.239 states that the ηi are normally distributed around the
zero point with an unknown, nonzero variance σ2. To suppose measurement errors to
be normally distributed is quite common and correct in most cases. The white noise63

in transmission of signals for example is often modeled with Gaussian distributed64

amplitudes. This second assumption includes, of course, the first one: Being normally
distributed with N(µ = 0, σ2) implies a zero expected value of the error.

3. With Equation 28.240, we assume that the errors ηi of the single measurements are
stochastically independent. If there existed a connection between them, it would be part
of the underlying physical law ϕ and could be incorporated in our measurement device
and again be subtracted.

Objective: Estimation

Assume that we can choose from a, possible infinite large, set of functions (estimators)
f ∈ F .

f ∈ F ⇒ f : R 7→ R (28.241)

From this set we want to pick the function f⋆ ∈ F with that resembles ϕ the best (i. e.,
better than all other f ∈ F : f 6≡ f⋆). ϕ is not necessarily an element of F , so we cannot
always presume to find a f⋆ ≡ ϕ.

Each estimator f deviates by the estimation error ε(f) (see Definition 28.53 on page 499)
from the yi-values. The estimation error depends on f and may vary for different estimators.

yi = f(xi) + εi(f) ∀i : 0 < i ≤ n (28.242)

We consider all f ∈ F to be valid estimators for ϕ and simple look for the one that “fits
best”. We now can combine Equation 28.242 with Equation 28.237:

f(xi) + εi(f) = yi = ϕ(xi) + ηi ∀i : 0 < i ≤ n (28.243)

We do not know ϕ and thus, cannot determine the ηi. According to the likelihood method,
we pick the function f ∈ F that would have most probably produced the outcomes yi. In
other words, we have to maximize the likelihood of the occurrence of the εi(f). The likelihood
here is defined under the assumption that the true measurement errors ηi are normally
distributed (see Equation 28.239). So what we can do is to determine the εi in a way that
their occurrence is most probable according to the distribution of the random variable that
created the ηi, N(0, σ2). In the best case, the ε(f⋆) = ηi and thus, f⋆ is equivalent to ϕ(xi),
at least in for the sample information A available to us.

Maximizing the Likelihood

Therefore, we can regard the εi(f) as outcomes of independent random experiments, as
uncorrelated random variables, and combine them to a multivariate normal distribution.
For the ease of notation, we define the ε(f) to be the vector containing all the single εi(f)-
values.

ε(f) =




ε1(f)
ε2(f)

...
εn(f)


 (28.244)

63 http://en.wikipedia.org/wiki/White_noise [accessed 2007-07-03]

64 http://en.wikipedia.org/wiki/Gaussian_noise [accessed 2007-07-03]

http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Gaussian_noise
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The probability density function of a multivariate normal distribution with independent
variables εi that have the same variance σ2 looks like this (as defined in Equation 28.178 on
page 489):

fX(ε(f)) =

(
1

2πσ2

)n
2

e−
∑n

i=1(εi(f)−µ)2

2σ2 =

(
1

2πσ2

)n
2

e−
∑n

i=1(εi(f))2

2σ2 (28.245)

Amongst all possible vectors ε(f) : f ∈ F we need to find the most probable one
ε⋆ = ε(f⋆)

⋆
according to Equation 28.245. The function f⋆ that produces it will then be

the one that most probably matches to ϕ.
In order to express how likely the observation of some outcomes is under a certain set of

parameters, we have defined the likelihood function L in Definition 28.58. Here we can use
the probability density function fX of the normal distribution, since the maximal values of
fX are those that are most probable to occur.

L[ε(f)| f ] = fX(ε(f)) =

(
1

2πσ2

)n
2

e−
∑n

i=1(εi(f))2

2σ2 (28.246)

f⋆ ∈ F : L[ε(f⋆)| f⋆] = max
∀f∈F

L[ε(f)| f ] (28.247)

= max
∀f∈F

(
1

2πσ2

)n
2

e−
∑n

i=1(εi(f))2

2σ2 (28.248)

Finding a f⋆ that Maximizes the function fX however is equal to find a f⋆ that minimizes
the sum of the squares of the ε-values.

f⋆ ∈ F :
n∑

i=1

(εi(f
⋆))

2
= min

∀f∈F

n∑

i=1

(εi(f))
2

(28.249)

According to Equation 28.242 we can now substitute the εi-values with the difference
between the observed outcomes yi and the estimates f(xi).

n∑

i=1

(εi(f))
2

=
n∑

i=1

(yi − f(xi))
2

(28.250)

Definition 28.59 (Maximum Likelihood Estimator). A maximum likelihood estima-
tor65 [37] f⋆ is an estimator which fits with maximum likelihood to a given set of sample
data A. Under the particular assumption of uncorrelated error terms normally distributed
around zero, a MLE minimizes Equation 28.251.

f⋆ ∈ F :

n∑

i=1

(yi − f⋆(xi))
2

= min
∀f∈F

n∑

i=1

(yi − f(xi))
2

(28.251)

Minimizing the sum of the difference between the observed yi and the estimates f(xi)
also minimizes their mean, so with this we have also shown that the estimator that mini-
mizes mean square error MSE (see Definition 28.56) is the best estimator according to the
likelihood of the produced outcomes.

f⋆ ∈ F :
1

n

n∑

i=1

(yi − f⋆(xi))
2

= min
∀f∈F

1

n

n∑

i=1

(yi − f(xi))
2

(28.252)

f⋆ ∈ F : MSE(f⋆) = min
∀f∈F

MSE(f) (28.253)

65 http://en.wikipedia.org/wiki/Maximum_likelihood [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Maximum_likelihood
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The term (yi − f(xi))
2

is often justified by the statement that large deviations of f from
the y-values are punished harder than smaller ones. The correct reason why we minimize
the square error, however, is that we maximize the likelihood of the resulting estimator.

At this point, one should also notice that the xi also could be replaced with vectors
xi ∈ Rm without any further implications or modifications of the equations.

In most practical cases, the set F of possible functions is closely defined. It usually
contains only one type of parameterized function, so we only have to determine the unknown
parameters in order to find f⋆. Let us consider a set of linear functions as example. If we
want to find estimators of the form F = {∀ f(x) = ax+ b : a, b ∈ R}, we will minimize
Equation 28.254 by determining the best possible values for a and b.

MSE(f(x)| a, b) =
1

n

n∑

i=1

(axi + b− yi)
2 (28.254)

If we now could find a perfect estimator f⋆
p and our data would be free of any measurement

error, all parts of the sum would become zero. For n > 2, this perfect estimator would be the
solution of the over-determined system of linear equations illustrated in Equation 28.255.

0 = ax1 + b− y1
0 = ax2 + b− y2
. . . . . .
0 = axn + b− yn

(28.255)

Since it is normally not possible to obtain a perfect estimator because there are measurement
errors or other uncertainties like unknown dependencies, the system in Equation 28.255 often
cannot be solved but only minimized.

Best Linear Unbiased Estimators

The Gauss-Markov Theorem66 defines BLUEs (best linear unbiased estimators) according
to the facts just discussed:

Definition 28.60 (BLUE). In a linear model in which the measurement errors εi are
uncorrelated and are all normally distributed with an expected value of zero and the same
variance, the best linear unbiased estimators (BLUE) of the (unknown) coefficients are the
least-square estimators [1649].

Hence, for the best linear unbiased estimator also the same three assumptions
(Equation 28.238, Equation 28.239, and Equation 28.240 on page 500) as for the maximum
likelihood estimator hold.

28.7.3 Confidence Intervals

There is a very simple principle in statistics that always holds: All estimates may as well
be wrong. There is no guarantee whatsoever that we have estimated a parameter of an
underlying distribution correct regardless how many samples we have analyzed. However, if
we can assume or know the underlying distribution of the process which has been sampled,
we can compute certain intervals which include the real value of the estimated parameter
with a certain probability.

Definition 28.61 (Confidence Interval). Unlike point estimators, which approximate a
parameter of a data sample with a single value, confidence intervals67 (CIs) are estimations
that give certain upper and lower boundaries in which the true value of the parameter will
be located with a certain, predefined probability. [684, 351, 478]

66 http://en.wikipedia.org/wiki/Gauss-Markov_theorem [accessed 2007-07-03], http://www.

answers.com/topic/gauss-markov-theorem [accessed 2007-07-03]

67 http://en.wikipedia.org/wiki/Confidence_interval [accessed 2007-10-01]

http://en.wikipedia.org/wiki/Gauss-Markov_theorem
http://www.answers.com/topic/gauss-markov-theorem
http://www.answers.com/topic/gauss-markov-theorem
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The advantage of confidence intervals is that we can directly derive the significance of
the data samples from them – the larger the intervals are, the less reliable is the sample.
The narrower confidence intervals get for high predefined probabilities, the more profound,
i. e., significant, will the conclusions drawn from them be.

Example

Imagine we run a farm and own 25 chickens. Each chicken lays one egg a day. We collect
all the eggs in the morning and weigh them in order to find the average weight of the eggs
produced by our farm. Assume our sample contains the values (in g):

A =
{ 120, 121, 119, 116, 115, 122, 121, 123, 122, 120

119, 122, 121, 120, 119, 121, 123, 117, 118, 121 } (28.256)

n = len(A) = 20 (28.257)

From these measurements, we can determine the arithmetic mean a and the sample
variance s2 according to Equation 28.60 on page 473 and Equation 28.67 on page 474:

a =
1

n

n−1∑

i=0

A[i] =
2400

20
= 120 (28.258)

s2 =
1

n− 1

n−1∑

i=0

(A[i]− a)2 =
92

19
(28.259)

The question that arises now is if the mean of 120 is significant, i. e., whether it likely
approximates the expected value of the egg weight, or if the data sample was too small to
be representative. Furthermore, we would like to know in which interval the expected value
of the egg weights will likely be located. Now confidence intervals come into play. First,
we need to find out what the underlying distribution of the random variable producing A
as sample output is. In case of chicken eggs, we safely can assume68 that it is the normal
distribution discussed in Section 28.5.2 on page 486. With that we can calculate an interval
which includes the unknown parameter µ (i. e., the real expected value) with a confidence
probability of γ. γ = 1−a is the so-called confidence coefficient and a is the probability that
the real value of the estimated parameter lies not inside the confidence interval.

Let us compute the interval including the expected value µ of the chicken egg weights
with a probability of γ = 1− a = 95%. Thus, a = 0.05. Therefore, we have to pick the right
formula from Section 28.7.3 on the facing page (here it is Equation 28.272 on the next page)
and substitute in the proper values:

µγ ∈
[
a± t1− a

2 ,n−1
s√
n

]
(28.260)

µ95% ∈


120± t0.975,19 ∗

√
92
19√
19


 (28.261)

µ95% ∈ [120± 2.093 ∗ 0.5048] (28.262)

µ95% ∈ [118.94, 121.06] (28.263)

The value of t19,0.025 can easily be obtained from Table 28.12 on page 496 which contains
the respective quantiles of Student’s t-distribution discussed in Section 28.5.5 on page 494.
Let us repeat the procedure in order to find the interval that will contain µ with probabilities
1− γ = 99%⇒ a = 0.01 and 1− γ = 90%⇒ a = 0.1:

68 Notice that such an assumption is also a possible source of error!
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µ99% ∈ [120± t0.995,19 ∗ 0.5048] (28.264)

µ99% ∈ [120± 2.861 ∗ 0.5048] (28.265)

µ99% ∈ [118.56, 121.44] (28.266)

µ90% ∈ [120± t0.95,19 ∗ 0.5048] (28.267)

µ90% ∈ [120± 1.729 ∗ 0.5048] (28.268)

µ90% ∈ [119.13, 120.87] (28.269)

(28.270)

As you can see, the higher the confidence probabilities we specify the larger become the
intervals in which the parameter is contained. We can be to 99% sure that the expected
value of laid eggs is somewhere between 118.56 and 121.44. If we narrow the interval down
to [119.13, 120.87], we can only be 90% confident that the real expected value falls in it
based on the data samples which we have gathered.

Some Hand-Picked Confidence Intervals

The following confidence intervals are two-sided, i. e., we determine a range θ̃γ ∈[
θ̃′ − x, θ̃′ + x

]
that contains the parameter θ with probability γ based on the estimate

θ̃. If you need a one-sided confidence interval like θ̃γ ∈
(
−∞, θ̃ + x

]
or θ̃γ ∈

[
θ̃′ − x,∞

)
,

you just need to replace 1− a
2 with 1− a in the equations.

Expected Value of a Normal Distribution N
(
µ, σ2

)

With knowing the variance σ2: If the exact variance σ2 of the distribution underlying our
data samples is known, and we have an estimate of the expected value µ by the arithmetic
mean a according to Equation 28.60 on page 473, the two-sided confidence interval (of
probability γ) for the expected value of the normal distribution is:

µγ ∈
[
a± z

(
1− a

2

) σ√
n

]
(28.271)

Where z(y) ≡ probit(y) ≡ Φ−1y is the y-quantil of the standard normal distribution
(see Definition 28.49 on page 488) which can for example be looked up in Table 28.7.

With estimated sample variance s2: Often, the true variance σ2 of an underlying distribution
is not known and instead estimated with the sample variance s2 according to Equation 28.67
on page 474. The two-sided confidence interval (of probability γ) for the expected value can
then be computed using the arithmetic mean a and the estimate of the standard deviation
s =
√
s2 of the sample and the tn−1,1− a

2
quantile of Student’s t-distribution which can be

looked up in Table 28.12 on page 496.

µγ ∈
[
a± t1− a

2 ,n−1
s2√
n

]
(28.272)

Variance of a Normal Distribution

The two-sided confidence interval (of probability γ) for the variance of a normal distribution
can computed using sample variance s2 and the χ2(p, k)-quantile of the χ2 distribution which
can be looked up in Table 28.10 on page 493.

σ2
γ ∈

[
(n− 1)s2

χ2
(
1− a

2 , n− 1
) , (n− 1)s2

χ2
(

α
2 , n− 1

)
]

(28.273)
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Success Probability p of a B(1, p) Binomial Distribution

The two-sided confidence interval (of probability γ) of the success probability p of a B(1, p)
binomial distribution can be computed as follows:

pγ ∈


 n

n+ z2
1− a

2


a+

1

2n
z2
1− a

2
± z2

1− a
2

√
a(1− a)

n
+

(
1

2n
z2
1− a

2

)2



 (28.274)

Expected Value of an Unknown Distribution with Sample Variance

The two-sided confidence interval (of probability γ) of the expected value EX of an unknown
distribution with an unknown real variance D2X can be determined using the arithmetic
mean a and the sample variance s2 if the sample data set contains more than n = 50
elements.

EXγ ∈
[
a± z

(
1− a

2

) s√
n

]
(28.275)

Confidence Intervals from Tests

Many statistical tests (such as the Wilcoxon’s signed rank test introduced in Section 28.8.1)
can be inverted in order to obtain confidence intervals [205]. The topic of statistical tests
are discussed in Section 28.8.

28.7.4 Density Estimation

In this section we discuss density estimation69 techniques [185, 1845]. Density estimation is
often used by global optimization algorithms in order to test whether a certain region of
the search space has already been explored sufficiently and where to concentrate the further
search efforts.

Definition 28.62 (Density Estimation). A density estimation ρ(a) approximates an
unobservable probability density function fX(a) (see Section 28.2.8 on page 472) using a set
of sample data A.

ρ(a) ≈ fX(a) (28.276)

ρ : A→ R+ (28.277)

Histograms

TODO

The kth Nearest Neighbor Method

Definition 28.63 (kth Nearest Neighbor Distance). The kth nearest neighbor distance
function distρ

nn,kdenotes the distance of one element a to its kth nearest neighbor in the set
of all elements A. It relies on a distance measure (here called dist) to compute the element
distances. See Section 29.1 on page 537 for more details on distance measures.

distρ
nn,k(dist, a, A) = dist(a, ak) : |∀b ∈ A : dist(a, b) < dist(a, ak)| = k − 1 (28.278)

69 http://en.wikipedia.org/wiki/Density_estimation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Density_estimation
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Using the kth nearest neighbor method [1879], the probability density function of an
element a is estimated by its distance to its kth nearest neighbor ak in the test set A (with
k < |A|). Most often, the kth nearest neighbor distance measure internally uses the Euclidian
distance measure disteucl ≡ distn,2 (see Definition 29.8 on page 538), but theoretically any
other one of the distance measures presented in Section 29.1 could also be applied. Normally,
k is chosen to be

√
|A|

ρnn,k(a,A) =
k

2 |A| distρ
nn,k(dist, a, A)

(28.279)

Crowding Distance

Crowding distance [542] treats every element a ∈ A as n-dimensional vector (where each
dimension will represent an objective subject to optimization in the context of this book).
The crowding distance is not a distance measure as its name may suggest, but a base for a
density estimate. When computing the crowding distance of an element a we consider every
single dimension i of the element a separately. For each of its dimensions, we determine
the nearest neighbor to the left al and the nearest neighbor to the right Ar. The crowding
distance of the element a in the dimension i is then ar

i − al
i, the distance of the (objective)

values of the right and left neighbors of a in the dimension i. This distance is normalized
so that the maximum crowding distance of all elements in A in any dimension is 1. If an
element has no left or no right neighbor in this dimension, meaning that it is situated on
either end of the spectrum represented by all elements in the sample A, its crowding distance
in the dimension is also set to 1.

The original source [542] does not mention normalization explicitly and sets the crowding
distance of edge elements to∞, which is both problematic. If no normalization is performed,
dimensions with large crowding distances will outweigh those with smaller values – they
will play no role in the crowding density value finally computed. With normalization, each
dimension has the same weight. If the crowding distance of edge elements is set to ∞, they
will have a very outstanding position in A which could influence processes relying on the
crowding distance in a very strong way.

The total crowding distance of an element a is the sum of its distance values correspond-
ing to each dimension. Algorithm 28.1 on the following page computes a function distρ

cr(a,A)
which relates each element a of the set A to its crowding distance. In this algorithm, we con-
sider distρ

cr to be some sort of lookup-table instead of a mathematical function. Therefore, we
can build it iteratively by summing up the distance values dimension-wise. Since computing
the crowding distance can be performed best by sorting the individuals according to their
values in the single dimensions, we define the comparator function70 cmpiab as follows:

cmpcr,i(a, b) =




−1 if ai < bi

0 if ai = bi
1 otherwise

∀a, b ∈ A, ∀i ∈ [0, |a|] (28.280)

The crowding distance can now be used as density estimate whereas individuals with
large crowding distance values are in a sparsely covered region while small values of distρ

cr

indicate dense portions of A. A density estimate derived from the crowding distance will
therefore be inversely proportional to it. Hence, we define the density measure ρcr as the
difference of 1 and distρ

cr(a,A) divided by the vector dimensions n = |a|, obtaining a value
in [0, 1] that is big if a is in crowded region and small if it is situated in a sparsely covered
area of A. It should be noted that this density estimate is mathematically not fully sound
since it only displays the crowding information.

ρcr(a,A) = 1− distρ
cr(a,A)

n
(28.281)

70 Comparator functions where introduced in Definition 1.15 on page 38.
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Algorithm 28.1: distρ
cr(. . . , A)←− computeCrowdingDistance(a,A)

Input: A: the set of sample data
Data: dd: a list used as store for the crowding distances of the single dimensions
Data: As: the list representation of A
Data: dim: the dimension counter
Data: j: the element counter
Data: max: the maximum crowding distance of the current dimension
Output: distρ

cr(. . . , A): the crowding distance function

begin1

dd←− createList(len(A) , 0)2

dd[0]←− 13

dd[len(A)−1]←− 14

As ←− setToList(A)5

dim←− n6

while dim > 0 do7

As ←− sortLista(A, cmpdim)8

max←− 09

j ←− len(A)− 210

while j > 0 do11

dd[j]←− As[j+1]dim −As[j−1]dim12

if dd[j] > max then max←− dd[j]13

j ←− j − 114

if max > 0 then15

j ←− len(A)− 216

while j > 0 do17

dd[j]←− dd[j]

max
18

j ←− j − 119

j ←− len(A)− 120

while j ≥ 0 do21

distρ
cr(As[j], A)←− distρ

cr(As[j], A) + dd[j]22

j ←− j − 123

dim←− dim− 124

return distρ
cr(. . . , A)25

end26

Parzen Window / Kernel Density Estimation

Another density estimation is the Parzen [1618] window method71, also called kernel density
estimation.

TODO

28.8 Statistical Tests

With statistical tests [874, 1866, 1878, 898, 1274, 478], it is possible to find out whether
an alternative hypothesis H1 about the distribution(s) from a set of measured data A is
likely to be true. This is done by showing that the sampled data would very unlikely have

71 http://en.wikipedia.org/wiki/Parzen_window [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Parzen_window
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occurred if the opposite hypothesis, the null hypothesis H0, holds. If we want to show, for
instance, that two different settings for an evolutionary algorithm will probably lead to
different solution qualities (H1), we assume that the distributions of the objective values of
the solution candidates returned by them are equal (H0). Then, we run the two evolutionary
algorithms multiple times and measure the outcome, i. e., obtain A. Based on A, we can
estimate the probability α with which the two different sets of measurements (the samples)
would have occurred if H0 was true. In the case that this probability is very low, let’s say
α < 5%, H0 can be rejected (with 5% probability of making a type 1 error) and H1 is likely
to hold. Otherwise, we would expect H0 to hold and reject H1.

Neyman and Pearson [1522, 1523] distinguish two classes of errors72 that can be made
when performing hypothesis tests:

Definition 28.64 (Type 1 Error). A type 1 error (α error, false positive) is the rejection
of a correct null hypothesis H0, i. e., the acceptance of a wrong alternative hypothesis H1.
Type 1 errors are made with probability α.

Definition 28.65 (Type 2 Error). A type 2 error (β error, false negative) is the accep-
tance of a wrong null hypothesis H0, i. e., the rejection of a correct alternative hypothesis
H1. Type 2 errors are made with probability β.

Definition 28.66 (Power). The (statistical) power73 of a statistical test is the probability
of rejecting a false null hypothesis H0. Therefore, the power equals 1− β.

A few basic principles for testing should be mentioned before going more into detail:

1. The more samples we have, the better the quality and significance of the conclusions
that we can make by testing. An arithmetic mean of the runtime 7s is certainly more
significant when being derived from 1000 runs of certain algorithm than from the sample
set A = {9s, 5s}. . .

2. The more assumptions that we can make about the sampled probability distribution,
the powerful will the tests be that are available.

3. Wrong assumptions, falsely carried out measurements, or other misconduct will nullify
all results and efforts put into testing.

In the following, we will discuss multiple methods for hypothesis testing. We can dis-
tinguish between tests based on paired samples and those for independent populations. In
Table 28.14, we have illustrated an example for the former, where pairs of elements (a, b)
are drawn from two different populations. Table 28.15 contains two independent samples a
and b with a different number of elements (na = 6 6= nb = 8).

28.8.1 Non-Parametric Tests

All previously discussed estimation or testing methods have one thing in common: we have
to know or to assume the type of distribution which drives the sampled process. When this
distribution is known, everything is sweet. If we have to assume the distribution, we may
make an error. The possibility of an error obviously renders the probabilities that we define
for the tests or confidence intervals more or less useless. Additionally, there are cases where
we either have no idea at all about the distribution in question or where it is questionable
whether one of the distributions known to us (see, for instance, Section 28.4 and Section 28.5
for reference) does fit to the behavior of the observed process sufficiently good.

Non-parametric statistics74 [1878, 1866, 252] is the branch of statistics focusing on the
group of methods that make only extremely few assumptions about the distribution from

72 http://en.wikipedia.org/wiki/Type_I_and_type_II_errors [accessed 2008-08-15]

73 http://en.wikipedia.org/wiki/Statistical_power [accessed 2008-08-15]

74 http://en.wikipedia.org/wiki/Non-parametric_statistics [accessed 2008-08-15]

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Statistical_power
http://en.wikipedia.org/wiki/Non-parametric_statistics
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Row a b d = b − a Sign Rank |r| Rank r

1. 2 10 +8 + 13 13
2. 3 4 +1 + 2 2
3. 6 10 +4 + 10 10
4. 4 6 +2 + 6 6
5. 6 11 +5 + 11 11
6. 5 6 +1 + 2 2
7. 4 11 +7 + 12 12
8. 9 6 −3 - 9 −9
9. 10 12 +2 + 6 6

10. 8 8 0 = – –
11. 6 8 +2 + 6 6
12. 7 6 −1 - 2 −2
13. 4 4 0 = – –
14. 4 6 +2 + 6 6
15. 9 7 −2 - 6 −6∑

ai = 87
∑
bi = 115 D =

∑
di = 28 R =

∑
ri = 57

med(a) = 6; a = 5.8

med(b) = 7; b = 7.67

Table 28.14: Example for paired samples (a, b).

Row a b Ranks ra Ranks rb

1. 2 1.5
2. 2 1.5
3. 3 4.0
4. 3 4.0
5. 3 4.0
6. 4 6.0
7. 5 8.5
8. 5 8.5
9. 5 8.5

10. 5 8.5
11. 6 11.5
12. 6 11.5
13. 7 13.5
14. 7 13.5

med(a) = 3 med(b) = 5.5 Ra = 28 Rb = 77

na = 6 nb = 8

Table 28.15: Example for unpaired samples.

which the data has been sampled. Many of the density estimation methods which we will
discuss in Section 28.7.4 belong to this group, for instance. Here, we will concentrate on
non-parametric tests which allow us to verify hypothesis on data samples with unknown
underlying distribution.

Sign Test

The sign test75 [874, 1878] is used for checking whether the differences in the medians of
paired samples from continuous distributions are significant. This test is especially useful,
for instance, when we have before-after or with-and-without-types of sample pairs (a, b) and

75 http://en.wikipedia.org/wiki/Sign_test [accessed 2008-08-15]

http://en.wikipedia.org/wiki/Sign_test
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can (only) measure the changes between them. The null hypothesis H0 is that there is no
difference between the medians of the distributions generating the elements a and b. The
alternative hypothesis H1 is that such a difference exists.

An example for this situation has been given in Table 28.14 on the facing page. The first
step of applying the sign test is to reduce the measurement pairs (a, b) to + (if a < b), = (if
a = b), and to - (if a > b), as done in the fifth column of Table 28.14. Then, the number of
+ and - in A′ are counted.

n+ = |{a ∈ A : a = +}| (28.282)

n− = |{a ∈ A : a = −}| (28.283)

In Table 28.14, n+ = 10 and n− = 3. In the following, the samples with = are ignored,
setting the total of “interesting” samples to n = 13. The motivation is that if the underlying
distributions are continuous, the chance of drawing two similar elements ai = bi (with
difference di = 0) is also 0 and such measurements thus result from imprecision. On one
hand, this makes complete sense, since these samples would have been either + or - with
more precise measurement equipment and now we cannot determine to which group they
belong anymore. On the other hand, by simply discarding these samples, we also discard
information which supports the null hyporthesis H0. This is a weakness of the sign test.

In the ideal case if H0 holds, i. e., if the medians of the distributions of a and b are
equal, the probability that one row in the Table 28.14 contains a + is exactly the same that
it would contain a -, both are 0.5. Rarely one will encounter such an ideal situation in the
data samples, so we need to find out how significant the 10 : 3 ratio in our sample is. With
the binomial distribution (discussed in Section 28.4.3), we can determine the probability
that n+ (resp. n−) or more extreme numbers of + (-) would occur under H0.

α = P
(
x ≤ min

{
n+, n−

})
+ P

(
x ≥ max

{
n+, n−

})
=

2P
(
x ≤ min

{
n+, n−

})
= 2

min{n+,n−}∑

i=0

(
n

i

)
0.5n =

2P
(
x ≥ max

{
n+, n−

})
= 2

n∑

i=max{n+,n−}

(
n

i

)
0.5n (28.284)

Notice that this corresponds to computing a two-sided probability with the CFG of the
binomial distribution (see Equation 28.137) with the parameters n and p = 0.5. In our
example, we would compute:

α = 2
3∑

i=0

(
13

i

)
0.513 ≈ 0.0923 (28.285)

Data samples at least as extreme as our measurements could occur with a probability of
approximately 9%. On a significance level of 5%, we cannot reject H0. Hence, there is not
enough information to believe in H1 according to the sign test.

Randomization Test

Randomization tests76 for equality of expected values have first been suggested by Fisher
[683] in 1936 [252, 619, 1977]. They not only take into consideration the signs of the differ-
ences, but also the sum D of differences themselves. In our example from Table 28.14, the
total difference D between the a and b is 28.

The null hypothesis H0 is again that all samples have been drawn from the same popula-
tion and thus, their expected values are the same. For each single pair (ai, bi) in Table 28.14,

76 http://en.wikipedia.org/wiki/Randomization_test [accessed 2008-08-20]

http://en.wikipedia.org/wiki/Randomization_test
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we have computed the difference di = bi − ai in the fourth column. If H0 holds, the prob-
ability that we would measure di is exactly the same as for measuring −di, since drawing
the pair (ai, bi) is as same as probable that drawing (bi, ai).

Leaving the zero differences (di = 0) out of consideration, we obtain the following com-
binatorial considerations from [252]: If our measured data consists of only one pair (a1, b1),
under H0, 21 = 2 differences are possible: (d1 = b1 − a1 or d1 = a1 − b1) and both have
the same probability 1/2. For n = 2 pairs, the difference signs can occur in 22 = 4 ways,
{−−,−+,+−,++}, each having probability 1/4. For n = 3, 23 = 8 possible sign configura-
tions with probability 1/8 can emerge {−−−,−−+,−+−,−++,+−−,+−+,++−,+++}.
Generally, if we leave the pairs intact and exchange only their members, there are 2n possible
+/- arrangements for n pairs.

For all these arrangements, we compute the absolute value of the corresponding total
difference D′ and count the number ne of differences that are more extreme than the absolute
value of D. “Extreme” means either larger or smaller than D, depending on the sample
distribution. The absolute values of the differences are used since the test of H0 is basically
a two-sided test. The probability α of the observed measurements under H0 can then be
estimated with

ne = min {|{D′ : D′ ≥ |D|}| , |{D′ : D′ ≤ |D|}|} (28.286)

α =
ne

2n
(28.287)

In other words, the more often differences more extreme than the initial D occur, the more
evidence is given for H0. If, on the other hand, only very few configurations with differences
as extreme as D exist, α becomes very small and we can reject H0.

900

1000

800

600

700

400

500

300

100

200

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Possible Difference of a Permutation

N
u
m

b
er

 o
f 
O

cc
u
rr

en
ce

s

344 differences
at least as

extreme as ,,28``

7848 differences
less extreme
than ,,28``

2616
34

58
94

134

182

238

296

366

436

512

588

658

728

784

836
874

896

454

Figure 28.19: The randomization test applied to the example from Table 28.14.

Let us apply this procedure to the example given in Table 28.14. There are n = 13 pairs
with non-zero difference in our samples, leading to a total of 8192 configurations. You can
find these 8192 values illustrated in a histogram in Figure 28.19. From this histogram, we
can see that there are 344 permutations with a difference at least as extreme as the sampled
difference. Hence, α = 43/1024 ≈ 0.042 = 4.2% and, under a significance of 5%, the null
hypothesis H0 can be rejected.
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The randomization test has a higher power than the sign test, but comes with the
additional assumption that the measured sample represents the population(s) and the un-
derlying distribution(s) sufficiently well and that the samples are pair-wise independent.
The populations do not necessarily need to be homogeneous. Different than the sign test,
the randomization test does not require the sampled distributions to be continuous and,
thus, zero differences are possible. They would play no role in the computation since the
same results with come out with and without them [252]. Leaving them away makes sense
since it reduces the number of combinations which have to be tested. If we expect a high
probability of outliers, the randomization test is maybe not the method of choice and we
would prefer the sign test. Notice furthermore that computing all possible differences may
become computationally intense for n > 128 data samples. . .

Signed Rank Test

Wilcoxon’s signed rank test77 [2220] basically works exactly the same as the randomization
test except that it replaces the difference sums with difference ranks. The null hypothesis
H0 is that the average rank of the samples in the pairs are equal. The alternative hypothesis
H1 is that there is a difference. The ranks are computed as follows:

1. First, the differences di between the elements bi and ai of the sample pairs (ai, bi) have
to be determined (the fourth column in Table 28.14).

2. The zero differences (di = 0) are discarded and only the remaining n samples are con-
sidered in the test.

3. The absolute values |di| of these differences are sorted in ascending order.
4. Each absolute value di is assigned a rank |ri| corresponding to its position in this list.

Rows i, i+ 1, . . . , i+m with equal absolute differences |di| = |di+1| = · · · = |di+m| share

the same absolute rank |ri| = |ri+1| = .. = |ri+m| = i+(i+1)+···+(i+m)
m+1 = m

2 + i which
is determined by averaging, fractional ranks such as 3.5 are possible. The difference 1,
for instance, occurs three times in the second to last (unsorted) column of Table 28.14:
|d2| = |d6| = |d12| = 1. All three rows received the same absolute rank |r2| = |r6| =
|r12| = 1+2+3

2 = 2.
5. The sign that has been stripped from the differences di is re-attached to the ranks, i. e.,
ri = |ri| ∗ sign(di). We have applied this ranking scheme to the example in Table 28.14
in the last table column.

The rank sum R of the initial sample is determined by adding up all the signed ranks
ri of the in-pair differences. Now the distribution of the absolute values of the 2n possible
rank sums R′ are computed with the same method with which the distribution of possible
difference sums is determined in the randomization test (see Section 28.8.1). Amongst these,
we count the number ne of rank sums at least as extreme as R and the probability α that
the ranks samples would have been measured then is determined with Equation 28.289.

ne = min {|{R′ : R′ ≥ |R|}| , |{R′ : R′ ≤ |R|}|} (28.288)

α =
ne

2n
(28.289)

When we apply this procedure to our example from Table 28.14 and illustrate the his-
togram the absolute rank sums in Figure 28.20 (analogously to the histogram of possible
absolute difference sums in Figure 28.19). The rank sum of the original sample is 57, as
noted in Table 28.14. In our example, we have n = 13 non-zero differences and there are a
total of 2n = 8192 possible configurations. Amongst these, ranks as high as 57 and higher
occur ne = 372 times, leading to α = 93/2048 ≈ 0.045. Therefore, the set of ranks which we
have measured would have a probability of 4.5% if H0 would holds. In other words, at a
significance level of 5%, we can reject H0 and assume the alternative hypothesis H1.

77 http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test [accessed 2008-08-21]

http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
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Figure 28.20: The histogram of possible absolute rang sums in Table 28.14.

By neither weighting every difference the same nor giving outliers too big of a chance
to influence, the outcome of the test, the signed rank test lies somewhat between the sign
and the randomization test [252]. When applying the signed rank test, we do not need to
assume that the sampled data represent the true distributions with high precision. At first
glance, this test has the same drawback as the randomization test: in order to get to the
α = 93/2048, we need to compute all the 2n = 8192 possible rank combinations (or, at least
half of them). For larger n, this will not work properly – n = 32, for instance 4 294 967 296
iterations, and for n = 100, we would have to check 1.3 ∗ 1030 combinations.

Different from the randomization test though, the rank numbers are finite and we know,

for instance, their maximum value r̂ = n(n+1)
2 . For the signed rank approach, there exist

tables (such as Table 28.16), where the corresponding α values are listed. In order to use
them, we use another (equivalent) approach for computing the rank sums [1076]. First, we
proceed exactly as before until we have computed all absolute ranks |ri| of the absolute
differences |di| (see the sixth column in Table 28.14). Similar to the sign test, we compute
the sum of ranks r+ belonging to the positive and the sum of ranks r− belonging to the
negative differences.

r+ =

n∑

i=1

{
|ri| if di > 0

0 otherwise
(28.290)

r− =

n∑

i=1

{
|ri| if di < 0

0 otherwise
(28.291)

ř = min
{
r+, r−

}
(28.292)

In our example, r+ = 74, r− = 17 (notice that r+− r− = R = 57 and r+ + r− = 0.5∗n∗
(n + 1) = 91), and, thus, ř = 17. In the following, three tables with the distribution of the
Wilcoxon rank values for two-sided hypothesis can be found. The first two (Table 28.16 and
Table 28.17) contain the critical values of ř for certain α whereas the third table (Table 28.18)
lists the exact α values for various n and ř. When we want to find the significance level with
which we can reject H0, we will look up the row with n = 13 Table 28.16 and search the first
cell which is greater or equal than ř. We find that ř ≤ 17⇒ α ≤ 0.05. (If ř was 16, 15, .., 13,
we would assume the same α and for ř = 12, α ≤ 0.02 hold.) We had determined the precise
α in our case to be 4.5%, so this fits to the table value. According to Table 28.16, we could
reject H0 with a significance of 5%. Notice that an ∅ in a cell of Table 28.16 or Table 28.17
means that not value of ř exists for which the given significance level is fulfilled.
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Table 28.18 lists the precise values of α for n ∈ 4..30. We can again look up our example
by first finding the section dealing with n = 13. There, we can find the α corresponding to ř.
In each row of this section, ten values of ř are listed. The first cell of row X stands for ř = X,
the second one for ř = X + 1, and so on. Since ř = 17, we go to the eight column to the
second row (the row that starts with 10) and find α = 0.047 86. This value is equal to 392/8192,
whereas the exact value that we have computed is smaller: (372/8192). This difference results
from the fact that in our example, there are some sample differences which share the same
rank |r| (row 9 and 11 in Table 28.14, for example). The table is only precise for unique ranks.
Basically, shared sums can lead to increases as well as decreases of α. For example, if all ranks
were 7, there are only 184 combinations for n = 13 where the ranks are at least as extreme
as 17 (α would be 2.2%) and if the 13 ranks were (3, 3, 3, 3, 3, 7, 7, 7, 11, 11, 11, 11, 11), there
would be 416 combinations, i. e., α = 0.0507. Thus, the tables can only be used correctly if
most rank numbers are indeed unique.
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α/n .2 .1 .05 .02 .01 .005 .002

1 ∅ ∅ ∅ ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ ∅ ∅ ∅ ∅
3 ∅ ∅ ∅ ∅ ∅ ∅ ∅
4 0 ∅ ∅ ∅ ∅ ∅ ∅
5 2 0 ∅ ∅ ∅ ∅ ∅
6 3 2 0 ∅ ∅ ∅ ∅
7 5 3 2 0 ∅ ∅ ∅
8 8 5 3 1 0 ∅ ∅
9 8 5 3 1 0 ∅ ∅

10 14 10 8 5 3 1 0

11 17 13 10 7 5 3 1
12 21 17 13 9 7 5 2
13 26 21 17 12 9 7 4
14 31 25 21 15 12 9 6
15 36 30 25 19 15 12 8
16 42 35 29 23 19 15 11
17 48 41 34 27 23 19 14
18 55 47 40 32 27 23 18
19 62 53 46 37 32 27 21
20 69 60 52 43 37 32 26

21 77 67 58 49 42 37 30
22 86 75 65 55 48 42 35
23 94 83 73 62 54 48 40
24 104 91 81 69 61 54 45
25 113 100 89 76 68 60 51
26 124 110 98 84 75 67 58
27 134 119 107 92 83 74 64
28 145 130 116 101 91 82 71
29 157 140 126 110 100 90 79
30 169 151 137 120 109 98 86

31 181 163 147 130 118 107 94
32 194 175 159 140 128 116 103
33 207 187 170 151 138 126 112
34 221 200 182 162 148 136 121
35 235 213 195 173 159 146 131
36 250 227 208 185 171 157 141
37 265 241 221 198 182 168 151
38 281 256 235 211 194 180 162
39 297 271 249 224 207 192 173
40 313 286 264 238 220 204 185

41 330 302 279 252 233 217 197
42 348 319 294 266 247 230 209
43 365 336 310 281 261 244 222
44 384 353 327 296 276 258 235
45 402 371 343 312 291 272 249
46 422 389 361 328 307 287 263
47 441 407 378 345 322 302 277
48 462 426 396 362 339 318 292
49 482 446 415 379 355 334 307
50 503 466 434 397 373 350 323

α/n .2 .1 .05 .02 .01 .005 .002

51 525 486 453 416 390 367 339
52 547 507 473 434 408 384 355
53 569 529 494 454 427 402 372
54 592 550 514 473 445 420 389
55 615 573 536 493 465 439 407
56 639 595 557 514 484 457 425
57 664 618 579 535 504 477 443
58 688 642 602 556 525 497 462
59 714 666 625 578 546 517 482
60 739 690 648 600 567 537 501

61 765 715 672 623 589 558 521
62 792 741 697 646 611 580 542
63 819 767 721 669 634 602 563
64 847 793 747 693 657 624 584
65 875 820 772 718 681 647 606
66 903 847 798 742 705 670 628
67 932 875 825 768 729 694 651
68 962 903 852 793 754 718 674
69 992 931 879 819 779 742 697
70 1022 960 907 846 805 767 721

71 1053 990 936 873 831 792 745
72 1084 1020 964 901 858 818 770
73 1116 1050 994 928 884 844 795
74 1148 1081 1023 957 912 871 821
75 1181 1112 1053 986 940 898 847
76 1214 1144 1084 1015 968 925 873
77 1247 1176 1115 1044 997 953 900
78 1282 1209 1147 1075 1026 981 927
79 1316 1242 1179 1105 1056 1010 955
80 1351 1276 1211 1136 1086 1039 983

81 1387 1310 1244 1168 1116 1069 1011
82 1423 1345 1277 1200 1147 1099 1040
83 1459 1380 1311 1232 1178 1129 1070
84 1496 1415 1345 1265 1210 1160 1099
85 1533 1451 1380 1298 1242 1191 1130
86 1571 1487 1415 1332 1275 1223 1160
87 1609 1524 1451 1366 1308 1255 1191
88 1648 1561 1487 1400 1342 1288 1223
89 1688 1599 1523 1435 1376 1321 1255
90 1727 1638 1560 1471 1410 1355 1287

91 1767 1676 1597 1507 1445 1389 1320
92 1808 1715 1635 1543 1480 1423 1353
93 1849 1755 1674 1580 1516 1458 1387
94 1891 1795 1712 1617 1552 1493 1421
95 1933 1836 1752 1655 1589 1529 1455
96 1976 1877 1791 1693 1626 1565 1490
97 2019 1918 1832 1731 1664 1601 1525
98 2062 1960 1872 1770 1702 1638 1561
99 2106 2003 1913 1810 1740 1676 1598

100 2151 2045 1955 1850 1779 1714 1634

Table 28.16: Wilcoxon’s two-sided signed-rank distribution 2W (α, n) for n ∈ 1..100 (from
Junge [1076]).
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α/n .2 .1 .05 .02 .01 .005 .002

101 2195 2089 1997 1890 1818 1752 1671
102 2241 2133 2039 1931 1858 1791 1709
103 2287 2177 2082 1972 1898 1830 1747
104 2333 2222 2125 2014 1939 1870 1785
105 2380 2267 2169 2056 1980 1910 1824
106 2427 2312 2213 2099 2022 1950 1863
107 2475 2359 2258 2142 2063 1991 1903
108 2523 2405 2303 2186 2106 2032 1943
109 2572 2452 2349 2230 2149 2074 1984
110 2621 2500 2395 2274 2192 2117 2025

111 2671 2548 2442 2319 2236 2159 2066
112 2721 2596 2489 2364 2280 2202 2108
113 2771 2645 2536 2410 2325 2246 2150
114 2822 2695 2584 2456 2370 2290 2193
115 2874 2744 2632 2503 2415 2335 2236
116 2926 2795 2681 2550 2461 2380 2280
117 2978 2846 2731 2598 2508 2425 2324
118 3031 2897 2780 2646 2555 2471 2368
119 3085 2948 2831 2694 2602 2517 2413
120 3139 3001 2881 2743 2650 2564 2459

121 3193 3053 2933 2793 2698 2611 2505
122 3248 3106 2984 2843 2747 2658 2551
123 3303 3160 3036 2893 2796 2707 2598
124 3359 3214 3089 2944 2846 2755 2645
125 3416 3269 3142 2995 2896 2804 2692
126 3472 3324 3195 3047 2946 2853 2740
127 3530 3379 3249 3099 2997 2903 2789
128 3587 3435 3304 3152 3049 2953 2838
129 3645 3492 3359 3205 3100 3004 2887
130 3704 3548 3414 3258 3153 3055 2937

131 3763 3606 3470 3312 3205 3107 2987
132 3823 3664 3526 3367 3259 3159 3038
133 3883 3722 3583 3421 3312 3212 3089
134 3944 3781 3640 3477 3366 3264 3140
135 4005 3840 3697 3533 3421 3318 3192
136 4066 3900 3756 3589 3476 3372 3245
137 4128 3960 3814 3646 3531 3426 3298
138 4191 4020 3873 3703 3587 3481 3351
139 4254 4081 3933 3760 3644 3536 3405
140 4317 4143 3993 3819 3701 3592 3459

141 4381 4205 4053 3877 3758 3648 3514
142 4445 4268 4114 3936 3816 3704 3569
143 4510 4331 4175 3996 3874 3761 3624
144 4575 4394 4237 4055 3932 3819 3680
145 4641 4458 4299 4116 3991 3877 3737
146 4708 4522 4362 4177 4051 3935 3793
147 4774 4587 4425 4238 4111 3994 3851
148 4842 4652 4489 4300 4171 4053 3908
149 4909 4718 4553 4362 4232 4113 3967
150 4978 4785 4618 4425 4294 4173 4025

α/n .2 .1 .05 .02 .01 .005 .002

151 5046 4851 4683 4488 4355 4233 4084
152 5115 4919 4748 4551 4418 4294 4144
153 5185 4986 4814 4615 4480 4356 4204
154 5255 5054 4881 4680 4544 4418 4264
155 5326 5123 4948 4745 4607 4480 4325
156 5397 5192 5015 4810 4671 4543 4387
157 5468 5262 5083 4876 4736 4606 4448
158 5540 5332 5151 4943 4801 4670 4511
159 5613 5402 5220 5009 4866 4734 4573
160 5686 5473 5289 5077 4932 4799 4636

161 5759 5545 5359 5144 4999 4864 4700
162 5833 5617 5429 5213 5065 4930 4764
163 5908 5689 5500 5281 5133 4996 4828
164 5982 5762 5571 5350 5200 5062 4893
165 6058 5835 5643 5420 5269 5129 4959
166 6134 5909 5715 5490 5337 5196 5024
167 6210 5983 5787 5560 5406 5264 5091
168 6287 6058 5860 5631 5476 5332 5157
169 6364 6133 5934 5703 5546 5401 5224
170 6442 6209 6008 5775 5616 5470 5292

171 6520 6285 6082 5847 5687 5540 5360
172 6599 6362 6157 5920 5759 5610 5429
173 6678 6439 6232 5993 5831 5681 5497
174 6758 6517 6308 6067 5903 5752 5567
175 6838 6595 6385 6141 5976 5823 5637
176 6919 6673 6461 6216 6049 5895 5707
177 7000 6752 6538 6291 6123 5967 5778
178 7081 6832 6616 6366 6197 6040 5849
179 7163 6912 6694 6442 6271 6113 5921
180 7246 6992 6773 6519 6346 6187 5993

181 7329 7073 6852 6596 6422 6261 6065
182 7412 7155 6932 6673 6498 6336 6138
183 7496 7236 7012 6751 6574 6411 6212
184 7581 7319 7092 6829 6651 6486 6285
185 7666 7402 7173 6908 6728 6562 6360
186 7751 7485 7254 6987 6806 6639 6435
187 7837 7569 7336 7067 6884 6716 6510
188 7924 7653 7419 7147 6963 6793 6585
189 8010 7738 7502 7228 7042 6871 6662
190 8098 7823 7585 7309 7122 6949 6738

191 8186 7908 7669 7391 7202 7028 6815
192 8274 7995 7753 7473 7283 7107 6893
193 8363 8081 7838 7555 7364 7187 6971
194 8452 8168 7923 7638 7445 7267 7049
195 8542 8256 8008 7722 7527 7347 7128
196 8632 8344 8095 7806 7610 7428 7207
197 8723 8432 8181 7890 7692 7510 7287
198 8814 8521 8268 7975 7776 7592 7367
199 8905 8611 8356 8060 7859 7674 7448
200 8998 8701 8444 8146 7944 7757 7529

Table 28.17: Wilcoxon’s two-sided signed-rank distribution 2W (α, n) for n ∈ 101..200 (from
Junge [1076]).
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ř +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

Precise α values for n = 4

0 0.125

Precise α values for n = 5

0 0.0625 0.125 0.1875

Precise α values for n = 6

0 0.03126 0.0625 0.09376 0.15626

Precise α values for n = 7

0 0.015626 0.03126 0.04688 0.07812 0.10938 0.15626

Precise α values for n = 8

0 0.007812 0.015626 0.02344 0.03906 0.05468 0.07812 0.10938 0.14844 0.19532

Precise α values for n = 9

0 0.003906 0.007812 0.011718 0.019532 0.02734 0.03906 0.05468 0.07422 0.09766 0.1289

10 0.16406

Precise α values for n = 10

0 0.0019532 0.003906 0.00586 0.009766 0.013672 0.019532 0.02734 0.0371 0.04882 0.06446

10 0.08398 0.10546 0.13086 0.16016 0.19336

Precise α values for n = 11

0 9.766E-4 0.0019532 0.00293 0.004882 0.006836 0.009766 0.013672 0.018554 0.02442 0.03222

10 0.042 0.05372 0.06738 0.083 0.10156 0.12304 0.14746 0.1748

Precise α values for n = 12

0 4.882E-4 9.766E-4 0.0014648 0.002442 0.003418 0.004882 0.006836 0.009278 0.012208 0.016114

10 0.021 0.02686 0.03418 0.04248 0.05224 0.06396 0.07714 0.09228 0.10986 0.1294

20 0.15136 0.17626

Precise α values for n = 13

0 2.442E-4 4.882E-4 7.324E-4 0.0012208 0.001709 0.002442 0.003418 0.004638 0.006104 0.008056

10 0.010498 0.013428 0.01709 0.02148 0.02662 0.03272 0.0398 0.04786 0.05738 0.06812

20 0.08032 0.09424 0.10986 0.1272 0.14648 0.16772 0.19092

Precise α values for n = 14

0 1.2208E-4 2.442E-4 3.662E-4 6.104E-4 8.544E-4 0.0012208 0.001709 0.00232 0.003052 0.004028

10 0.00525 0.006714 0.008544 0.010742 0.013428 0.016602 0.02026 0.02454 0.02954 0.03528

20 0.04188 0.04944 0.05798 0.06762 0.0785 0.09058 0.104 0.1189 0.13526 0.15308

30 0.1726 0.19372

Precise α values for n = 15

0 6.104E-5 1.2208E-4 1.831E-4 3.052E-4 4.272E-4 6.104E-4 8.544E-4 0.0011596 0.0015258 0.002014

10 0.002624 0.003356 0.004272 0.005372 0.006714 0.008362 0.010254 0.012452 0.015076 0.018066

20 0.02154 0.02558 0.03016 0.03534 0.04126 0.04792 0.05536 0.06372 0.073 0.08326

30 0.0946 0.107 0.12054 0.13538 0.15142 0.16882 0.18762

Precise α values for n = 16

0 3.052E-5 6.104E-5 9.156E-5 1.5258E-4 2.136E-4 3.052E-4 4.272E-4 5.798E-4 7.63E-4 0.001007

10 0.0013122 0.0016784 0.002136 0.002686 0.003356 0.00418 0.005158 0.006286 0.00763 0.009186

20 0.010986 0.013092 0.015502 0.01825 0.0214 0.02496 0.029 0.03354 0.03864 0.04432

30 0.05066 0.05768 0.0654 0.07392 0.08326 0.09344 0.10458 0.11666 0.12974 0.14386

40 0.15906 0.17536 0.19282

Precise α values for n = 17

0 1.5258E-5 3.052E-5 4.578E-5 7.63E-5 1.0682E-4 1.5258E-4 2.136E-4 2.9E-4 3.814E-4 5.036E-4
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10 6.562E-4 8.392E-4 0.0010682 0.0013428 0.0016784 0.00209 0.002578 0.003158 0.003846 0.004638

20 0.00557 0.006652 0.007904 0.009338 0.010986 0.012864 0.015 0.017426 0.02016 0.02322

30 0.02668 0.03052 0.0348 0.03954 0.04476 0.05054 0.05688 0.06382 0.07142 0.07968

40 0.08866 0.09838 0.10888 0.1202 0.13236 0.14544 0.15938 0.17426 0.1901

Precise α values for n = 18

0 7.63E-6 1.5258E-5 2.288E-5 3.814E-5 5.34E-5 7.63E-5 1.0682E-4 1.4496E-4 1.9074E-4 2.518E-4

10 3.28E-4 4.196E-4 5.34E-4 6.714E-4 8.392E-4 0.0010452 0.0012894 0.0015792 0.0019302 0.002334

20 0.002808 0.003364 0.004006 0.004746 0.0056 0.006576 0.00769 0.008964 0.010406 0.012032

30 0.01387 0.01593 0.018234 0.02082 0.02368 0.02684 0.03036 0.03424 0.0385 0.04316

40 0.04828 0.05386 0.05994 0.06654 0.07368 0.08142 0.08976 0.09874 0.10838 0.1187

50 0.12974 0.14152 0.15404 0.16736 0.18146 0.19638

Precise α values for n = 19

0 3.814E-6 7.63E-6 1.1444E-5 1.9074E-5 2.67E-5 3.814E-5 5.34E-5 7.248E-5 9.536E-5 1.2588E-4

10 1.6404E-4 2.098E-4 2.67E-4 3.356E-4 4.196E-4 5.226E-4 6.446E-4 7.896E-4 9.652E-4 0.0011712

20 0.0014114 0.0016938 0.002022 0.0024 0.002838 0.003342 0.003918 0.004578 0.00533 0.00618

30 0.007144 0.008232 0.009452 0.010826 0.01236 0.014068 0.015972 0.018082 0.02042 0.02298

40 0.02582 0.02894 0.03234 0.03606 0.04014 0.04456 0.04936 0.05458 0.0602 0.06628

50 0.07284 0.07988 0.08742 0.09552 0.10416 0.11338 0.12318 0.13362 0.14468 0.1564

60 0.1688 0.18186 0.19564

Precise α values for n = 20

0 1.9074E-6 3.814E-6 5.722E-6 9.536E-6 1.3352E-5 1.9074E-5 2.67E-5 3.624E-5 4.768E-5 6.294E-5

10 8.202E-5 1.049E-4 1.3352E-4 1.6784E-4 2.098E-4 2.614E-4 3.224E-4 3.948E-4 4.826E-4 5.856E-4

20 7.076E-4 8.506E-4 0.0010166 0.0012092 0.0014324 0.00169 0.0019856 0.002326 0.002712 0.003152

30 0.003654 0.00422 0.00486 0.00558 0.00639 0.007296 0.008308 0.009436 0.010688 0.01208

40 0.013616 0.015312 0.017182 0.019234 0.02148 0.02396 0.02664 0.02958 0.03276 0.03624

50 0.03998 0.04406 0.04844 0.05316 0.05826 0.06372 0.06958 0.07586 0.08256 0.0897

60 0.0973 0.1054 0.11398 0.1231 0.13272 0.1429 0.15364 0.16496 0.17686 0.18934

Precise α values for n = 21

0 9.536E-7 1.9074E-6 2.862E-6 4.768E-6 6.676E-6 9.536E-6 1.3352E-5 1.812E-5 2.384E-5 3.148E-5

10 4.1E-5 5.246E-5 6.676E-5 8.392E-5 1.049E-4 1.3066E-4 1.6118E-4 1.9742E-4 2.412E-4 2.928E-4

20 3.538E-4 4.262E-4 5.102E-4 6.074E-4 7.21E-4 8.516E-4 0.0010024 0.0011758 0.0013742 0.0016002

30 0.0018588 0.002152 0.002482 0.002858 0.003278 0.003752 0.004284 0.004878 0.005542 0.00628

40 0.007102 0.00801 0.009016 0.010126 0.011346 0.012692 0.014166 0.01578 0.017546 0.019474

50 0.02158 0.02386 0.02634 0.02902 0.03192 0.03506 0.03844 0.04208 0.046 0.0502

60 0.0547 0.0595 0.06464 0.07014 0.07598 0.0822 0.0888 0.0958 0.10322 0.11106

70 0.11934 0.12808 0.13728 0.14696 0.15714 0.1678 0.17898 0.19068

Precise α values for n = 22

0 4.768E-7 9.536E-7 1.4306E-6 2.384E-6 3.338E-6 4.768E-6 6.676E-6 9.06E-6 1.192E-5 1.5736E-5

10 2.05E-5 2.622E-5 3.338E-5 4.196E-5 5.246E-5 6.532E-5 8.058E-5 9.87E-5 1.2064E-4 1.4638E-4

20 1.769E-4 2.132E-4 2.556E-4 3.046E-4 3.62E-4 4.282E-4 5.044E-4 5.928E-4 6.938E-4 8.092E-4

30 9.412E-4 0.0010914 0.0012618 0.0014548 0.0016728 0.0019184 0.002194 0.002504 0.002852 0.00324

40 0.003672 0.004152 0.004684 0.005276 0.005928 0.00665 0.007444 0.008316 0.009274 0.010324

50 0.011472 0.012728 0.014094 0.015584 0.0172 0.018956 0.02086 0.02292 0.02514 0.02754

60 0.03012 0.0329 0.03588 0.03908 0.0425 0.04616 0.05008 0.05424 0.0587 0.06342

70 0.06844 0.07378 0.07942 0.0854 0.09174 0.09842 0.10546 0.11288 0.12068 0.12888

80 0.13748 0.14652 0.15598 0.16586 0.1762 0.18698 0.19822

Precise α values for n = 23
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0 2.384E-7 4.768E-7 7.152E-7 1.192E-6 1.669E-6 2.384E-6 3.338E-6 4.53E-6 5.96E-6 7.868E-6

10 1.0252E-5 1.3114E-5 1.669E-5 2.098E-5 2.622E-5 3.266E-5 4.03E-5 4.936E-5 6.032E-5 7.32E-5

20 8.846E-5 1.0658E-4 1.278E-4 1.5258E-4 1.8144E-4 2.148E-4 2.534E-4 2.98E-4 3.492E-4 4.08E-4

30 4.752E-4 5.518E-4 6.388E-4 7.376E-4 8.494E-4 9.758E-4 0.0011184 0.0012786 0.0014584 0.0016598

40 0.001885 0.002136 0.002416 0.002726 0.00307 0.003452 0.003874 0.004338 0.004852 0.005414

50 0.006032 0.00671 0.007452 0.008262 0.009146 0.01011 0.011156 0.012294 0.013528 0.014866

60 0.016312 0.017872 0.019558 0.02138 0.02332 0.02542 0.02768 0.03008 0.03266 0.03544

70 0.03838 0.04152 0.04488 0.04844 0.05222 0.05626 0.06052 0.06504 0.06982 0.07486

80 0.0802 0.08582 0.09176 0.09798 0.10454 0.11142 0.11864 0.12622 0.13414 0.14242

90 0.15108 0.1601 0.16952 0.17934 0.18954

Precise α values for n = 24

0 1.192E-7 2.384E-7 3.576E-7 5.96E-7 8.344E-7 1.192E-6 1.669E-6 2.264E-6 2.98E-6 3.934E-6

10 5.126E-6 6.556E-6 8.344E-6 1.049E-5 1.3114E-5 1.6332E-5 2.014E-5 2.468E-5 3.016E-5 3.66E-5

20 4.422E-5 5.328E-5 6.39E-5 7.63E-5 9.084E-5 1.0764E-4 1.2708E-4 1.496E-4 1.7548E-4 2.052E-4

30 2.392E-4 2.782E-4 3.224E-4 3.728E-4 4.298E-4 4.944E-4 5.676E-4 6.498E-4 7.424E-4 8.462E-4

40 9.626E-4 0.0010926 0.001238 0.0013998 0.0015796 0.0017796 0.0020 0.002246 0.002516 0.002814

50 0.003144 0.003504 0.0039 0.004336 0.00481 0.00533 0.005898 0.006516 0.00719 0.00792

60 0.008714 0.009576 0.010508 0.011516 0.012604 0.01378 0.015044 0.016406 0.01787 0.019442

70 0.02112 0.02294 0.02486 0.02692 0.02914 0.03148 0.03398 0.03664 0.03948 0.04248

80 0.04568 0.04906 0.05264 0.05642 0.06042 0.06464 0.0691 0.0738 0.07872 0.08392

90 0.08938 0.0951 0.1011 0.10738 0.11396 0.12084 0.12802 0.13552 0.14336 0.1515

100 0.15998 0.1688 0.17798 0.1875 0.19738

Precise α values for n = 25

0 5.96E-8 1.192E-7 1.7882E-7 2.98E-7 4.172E-7 5.96E-7 8.344E-7 1.1324E-6 1.4902E-6 1.967E-6

10 2.562E-6 3.278E-6 4.172E-6 5.246E-6 6.556E-6 8.166E-6 1.0074E-5 1.2338E-5 1.508E-5 1.8298E-5

20 2.212E-5 2.664E-5 3.194E-5 3.814E-5 4.542E-5 5.388E-5 6.366E-5 7.498E-5 8.804E-5 1.03E-4

30 1.2022E-4 1.399E-4 1.623E-4 1.8788E-4 2.17E-4 2.498E-4 2.87E-4 3.29E-4 3.764E-4 4.296E-4

40 4.894E-4 5.564E-4 6.314E-4 7.15E-4 8.082E-4 9.118E-4 0.0010272 0.0011548 0.0012964 0.0014528

50 0.0016254 0.0018156 0.002026 0.002256 0.002508 0.002784 0.003088 0.00342 0.00378 0.004176

60 0.004604 0.005072 0.005578 0.00613 0.006726 0.00737 0.008068 0.008822 0.009636 0.01051

70 0.011454 0.012466 0.013554 0.014722 0.015972 0.017312 0.018744 0.02028 0.0219 0.02364

80 0.0255 0.02748 0.02958 0.0318 0.03418 0.03668 0.03934 0.04216 0.04512 0.04826

90 0.05158 0.05508 0.05876 0.06262 0.0667 0.07098 0.07548 0.0802 0.08514 0.09032

100 0.09574 0.1014 0.10732 0.1135 0.11994 0.12664 0.13364 0.14092 0.14848 0.15634

110 0.1645 0.17296 0.18172 0.19082

Precise α values for n = 26

0 2.98E-8 5.96E-8 8.94E-8 1.4902E-7 2.086E-7 2.98E-7 4.172E-7 5.662E-7 7.45E-7 9.834E-7

10 1.2814E-6 1.6392E-6 2.086E-6 2.622E-6 3.278E-6 4.082E-6 5.036E-6 6.17E-6 7.54E-6 9.15E-6

20 1.1056E-5 1.3322E-5 1.5974E-5 1.9074E-5 2.27E-5 2.694E-5 3.186E-5 3.756E-5 4.41E-5 5.164E-5

30 6.032E-5 7.024E-5 8.156E-5 9.45E-5 1.092E-4 1.2588E-4 1.448E-4 1.6618E-4 1.9028E-4 2.174E-4

40 2.48E-4 2.822E-4 3.208E-4 3.636E-4 4.116E-4 4.65E-4 5.246E-4 5.908E-4 6.642E-4 7.454E-4

50 8.354E-4 9.348E-4 0.0010444 0.0011652 0.001298 0.001444 0.001604 0.0017796 0.0019716 0.002182

60 0.00241 0.00266 0.002932 0.00323 0.00355 0.0039 0.00428 0.00469 0.005134 0.005612

70 0.00613 0.00669 0.00729 0.007938 0.008634 0.009382 0.010186 0.011046 0.011966 0.012952

80 0.014006 0.015132 0.016334 0.017614 0.018978 0.02042 0.02198 0.02362 0.02536 0.0272

90 0.02916 0.03122 0.03342 0.03572 0.03816 0.04074 0.04346 0.04634 0.04934 0.05252

100 0.05586 0.05936 0.06302 0.06688 0.07092 0.07514 0.07958 0.0842 0.08902 0.09408
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110 0.09934 0.10482 0.11054 0.11648 0.12266 0.1291 0.13578 0.14272 0.1499 0.15736

120 0.16508 0.17308 0.18136 0.1899 0.19874

Precise α values for n = 27

0 1.4902E-8 2.98E-8 4.47E-8 7.45E-8 1.043E-7 1.4902E-7 2.086E-7 2.832E-7 3.726E-7 4.918E-7

10 6.408E-7 8.196E-7 1.043E-6 1.3114E-6 1.6392E-6 2.042E-6 2.518E-6 3.084E-6 3.77E-6 4.574E-6

20 5.528E-6 6.66E-6 7.988E-6 9.536E-6 1.1354E-5 1.347E-5 1.593E-5 1.879E-5 2.208E-5 2.586E-5

30 3.024E-5 3.522E-5 4.094E-5 4.746E-5 5.488E-5 6.332E-5 7.29E-5 8.372E-5 9.596E-5 1.0978E-4

40 1.2532E-4 1.4278E-4 1.624E-4 1.8434E-4 2.088E-4 2.364E-4 2.668E-4 3.008E-4 3.388E-4 3.808E-4

50 4.272E-4 4.788E-4 5.356E-4 5.984E-4 6.678E-4 7.44E-4 8.278E-4 9.2E-4 0.001021 0.0011316

60 0.0012526 0.001385 0.0015294 0.001687 0.0018586 0.002046 0.002248 0.002468 0.002708 0.002966

70 0.003248 0.00355 0.003878 0.004232 0.004612 0.005024 0.005466 0.00594 0.00645 0.006998

80 0.007586 0.008216 0.008888 0.009608 0.010378 0.0112 0.012076 0.01301 0.014006 0.015064

90 0.01619 0.017386 0.018656 0.02 0.02142 0.02294 0.02454 0.02624 0.02802 0.0299

100 0.0319 0.034 0.0362 0.03854 0.04098 0.04356 0.04626 0.0491 0.05208 0.0552

110 0.05848 0.0619 0.06548 0.06922 0.07314 0.07722 0.08148 0.08594 0.09056 0.09538

120 0.1004 0.10562 0.11106 0.11668 0.12254 0.1286 0.13488 0.1414 0.14816 0.15514

130 0.16236 0.16982 0.17752 0.18548 0.19368

Precise α values for n = 28

0 7.45E-9 1.4902E-8 2.236E-8 3.726E-8 5.216E-8 7.45E-8 1.043E-7 1.4156E-7 1.8626E-7 2.458E-7

10 3.204E-7 4.098E-7 5.216E-7 6.556E-7 8.196E-7 1.0208E-6 1.2592E-6 1.5422E-6 1.885E-6 2.288E-6

20 2.764E-6 3.33E-6 3.994E-6 4.768E-6 5.678E-6 6.736E-6 7.964E-6 9.396E-6 1.105E-5 1.295E-5

30 1.514E-5 1.765E-5 2.052E-5 2.38E-5 2.754E-5 3.18E-5 3.664E-5 4.212E-5 4.83E-5 5.53E-5

40 6.318E-5 7.204E-5 8.202E-5 9.32E-5 1.057E-4 1.197E-4 1.3532E-4 1.5274E-4 1.7214E-4 1.9368E-4

50 2.176E-4 2.442E-4 2.736E-4 3.06E-4 3.418E-4 3.814E-4 4.25E-4 4.73E-4 5.256E-4 5.834E-4

60 6.468E-4 7.162E-4 7.922E-4 8.752E-4 9.658E-4 0.0010646 0.0011722 0.0012892 0.0014166 0.0015548

70 0.0017048 0.0018674 0.002044 0.002234 0.00244 0.002662 0.002902 0.00316 0.003438 0.003738

80 0.00406 0.004406 0.004778 0.005176 0.005604 0.00606 0.006548 0.007072 0.00763 0.008224

90 0.00886 0.009536 0.010256 0.011024 0.011838 0.012704 0.013624 0.014598 0.015632 0.016728

100 0.017886 0.019114 0.0204 0.02178 0.02322 0.02474 0.02636 0.02806 0.02984 0.0317

110 0.03368 0.03576 0.03792 0.04022 0.0426 0.04512 0.04774 0.0505 0.05338 0.05638

120 0.05954 0.06282 0.06624 0.06982 0.07354 0.07742 0.08146 0.08566 0.09002 0.09456

130 0.09928 0.10418 0.10926 0.11452 0.11998 0.12562 0.13146 0.13752 0.14378 0.15024

140 0.1569 0.1638 0.1709 0.17824 0.18578 0.19356

Precise α values for n = 29

0 3.726E-9 7.45E-9 1.1176E-8 1.8626E-8 2.608E-8 3.726E-8 5.216E-8 7.078E-8 9.314E-8 1.2294E-7

10 1.6018E-7 2.048E-7 2.608E-7 3.278E-7 4.098E-7 5.104E-7 6.296E-7 7.712E-7 9.424E-7 1.1436E-6

20 1.382E-6 1.6652E-6 1.9968E-6 2.384E-6 2.838E-6 3.368E-6 3.982E-6 4.698E-6 5.524E-6 6.478E-6

30 7.578E-6 8.836E-6 1.0278E-5 1.1928E-5 1.381E-5 1.5952E-5 1.8388E-5 2.114E-5 2.428E-5 2.78E-5

40 3.18E-5 3.628E-5 4.134E-5 4.7E-5 5.336E-5 6.048E-5 6.844E-5 7.732E-5 8.72E-5 9.822E-5

50 1.1046E-4 1.2406E-4 1.3914E-4 1.5582E-4 1.743E-4 1.9468E-4 2.172E-4 2.42E-4 2.692E-4 2.992E-4

60 3.322E-4 3.684E-4 4.08E-4 4.514E-4 4.988E-4 5.506E-4 6.072E-4 6.688E-4 7.36E-4 8.09E-4

70 8.884E-4 9.746E-4 0.0010684 0.0011698 0.0012798 0.0013988 0.0015274 0.0016664 0.0018164 0.0019782

80 0.002152 0.00234 0.002542 0.00276 0.002992 0.003242 0.00351 0.003798 0.004106 0.004436

90 0.004788 0.005164 0.005566 0.005994 0.006452 0.006938 0.007456 0.008008 0.008594 0.009216

100 0.009878 0.010578 0.011322 0.01211 0.012944 0.013826 0.014758 0.015744 0.016786 0.017884

110 0.019044 0.02026 0.02156 0.0229 0.02434 0.02584 0.0274 0.02906 0.0308 0.03262

120 0.03454 0.03654 0.03864 0.04082 0.04312 0.04552 0.04802 0.05064 0.05338 0.05622
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130 0.0592 0.0623 0.06552 0.06888 0.07236 0.07598 0.07976 0.08368 0.08774 0.09196

140 0.09634 0.10086 0.10556 0.11042 0.11546 0.12066 0.12604 0.1316 0.13732 0.14326

150 0.14936 0.15566 0.16216 0.16886 0.17574 0.18284 0.19012 0.19762

Precise α values for n = 30

0 1.8626E-9 3.726E-9 5.588E-9 9.314E-9 1.3038E-8 1.8626E-8 2.608E-8 3.54E-8 4.656E-8 6.146E-8

10 8.01E-8 1.0244E-7 1.3038E-7 1.6392E-7 2.048E-7 2.552E-7 3.148E-7 3.856E-7 4.712E-7 5.718E-7

20 6.91E-7 8.326E-7 9.984E-7 1.192E-6 1.4194E-6 1.6838E-6 1.9912E-6 2.348E-6 2.762E-6 3.24E-6

30 3.79E-6 4.422E-6 5.144E-6 5.974E-6 6.918E-6 7.994E-6 9.22E-6 1.061E-5 1.2184E-5 1.3966E-5

40 1.5978E-5 1.8244E-5 2.08E-5 2.366E-5 2.688E-5 3.05E-5 3.454E-5 3.904E-5 4.408E-5 4.968E-5

50 5.592E-5 6.286E-5 7.056E-5 7.91E-5 8.856E-5 9.902E-5 1.1058E-4 1.2334E-4 1.374E-4 1.5288E-4

60 1.699E-4 1.886E-4 2.092E-4 2.316E-4 2.562E-4 2.832E-4 3.128E-4 3.45E-4 3.8E-4 4.184E-4

70 4.602E-4 5.054E-4 5.548E-4 6.084E-4 6.666E-4 7.296E-4 7.978E-4 8.718E-4 9.518E-4 0.0010382

80 0.0011314 0.0012322 0.0013406 0.0014574 0.0015832 0.0017186 0.001864 0.00202 0.002188 0.002368

90 0.00256 0.002766 0.002988 0.003222 0.003476 0.003744 0.004032 0.004338 0.004664 0.005012

100 0.005382 0.005776 0.006194 0.00664 0.007112 0.007612 0.008142 0.008706 0.009302 0.009932

110 0.010598 0.011304 0.012048 0.012834 0.013664 0.014538 0.01546 0.016432 0.017454 0.01853

120 0.01966 0.02084 0.0221 0.02342 0.02478 0.02622 0.02774 0.02932 0.03098 0.03272

130 0.03454 0.03644 0.03842 0.04048 0.04266 0.0449 0.04726 0.04972 0.05226 0.05492

140 0.05768 0.06056 0.06356 0.06666 0.0699 0.07324 0.07672 0.08032 0.08406 0.08794

150 0.09194 0.0961 0.1004 0.10484 0.10944 0.11418 0.11908 0.12414 0.12936 0.13474

160 0.14028 0.146 0.15188 0.15794 0.16418 0.1706 0.1772 0.18396 0.19092 0.19808

Table 28.18: Table with precise α-values for n ∈ 4..30 (from Darlington [484]).

Further information and tables for Wilcoxon rank distributions can be found in [1290,
1436, 2221] and [2222]. [1076]

Mann-Whitney U Test

Wilcoxon’s signed rank test [2220] has the drawback that the data samples must be arranged
in pairs (ai, bi) and thus, the number of the ai has to be the same as the bi. In many practical
experiments, this is not the case and Wilcoxon’s test is not applicable. Assume we have run
two experimental series with different EAs applied to the same problem for some time (where
each run in a series has the same configuration). Then, there is no group relation between the
measurements ai and bi and creating tuples as needed for the signed rank test is, basically,
nonsense. Furthermore, it could be possible that the runs in the first series of tests usually
finished faster than those in the second series. Then, we would have more samples ai than
bi. In order to apply the signed rank test properly, we need as same as many samples from
both configuration and therefore would have to discard some samples which may lead to a
loss of important information.

The U test78 developed by Mann and Whitney [1356] circumvents these problems [1878,
573, 1520]. It assesses whether two samples are from the same distribution (H0) or not (H1).
Different from the sign rank test, it does not require the samples to be paired nor to contain
the same number of elements.

Basically, the U test is carried out almost exactly like the signed rank test. We will
illustrate this using the example for unpaired samples given in Table 28.15 where the set a
with median 3 has na = 6 samples and b consists of nb = 8 elements with a median of 5.5.

1. The elements ai and bi are mixed together and sorted.
2. Each element now receives a rank corresponding to its position in the list. Like in the

sign test, elements which have the same value receive the same rank (see point 4 in
Section 28.8.1). The elements of the first two rows in Table 28.15, for instance, both
receive rank 0.5(1+2) = 1.5 whereas those in row 7 to 10 have the rank 0.5(7+10) = 8.5.

78 http://en.wikipedia.org/wiki/Mann-Whitney_U [accessed 2008-10-24]

http://en.wikipedia.org/wiki/Mann-Whitney_U
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3. The rank sums Ra =
∑

ra
= 28 and Rb =

∑
rb

= 77 are determined, where Ra + Rb =

105 = n(n+1)
2 = 14∗15)

2 (with n = na + nb) always holds.

4. The sample statistics are then given as Ua = Ra − na(na+1)
2 = 28 − 21 = 7 and Ub =

Rb − nb(nb+1)
2 = 77− 36 = 41 (where Ua + Ub = nanb always holds).

5. The smaller of the two values U = min {Ua, Ub} = 7 is used.
6. For the significance level α the critical U values can be computed for the two-sided test

as

Uα =
nanb

2
− z
(

1− α

2

)√nanb (na + nb + 1)

12
(28.293)

where z is probit function, the inverse cumulative distribution function of the standard
normal distribution (see Definition 28.49). The values of z can be looked up in Table 28.7.
For α = 0.05 we get z

(
1− α

2

)
= z(0.975) ≈ 1.96 and for α = 0.01, we find z

(
1− α

2

)
=

z(0.995) ≈ 2.575. Hence, U0.05 ≈ 24−1.96
√

60 ≈ 8.82 and U0.01 ≈ 24−2.575
√

60 ≈ 4.05.
7. We compare U with Uα and can discard the null hypothesis H0 if and only if U is

smaller.

In the example, U < U0.05 holds whereas U < U0.01 does not. In other words, with 5%
chance of error, we can declare the two samples a and b to be different and can assume
that the median med(a) = 3 is significantly smaller than med(b) = 5.5. If we wish for no
more than 1% chance of error, however, the differences between a and b are not significant
(enough). For α = 0.05, the critical values of U0.05, i. e., the highest allowed U values for
which the null hypothesis H0 can be rejected, are listed in Table 28.19. For na = 6 and
nb = 8, we find U0.05 ≈ 8 which fits to the value used in point 6 of the example application
of the test. The U test can be computed with the nice online utility provided by Lowry
[1312].
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na/nb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 ∅
2 ∅ ∅
3 ∅ ∅ ∅
4 ∅ ∅ ∅ 0
5 ∅ ∅ 0 1 2
6 ∅ ∅ 1 2 3 5
7 ∅ ∅ 1 3 5 6 8
8 ∅ 0 2 4 6 8 10 13
9 ∅ 0 2 4 7 10 12 15 17

10 ∅ 0 3 5 8 11 14 17 20 23
11 ∅ 0 3 6 9 13 16 19 23 26 30
12 ∅ 1 4 7 11 14 18 22 26 29 33 37
13 ∅ 1 4 8 12 16 20 24 28 33 37 41 45
14 ∅ 1 5 9 13 17 22 26 31 36 40 45 50 55
15 ∅ 1 5 10 14 19 24 29 34 39 44 49 54 59 64
16 ∅ 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75
17 ∅ 2 6 11 17 22 28 34 39 45 51 57 63 69 75 81 87
18 ∅ 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99
19 ∅ 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113
20 ∅ 2 8 14 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
21 ∅ 3 8 15 22 29 36 43 50 58 65 73 80 88 96 103 111 119 126 134
22 ∅ 3 9 16 23 30 38 45 53 61 69 77 85 93 101 109 117 125 133 141
23 ∅ 3 9 17 24 32 40 48 56 64 73 81 89 98 106 115 123 132 140 149
24 ∅ 3 10 17 25 33 42 50 59 67 76 85 94 102 111 120 129 138 147 156
25 ∅ 3 10 18 27 35 44 53 62 71 80 89 98 107 117 126 135 145 154 163
26 ∅ 4 11 19 28 37 46 55 64 74 83 93 102 112 122 132 141 151 161 171
27 ∅ 4 11 20 29 38 48 57 67 77 87 97 107 117 127 137 147 158 168 178
28 ∅ 4 12 21 30 40 50 60 70 80 90 101 111 122 132 143 154 164 175 186
29 ∅ 4 13 22 32 42 52 62 73 83 94 105 116 127 138 149 160 171 182 193
30 ∅ 5 13 23 33 43 54 65 76 87 98 109 120 131 143 154 166 177 189 200
31 ∅ 5 14 24 34 45 56 67 78 90 101 113 125 136 148 160 172 184 196 208
32 ∅ 5 14 24 35 46 58 69 81 93 105 117 129 141 153 166 178 190 203 215
33 ∅ 5 15 25 37 48 60 72 84 96 108 121 133 146 159 171 184 197 210 222
34 ∅ 5 15 26 38 50 62 74 87 99 112 125 138 151 164 177 190 203 217 230
35 ∅ 6 16 27 39 51 64 77 89 103 116 129 142 156 169 183 196 210 224 237
36 ∅ 6 16 28 40 53 66 79 92 106 119 133 147 161 174 188 202 216 231 245
37 ∅ 6 17 29 41 55 68 81 95 109 123 137 151 165 180 194 209 223 238 252
38 ∅ 6 17 30 43 56 70 84 98 112 127 141 156 170 185 200 215 230 245 259
39 0 7 18 31 44 58 72 86 101 115 130 145 160 175 190 206 221 236 252 267
40 0 7 18 31 45 59 74 89 103 119 134 149 165 180 196 211 227 243 258 274

Table 28.19: The critical values U0.05 for the two-sided Mann-Whitney U test [2219].

Fisher’s Exact Test

Fisher’s exact test79 [678, 680, 15, 252, 1310] tests whether two samples with binary data
are independent or not. The null hypothesis H0 is that the values in both samples follow
the same distribution. If H0 does not hold, the two samples differ in the probabilities with
which the two possible binary values occur in them and hence, then distribution of these
values depends on the samples.

For illustration purposes let us go back to the (unpaired) example data sets given
in Table 28.15 on page 510. Assume that the columns a and b would represent different
configurations of an optimizer applied to a single-objective optimization problem. Then, in

79 http://en.wikipedia.org/wiki/Fisher%27s_exact_test [accessed 2008-12-08]

http://en.wikipedia.org/wiki/Fisher%27s_exact_test
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each cell, the objective value (subject to minimization) of the best solution candidate found
in the corresponding run is noted. Assume we can consider an experiment as successful if
this value is below 4 and that success (s) or failure (s) was the binary criterion which we
want to investigate.

Series a has four successful runs (as = 4) and two failed ones (as = 2) whereas series b
succeeded only once (bs = 1) while seven runs could not create a solution candidate with
an objective value below 4 (bs = 7). We have sketched this scenario (let us call it C5) in
Table 28.20. Series a seems to be more successful than series b in this example. The question
is if this is indeed statistical significant or whether it might have been a fluke as well (and
the null hypothesis H0 is more likely to hold).

C5 a b
∑

s as = 4 bs = 1 5
s as = 2 bs = 7 9
∑

6 8 N = 14

Table 28.20: An 2× 2 contingency table based on Table 28.15.

Assume that the distribution of s and s was the same in the stochastic processes which
have been sampled (as a and b), i.e., that the null hypothesis H0 holds. Then, the probability
that any configuration C = (as, as, bs, bs) would have resulted is given in Equation 28.294.
In Equation 28.295, we apply this equation to the scenario C5 shown in Table 28.20 and
obtain a probability of roughly 6% for it.

P (C) =

(
as+bs

as

)(
as+bs

as

)
(

N
as+as

) =
(as + bs)! (as + bs)! (as + as)! (bs + bs) !

N ! as! as! bs! bs!
(28.294)

P (C5) =
5! 9! 6! 8!

14! 4! 2! 1! 7!
=

1 264 146 186 240 000

21 090 172 207 104 000
=

60

1001
≈ 0.059 940 1 (28.295)

In order to test whether we can reject the null hypothesis, we need to compute the total

C1 a b
∑

C2 a b
∑

C3 a b
∑

C4 a b
∑

C5 a b
∑

C6 a b
∑

s 0 5 5 s 1 4 5 s 2 3 5 s 3 2 5 s 4 1 5 s 5 0 5
s 6 3 9 s 5 4 9 s 4 5 9 s 3 6 9 s 2 7 9 s 1 8 9
∑

6 8 14
∑

6 8 14
∑

6 8 14
∑

6 8 14
∑

6 8 14
∑

6 8 14

P (C1)≈0.0280 P (C2)≈0.2098 P (C3)≈0.4196 P (C4)≈0.2797 P (C5)≈0.0599 P (C6)≈0.0030
D(C1)=0.5 D(C2)=0.35 D(C3)=0.04 D(C4)=0.26 D(C5)=0.57 D(C6)=0.8

Table 28.21: All configurations with the same total sums in a/b and s/s than in Table 28.20.

probability that a configuration at least as extreme as C5 with the same a/b and s/s division
(the

∑
row and column) can occur. In Table 28.21 we list the scenarios with the same

marginal distributions and their corresponding probabilities (which sum up to one) in the
second-to-last row. What remains to do is to find out which of these scenarios are at least
as extreme as C5. For each scenario C, we compute the disproportion D(C) – the degree of
ostensible dependency between the two samples [1310] – according to Equation 28.296. For
C5, we have computed this value in Equation 28.297.
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D(C) =

∣∣∣∣
as

as + bs
− as
as + bs

∣∣∣∣ (28.296)

D(C5) =

∣∣∣∣
4

4 + 1
− 2

2 + 7

∣∣∣∣ =
26

45
= 0.57 ≈ 0.578 (28.297)

In the bottom row of Table 28.21, we have listed the disproportion values D for all six
possible scenarios. Amongst these, only scenario C6 and C1 (and C5) have a D-value at
least as big as C5, so we can compute the probability p with which an experimental outcome
at least as extreme as the observed C5 would occur under H0 as p = P (C1) + P (C5) +
P (C6) = 0.09 ≈ 0.09. Hence, under a significance level of α = 10%, we could reject the null
hypothesis H0 and assume that there is a difference between the samples a and b. If we want
a significance level of α = 5%, we cannot reject H0 and must consider the experimental
outcome as fluke.

Computing Fisher’s exact test by hand may become time consuming. The online utilities
provided by Lowry [1311] and Langsrud [1246] (which sometimes produce slightly different
results) provide a handy alternative.

28.9 Generating Random Numbers

Definition 28.67 (Random Number). Random numbers are the values taken on by a
random variable. A random number generator80 produces a sequence r = (r1, r2, . . . ) of
random numbers ri as result of independent repetitions of the same random experiment.

Since the numbers ri are all produced by the same random experiment, they approximate
a certain random distribution according to the law of large numbers (see Section 28.3.8 on
page 478).

For true random number generators, there exists no function or algorithm f(i) = ri or
f(ri−n+1, ri−n+2, .., ri) = ri+1 that can produce this sequence in a deterministic manner with
or without knowledge of the random numbers previously returned from the generator. Such
behavior can be achieved by obtaining the numbers ri from measurements of a physical
process, for instance. Today, there exist many such so-called hardware random number
generators 81 [603, 2126, 676, 1981].

Of course, most computers are not equipped with special hardware for random number
production, although some standard devices can be utilized for that purpose. One could, for
example, measure the white noise of soundcards or the delays between the user’s keystrokes.
Such methods have the drawback that they require the presence of and access to such
components. Furthermore, the speed of them is limited since you cannot produce random
numbers faster than the recording speed of the soundcard or faster than the user is typing.

28.9.1 Generating Pseudorandom Numbers

In security-sensitive areas like cryptography, we need true random numbers [2125, 1981,
1373]. For normal PC applications and most scientific purposes, pseudorandom number
generators82 are sufficient.

The principle of pseudorandom number generators is to produce a sequence of numbers
r = (r1, r2, .., ri) , rj ∈ R ∀j ∈ N, R ⊆ R which are not obviously interdependent, i. e., if
knowing a number ri there is not simple way to find out the value of ri+1.

80 http://en.wikipedia.org/wiki/Random_number_generator [accessed 2007-07-03], http://en.

wikipedia.org/wiki/Random_number_generation [accessed 2007-07-03]

81 http://en.wikipedia.org/wiki/Hardware_random_number_generator [accessed 2007-07-03]

82 http://en.wikipedia.org/wiki/Pseudorandom_number_generator [accessed 2007-07-03], http://

en.wikipedia.org/wiki/Pseudorandomness [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Random_number_generator
http://en.wikipedia.org/wiki/Random_number_generation
http://en.wikipedia.org/wiki/Random_number_generation
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandomness
http://en.wikipedia.org/wiki/Pseudorandomness
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Of course, since the values ri are no real random numbers, there is an algorithm or
function f : V → R × V where R is the set of possible numbers and V is the space of
some internal variables. These internal variables are referred to as seed and normally change
whenever a new number is produced. Often, the seed is initialized with either a true random
number or the current system time. In the first case, it is also practicable to re-initialize the
seed from time to time with new true random values.

Pseudorandom numbers are attractive to all not security-critical applications where we
need some sort of unpredictable behavior. They are often used in games or simulations,
since they usually can be generated much quicker than true random numbers. On the other
hand, especially in scientific applications the “degree” of randomness is very important.
There are many incidents, for example in physical simulation, where the inappropriate use of
pseudorandom number generators of poor quality lead to wrong conclusions [2112, 1852, 662].
It should be noted that there also exist cryptographically secure pseudorandom number
generators83 which create pseudo-random number that are of especially high quality.

There exists a variety of algorithms that generate pseudorandom numbers [2008, 1611,
234, 348] and many implementations for different programming languages and architectures
[918, 1594, 421]. It is even possible to evolve pseudorandom number generators using Genetic
Programming, as shown, for instance, by Koza [1192].

Linear Congruential Generator (LCG)

The linear congruential generator84 (LCG) was first proposed by Lehmer [1272] and is one of
the most frequently used and simplest pseudo random number generators [1271]. It updates
an internal integer number v ∈ V = (0 . . . (m − 1)),m ∈ N in each step according to
Equation 28.298. The modulus m is a natural number which defines the maximum number
of values v can take on. a and b are both constants. Therefore, v will periodically take on
the same values – at most after m steps. The pseudorandom numbers ri are approximately
uniformly distributed in the interval [0,m) (see Section 28.4.1) and can be computed as
proposed in Equation 28.299.

vi = (avi−1 + b) mod m (28.298)

ri =
vi

m
(28.299)

If the full period can really be reached depends a lot on the values of the parameters a,
b, and m. There are many constellations known where only a small fraction of the period m
is utilized [634]. In order to produce the full period, the following requirements should be
met according to Wikipedia [2219].

1. b and m are relatively prime
2. a− 1 is divisible by all prime factors of m
3. a− 1 is a multiple of 4 if m is a multiple of 4
4. m > max {a, b, v0}
5. a > 0, b > 0

Good standard values for the constants are a = 1 664 525, b = 1 013 904 223, and m = 232.
One of the widest spread realizations of LCGs has been outlined by Knuth [1161]. In Java,
the class java.util.Random uses this approach with the settings a = 25 214 903 917, b = 11,
and m = 248.

83 http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

[accessed 2007-07-03]

84 http://en.wikipedia.org/wiki/Linear_congruential_generator [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
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28.9.2 Random Functions

Definition 28.68 (Random Function). In the context of this book, we define a random
function random as a construct that eases the utilization of random numbers and random
variables. It represents access to a random process, an infinite sequence of random variables
Xi all distributed according to the same distribution function. Starting with X1, each time
a random function is evaluated, it returns the value of the next random variable in the
sequence i = 1, 2, 3, . . . .

Definition 28.69 (Uniformly Distributed Random Number Generator). We define
the function randomu(ř, r̂) to draw uniformly distributed (see Section 28.5.1 on page 485)
random numbers from the interval with the boundaries ř (inclusively) and r̂ (exclusively).
The parameter-less function randomu() will return a uniformly distributed number from the
interval spanning from 0 inclusively to 1 exclusively.

randomu(ř, r̂) ∈ [ř, r̂) ⊆ R, ř, r̂ ∈ R, ř < r̂ (28.300)

randomu() ≡ randomu(0, 1) (28.301)

The randomu()-function can be realized with the linear congruential pseudorandom num-
ber generators that we have just discussed in Section 28.9.1, for example.

Definition 28.70 (Normally Distributed Random Number Generator). We de-
fine the function randomn

(
µ, σ2

)
to generate normally distributed (see Section 28.5.2 on

page 486) random numbers with the expected value µ and the variance σ2. The parameter-
less function randomn() will return a standard normally distributed number (with µ = 0
and σ2 = 1).

randomn

(
µ, σ2

)
∼ N

(
µ, σ2

)
(28.302)

randomn() ≡ randomn(0, 1) (28.303)

Cut-off Random Functions

We often use random processes and random functions to model or simulate a certain features
of a real system. If we, for example, simulate a chicken farm, we might be interested in the
size of the eggs laid by the hens. We can assume this weight to be normally distributed85

around some mean µ with a variance σ2 6= 0. In the simulation, a series of egg weights
is created simply be drawing subsequent such random numbers by calling randomn

(
µ, σ2

)

repeatedly. Although the normal distribution is a good model for egg weights, it has a serious
drawback: no matter how we chose µ or σ, there is still a positive probability of drawing
zero, negative, or extremely large (> 10t) weights. In reality however, such things could have
not yet been documented.

What we need here is a cut-off mechanism for our random function randomn

(
µ, σ2

)
that

still preserves as many of its properties as possible. Given any random function random
the function randoml(random, low, high), defined as Algorithm 28.2, ensures that low ≤
randoml(random, low, high) < high.

28.9.3 Converting Random Numbers to other Distributions

There are occasions where random numbers of a different distribution than available are
needed. We could, for example, have a linear congruential generator for uniformly distributed
random numbers like elaborated in Section 28.9.1 but may need normally distributed values.

85 see Section 28.5.2 on page 486
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Algorithm 28.2: r ←− randoml(random, low, high)

Input: random: a random function (maybe with further implicit parameters)
Input: low ∈ R: the inclusive, lower bound of the random result
Input: high ∈ R, low < high: the exclusive, upper bound of the random result
Data: r: the intermediate random value
Output: r: a value returned by random with low ≤ r < high

begin1

repeat2

r ←− random()3

until (r≥low) ∧ (r < high)4

return r5

end6

Uniform Distribution → Uniform Distribution

If we have random numbers ri distributed uniformly in the interval [a1, b1) and need random
numbers si uniformly distributed in the interval [a2, b2), they can be converted really simple
according to

si = a2 + (b2 − a2)
ri − a1

b1 − a1
(28.304)

Uniform Distribution → Normal Distribution

In order to transform random numbers which are uniformly distributed in the interval [0, 1)
to standard-normally distributed random numbers (µ = 0, σ2 = 1), we can apply the Box-
Muller86 transformation [262]. This approach creates two standard-normally distributed
random numbers n1, n2 from two random numbers r1, r2 which are uniformly distributed
in [0, 1) at once according to Equation 28.305. In both formulas, the terms

√
−2 ln r1 and

2πr2 are used. The performance can be increased if both terms are computed only once and
reused.

n1 =
√
−2 ln r1 cos(2πr2)

n2 =
√
−2 ln r1 sin(2πr2) (28.305)

The polar form of this method, illustrated as Algorithm 28.3, is not only faster, but
also numerically more robust [556]. It creates two independent random numbers uniformly
distributed in [−1, 1) and computes their product w. This is repeated until w ∈ (0, 1). With
this value, we now can compute two independent, standard-normally distributed random
numbers. Effectively, we have traded a trigonometric operation and a multiplication against
a division compared to the original method in Equation 28.305. The implementation of this
algorithm is discussed in [1161] which is the foundation of the method nextGaussian of the
Java-class java.util.Random.

Normal Distribution → Normal Distribution

With Equation 28.306, a normally distributed random number n1 ∼ N
(
µ1, σ

2
1

)
can be

transformed to another normally distributed random number n2 ∼ N
(
µ2, σ

2
2

)
.

n2 = µ2 + σ2 ∗
n1 − µ1

σ1
(28.306)

86 http://en.wikipedia.org/wiki/Box_muller [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Box_muller
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Algorithm 28.3: (n1, n2)←− randomn,p2()

Data: n1, n2: the intermediate and result variables
Data: w: the polar radius
Output: (n1, n2): a tuple of two independent values n1 ∼ N(0, 1) , n2 ∼ N(0, 1)

begin1

repeat2

n1 ←− randomu(−1, 1)3

n2 ←− randomu(−1, 1)4

w ←− (n1 ∗ n1) + (n2 ∗ n2)5

until (w > 0) ∧ (w < 1)6

w ←−
√

−2 ln w
w7

return (n1 ∗ w, n2 ∗ w)8

end9

Uniform Distribution → Exponential Distribution

With Equation 28.307, a random number r uniformly distributed in the interval (0, 1) (0 is
excluded) can be transformed into a exponentially distributed random number s ∼ exp(λ).

s =
− ln r

λ
(28.307)

Exponential Distribution → Exponential Distribution

With Equation 28.308, an exponentially distributed random number r1 ∼ exp(λ1) can be
transformed to an exponentially distributed number r2 ∼ exp(λ2).

r2 =
λ1

λ2
r1 (28.308)

Uniform Distribution → Bell-shaped Distribution

The bases of many numerical optimization algorithms is the modification of a value x by
adding some random number to it. If the probability density function of the underlying
distribution producing number is symmetrically bell-shaped, the result of the additive mod-
ification will be smaller or larger than x with the same probability. Results which are close to
x will be more likely than such that are very distant. One example for such a distribution is
the normal distribution. Another example is the bell-shaped random number generator used
by Worakul et al. [2255, 2256], defined here as Algorithm 28.4. It is algorithmically close to
the polar form of the Box-Muller transform for the normal distribution (see Algorithm 28.3)
but differs in the way the internal variable w is created. The function randombs(µ, σ) cre-
ates a new random number according to this distribution, with an expected value µ and the
standard deviation σ.

You may have wondered about the factor 0.5513 in the algorithm. This number “normal-

izes” the standard deviation of the bell-shaped distribution, since D2
[
r(y) = ln

(
1−y

y

)]
6= 1.

We can show this by first determining the cumulative distribution function FX(x) for r(y) in
Equation 28.311 and then differentiating in order to obtain the probability density function
fXx in Equation 28.313.
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Algorithm 28.4: y ←− randombs(µ, σ)

Input: µ: the mean value of the bell-shaped distribution
Input: σ: the approximate standard deviation of the bell-shaped distribution
Data: w: a uniformly distributed random number w ∈ (0, 1)
Output: y: a bell-shaped distributed random number

begin1

repeat2

w ←− randomu()3

until (w > 0) ∧ (w < 1)4

y ←− µ+ σ ∗ 0.5513 ∗ ln
(

1−r
r

)
5

return r6

end7

FX(x) ≡ r−1(0, 1) (28.309)

x = r(y) = ln

(
y

1− y

)
(28.310)

FX(x) = y =
ex

1 + ex
(28.311)

fX(x) = FX(x)
dx

dy
(28.312)

(
ex

1 + ex

)
dx

dy
=
ex (1 + ex)− ex (ex)

(1 + ex)
2

fX(x) =
ex

(1 + ex)
2 (28.313)

Unfortunately, here it stops. We can neither apply Equation 28.56 on page 473
or Equation 28.63 on page 474 in order to determine the expected value or the variance,
since both will result in integrals that the author87 cannot compute. However, it is easy to
see that EX = 0, since r(y) is point symmetric around 0.5. The value D2X ≈ 3.28984 I
can only determine numerically with the small Java program Listing 28.1 which bases on
the idea that we can assume the uniform random numbers to be uniformly distributed in
(0, 1) (of course). Hence we can simulate a “complete sample” by iterating over codeili =
1 to T-1 and take i/T as input for r(y). Since we step over all i from 1 to T-1, this resem-
bles a uniform distribution and also leaves away the special cases y = 0 (∼i=0) and y = 1
(∼i=T). Furthermore, we can skip half of the steps since our distribution is symmetric. Well,
EX = 0 if µ = 0 and therefore we can simplify D2X = E[X]− (EX)2 (see Equation 28.61
on page 474) to D2X = E[X].

This method is, of course, very crude and subject to numerical errors in the floating
point computations. However, with D2X ≈ 3.28984 and DX =

√
D2X ≈ 1.8138 we know

that we have to scale r(y) by 1
DX
≈ 0.5513 (see Equation 28.65 on page 474) so the standard

deviation the bell-shaped distribution randombs(µ, σ) will become D[randombs(µ, σ)] ≈ σ.

87 Yes. I suck in maths.
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1 long i, max;

2 double sum2 , v;

3

4 max = 10000000;

5 sum2 = 0;

6 v = 0;

7

8 // distribution is symmetric -> iterate one wing

9 for (i = (max >>1); i < max; i++) {

10 v = Math.log ((( double) (max - i)) / (( double) i));

11 sum2 += (v * v); //sum up the squares of the single terms

12 }

13

14 System.out.print(sum2 / (max - (max >>1)));

Listing 28.1: Approximating D2X of r(y).

28.10 List of Functions

28.10.1 Gamma Function

Definition 28.71 (Gamma Function). The Gamma function88 Γ : C 7→ R is the exten-
sion of the factorial (see Definition 28.8 on page 467) to the real and complex numbers. For
complex numbers z ∈ C with a positive real part Re(z) > 0 it is defined as:

Γ (z) =

∫ ∞

0

tz−1e−tdt (28.314)

Furthermore, the following equations hold for the gamma function.

Γ (z + 1) = zΓ (z) (28.315)

Γ (1) = 1 (28.316)

Γ (z) = (z − 1)! ∀ z ∈ N (28.317)

Γ (z) = lim
n→∞

n!nz

z(z + 1)..(z + n)
(28.318)

Γ (z) =
eγz

z

∞∏

n=1

(
1 +

z

n

)−1

e
z
n (28.319)

γ in Equation 28.319 denotes the Euler-Mascheroni constant89.

γ = lim
n→∞

[(
n∑

k=1

1

k

)
− log n

]
=

∫ ∞

0

(
1

⌊x⌋ −
1

x

)
dx (28.320)

≈ 0.57721566490153286060651209008240243 . . . (28.321)

28.10.2 Riemann Zeta Function

Definition 28.72 (Riemann Zeta Function). The Riemann zeta function90 ζ(s) [1733]
is the function of the complex variable s defined as

88 http://en.wikipedia.org/wiki/Gamma_function [accessed 2007-09-30]

89 http://en.wikipedia.org/wiki/Euler-Mascheroni_constant [accessed 2007-09-30]

90 http://en.wikipedia.org/wiki/Riemann_zeta_function [accessed 2008-08-24]

http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
http://en.wikipedia.org/wiki/Riemann_zeta_function
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ζ(s) =

+∞∑

i=1

1

is
=

∏

∀primes p

1

1− p−s
(28.322)

Some values of the zeta function are listed in Table 28.22.

s ζ(n)

0 ζ(0) = −1/2
1/2 ζ(1/2) ≈ −1.460 354 508 809 586 8
1 ζ(1)⇒∞

3/2 ζ(3/2) ≈ 2.612
2 ζ(2) ≈ 1.645

5/2 ζ(5/2) ≈ 1.341
3 ζ(3) ≈ 1.202

7/2 ζ(7/2) ≈ 1.127
6 ζ(6) ≈ 1.0173

Table 28.22: Some values of the Riemann zeta function.
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Clustering

Clustering algorithms1 divide a dataset into several disjoint subsets. All elements in such
a subset share common features like, for example, spatial proximity. Clustering has many
different applications like:

1. Data Mining and Data Analysis [133, 610, 1430, 183],
2. Information Processing and Information Management [187, 1151, 2265, 1770],
3. Pattern Recognition [203, 2156, 1172],
4. Image Processing [1102, 1817], and
5. Medicine [1868, 477, 2316].

Definition 29.1 (Clustering). Clustering is the unsupervised classification of patterns
(observations, data items, or feature vectors) into groups (clusters) [1029]. With clustering,
one dataset is partitioned into subsets (clusters), so that the data in each subset (ideally)
share some common trait - often proximity according to some defined distance measure.
Figure 29.1 illustrates a possible result C of the application of a clustering algorithm to a
set A of elements with two features.

c C2Î

c C1Î

c C3Î

c C4Î

A

C=cluster(A)

Figure 29.1: A clustering algorithm applied to a two-dimensional dataset A.

In the field of global optimization there is another application for clustering algorithms.
For many problems the set of optimal solutions X⋆ is very large or even infinite. An optimiza-
tion algorithm then cannot be able to store or return it on the whole. Therefore, clustering
techniques are often used in order to reduce the optimal set while not losing its characteris-
tics – the diversity of the individuals included in the “current optimal set” is preserved, just
their number is reduced. Especially in elitist evolutionary algorithms (see Definition 2.4 on
page 103) which maintain an archive of the best individuals currently known.

Data clustering algorithms are either hierarchical or partitional. A hierarchical algorithm
uses previously established clusters to successively find new clusters. The result of such an
algorithm is a hierarchy of clusters. Partitional algorithms, on the other hand, determine

1 http://en.wikipedia.org/wiki/Data_clustering [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Data_clustering
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all clusters at once. In the context of this book, we do only need the division of a set into
clusters – a hierarchy of this division is unnecessary.

There also exist so-called fuzzy clustering2 [1106, 1216] methods that do not create
clear divisions but assign a vector of probabilities to each element. This vector contains a
component for each cluster which denotes the probability of the element to belong to it.
Again, in the context of this book, we only regard clustering algorithms that group each
data element to exactly one single cluster. Therefore, we define a clustering algorithm as
follows:

Definition 29.2 (Clustering Algorithm). A clustering algorithm C = cluster(A) con-
structs a set C consisting of elements which are disjoint subsets of a set A and, if united,
cover A completely (see also Figure 29.1).

C = cluster(A)⇒ ∀c ∈ C, ∀a ∈ c⇒ a ∈ A ∧
∀c1 6= c2 ∧ c1, c2 ∈ C ⇒ c1 ∩ c2 = ∅ ∧
∀a ∈ A ∃c ∈ C : a ∈ c (29.1)

deduced:
⋃

∀c∈C

= A (29.2)

deduced: C ⊂ P(A) (29.3)

For the last deduced formula see the definition of the power set P, Definition 27.9 on
page 458.

There is however one important fact that must not be left unsaid here: Although we
define clustering algorithms in terms of sets for simplicity, they are actually applied to
lists. A set can contain the same element only once, hence {1, 2, 1} = {1, 2}. A clustering
algorithm however may receive an input A that contains multiple equal elements. This is
our little dirty backdoor here, we consider A = {a1, a2, .., an} as the input set and allow its
elements to have equal values, such as a1 = 1, a2 = 2, and a3 = 1. When performing the
clustering, we only consider the symbols a1 . . . an. This allows us to use straightforward and
elegant set-based definitions as done in Definition 29.2 without loss of generality.

Definition 29.3 (Partitions in Clustering). We define the set C of all possible partitions
of A into clusters C. Furthermore, the subset Ck ⊆ C is the set of all partitions of A into
k clusters. The number of possible configurations Ck for any given k equals the Sterling
number S(|A|, k) [221].

∀C ∈ C⇔ ∀c ∈ C, ∀a ∈ c⇒ a ∈ A ∧
∀c1, c2 ∈ C ⇒ c1 ∩ c2 = ∅ ∧
∀a ∈ A ∃c ∈ C : a ∈ c (29.4)

C ∈ Ck ⇔ C ∈ C ∧ |C| = k (29.5)

|Ck| = S(|A|, k) =
1

k!

k∑

i=1

(−1)k−i

(
k

i

)
in (29.6)

|C| =

n∑

k=1

|Ck| =
n∑

k=1

S(|A|, k) (29.7)

On the elements a of the set A which are subject to clustering, we impose an simple
restriction: Although we allow any sort of elements a in A, we assume that to each such
element a there is assigned exactly one single α(a) ∈ Rn. In other words, there exists a
function α : A 7→ Rn which relates the features of each element a of A to a vector of real
numbers. This allows us to apply distance metrics and such and such.

2 http://en.wikipedia.org/wiki/Fuzzy_clustering [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Fuzzy_clustering
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In the context of global optimization, the elements a would for example be the solution
candidates like evolved programs in the population A and the function α(a) then would
correspond to the values of their objective functions f ∈ F .

From now on, we will be able treat the elements a like vectors of real numbers (if needed)
without loss of generality. Note that even though we assume that there exists a binary
relation which assigns a real vector to each element of A, this is not necessarily the case for
the opposite direction. Picking up the previous example it is most probably not likely to
have one program for each possible combination of objective values.

Definition 29.4 (Centroid). The centroid3 [4] of a cluster is its center, the arithmetic
mean of all its points to put it plain and simple.

centroid(c) =
1

|c|
∑

∀a∈c

a (29.8)

29.1 Distance Measures

Each clustering algorithm needs some form of distance measuring, be it between two ele-
ments or between two clusters. Therefore we define the prototype of a distance measurement
function as follows:

Definition 29.5 (Distance Measure). A distance measurement function dist rates the
distance between two elements of the same type (set) as positive real number which is the
bigger the bigger the distance between the two elements is.

dist(a, b) ∈ R+, a, b ∈ A (29.9)

29.1.1 Distance Measures for Strings of Equal Length

Definition 29.6 (Hamming Distance). For two tuples a and b of the same length, the
Hamming [882] distance4 distHam(a, b) is defined as the number of locations in which a and
b differ.

distHam(a, b) = |{i : a[i] 6= b[i], ∀0 ≤ i < |a|}| ∀a, b : len(a) = len(b) (29.10)

The Hamming distance is used in many error-correction schemes, since it also equals
to the number of single substitutes required to change one string into another one. The
Hamming distance of 100101 and 101001 is 2 whereas the Hamming distance of Hello World

and Hello Earth is 5.

29.1.2 Distance Measures for Real-Valued Vectors

As already mentioned in Chapter 29, we assume that there is a real-values vector in Rn

assigned to each element a ∈ A by an implicit α : A 7→ Rn-function. Therefore, the distance
measures introduced here can be used for all A subject to clustering.

Definition 29.7 (Manhattan Distance). The Manhattan distance5 distMan(a,b) de-
notes the sum of the absolute distances of the coordinates of the two vectors a and b.

distMan(a,b) =

n∑

i=1

|a[i]− b[i]| ∀a,b ∈ Rn (29.11)

3 http://en.wikipedia.org/wiki/Centroid [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Hamming_distance [accessed 2007-07-03]

5 http://en.wikipedia.org/wiki/Manhattan_distance [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Centroid
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Manhattan_distance
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Thus, the Manhattan distance of (1, 2, 3)
T

and (3, 2, 1)
T

is 4.

Definition 29.8 (Euclidian Distance). The Euclidian distance6 disteucl(a,b) is the ”or-
dinary” distance of two points (denoted by the two vectors a and b) in Euclidian space.
This value is obtained by applying of the Pythagorean theorem7.

disteucl(a,b) =

√√√√
n∑

i=1

(a[i]− b[i])
2 ∀a,b ∈ Rn (29.12)

Therefore, the Euclidian distance of (1, 2, 3)T and (3, 2, 1)T is
√

8.

Definition 29.9 (Norm). A vector norm8, denoted by ||a|| is a function which assigns a
positive length or size to all vectors a in a vector space (or set) A ⊆ Rn, other than the zero
vector.

Some common norms of the element a ∈ A ⊆ Rn are:

1. The Manhattan norm9:

||a||1 =

n∑

i=1

|a[i]| (29.13)

2. The Euclidian norm:

||a||2 =

√√√√
n∑

i=1

(a[i])2 (29.14)

3. The p-norm is a generalization of the two examples above:

||a||p =

(
n∑

i=1

|a[i]|p
) 1

p

(29.15)

4. The infinity norm10 is the special case of the p-norm for p→∞:

||a||∞ = max {|a[1]| , |a[2]| , .., |a[n]|} (29.16)

Such norms can be used as distance measures, and we hence define a new distance
measurement function as:

distn,p(a,b) = ||a− b||p ∀a,b ∈ A ⊆ Rn (29.17)

distMan ≡ distn,1 (29.18)

disteucl ≡ distn,2 (29.19)

If the places of the vectors a have different ranges, for example a[1] ∈ [0...1] and
a[2] ∈ [0..100 000], a norm of the difference of two such vectors may not represent their
true “semantic” distance. Here, the contribution of the first elements of two vectors a and b
to their distance will most likely be negligible. However, the two vectors (0, 0)

T
and (1, 100)

T

may be considered “more different” than (0, 0)
T

and (0.1, 110)
T

, since they differ the whole
range in their first elements. Therefore, an additional distance measure, the distn

n,pdistance
is defined which normalizes the vector places before finally computing the norm.

distn
n,p(a,b) =

(
n∑

i=1

∣∣∣∣
{ a[i]−b[i]

range(A)[i] if range(A)[i] > 0

a[i]− b[i] otherwise

∣∣∣∣
p
) 1

p

(29.20)

6 http://en.wikipedia.org/wiki/Euclidean_distance [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Pythagorean_theorem [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Vector_norm [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Taxicab_geometry [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Maximum_norm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Vector_norm
http://en.wikipedia.org/wiki/Taxicab_geometry
http://en.wikipedia.org/wiki/Maximum_norm
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29.1.3 Elements Representing a Cluster

We already stated that there is not necessarily an a ∈ A assigned to each real vector in Rn.
Thus, there also does not necessarily exist an element a in the center centroidc of a cluster c.
For our purposes in this book, we are however interested in elements representing clusters.
Since I have not found any other in literature, we will call such elements nuclei. We can
define different functions nucleus(c ∈ C) to compute such nuclei which, in turn, depend on a
distance measure. We will again abbreviate this distance function by dist. dist is an implicit
parameter which can be replaced by any of the functions introduced before. Also again, the
default setting is dist = disteucl ≡ distn,2.

The first possible nucleus method, nucleusc, would be to take the element which is closest
to the centeroid centroidc of the cluster c:

n ∈ c = nucleus(c)⇔ dist(a, centroid(c)) ≥ dist(n, centroid(c)) ∀a ∈ c (29.21)

29.1.4 Distance Measures Between Clusters

In order to determine the distance between two clusters, another set of distance measures can
be applied. Such distance measures usually will compute the distance between two clusters
as a function of the distances between their elements which is, in turn, defined using a
secondary distance function. We will abbreviate this secondary distance function by dist
which can be replaced by any of the functions named in the above subsections. We assume
it to be an implicit parameter with the default value dist = disteucl ≡ distn,2. Let c1 and c2
be two clusters in C, then we can define the following distance measures between them:

1. The maximum distance between the elements of the two clusters (also called complete
linkage):

distmax(c1, c2) = max {dist(a, b) , ∀a ∈ c1, b ∈ c2} ; ∀c1, c2 ∈ C (29.22)

2. The minimum distance between the elements of the two clusters (also called single
linkage):

distmin(c1, c2) = min {dist(a, b) , ∀a ∈ c1, b ∈ c2} ; ∀c1, c2 ∈ C (29.23)

3. The mean distance between the elements of the two clusters (also called average linkage):

distavg(c1, c2) =
1

|c1| ∗ |c2|
∑

∀a∈c1

∑

∀b∈c2

dist(a, b) ; ∀c1, c2 ∈ C (29.24)

4. The increase in variance distvar(a, b) if the clusters were merged.
5. The distance of their centers:

distcent(c1, c2) = dist(centroid(c1) , centroid(c2)) ; ∀c1, c2 ∈ C (29.25)

6. The distance of their nuclei computed by the nucleus function nucleus (see the definition
of nucleus in Section 29.1.3):

distnucl(c1, c2) = dist(nucleus(c1) ,nucleus(c2)) ; ∀c1, c2 ∈ C (29.26)



540 29 Clustering

29.2 Clustering Algorithms

29.2.1 Cluster Error

The most commonly used partitional clustering strategies are based on the square error
criterion. The general aim is to obtain a partition which minimizes the square error for a
given number k [1028] which we generalize to fit any given distance measure dist:

Definition 29.10 (Clustering Error). We define the error errorc inside a cluster as the
sum of the distances of its elements from its center basing on a distance measure function.
The total error of a partition errorp is then the sum of all the errors of the clusters included.
Normally, we will use disteucl ≡ distn,2 as distance measure.

errorc(c) =
∑

∀a∈c

dist(a, centroid(c)) (29.27)

errorp(C) =
∑

∀c∈C

errorc(c) =
∑

∀c∈C

∑

∀a∈c

dist(a, centroid(c)) (29.28)

Normally, this error is minimized under the premise of a fixed number of clusters k = |C|.
Then, an optimum configuration C⋆ is searched within the set Ck of all such partitions of A
into k clusters C. This optimum C⋆ is defined by errorp(C⋆) = min {errorp(C) ∀C ∈ Ck}.
Since testing all possible configurations C is too expensive (see Equation 29.7), finding the
optimum C⋆ is an optimization tasks itself. Doing so inside an optimization process itself
hence only rarely is applicable. Here we will introduce some algorithms which approximate
good C.

29.2.2 k-means Clustering

k-means clustering11 [1343, 210, 2111] partitions the data points a ∈ A into k disjoint
subsets c ⊆ A, c ∈ C ⊆ Ck. It tries to minimize the sum of all distance of the data points
and the centers of the clusters they belong to. In general, the algorithm does not achieve a
global minimum of over the assignments. Despite this limitation, k-means clustering is used
frequently as a result of its ease of implementation. [2191]

k-means clustering works approximately as follows [1028]:

1. Select an initial partition of k clusters.
2. Create a new partition by assigning each a ∈ A to the cluster with the closest center.

Repeat this until the partition does not change anymore.
3. Modify the cluster set by merging, dividing, deleting or creating cluster. If the clustering

error of the new partition is smaller than the error of the previous one then go back to
step 2.

In order to perform the modification of the cluster set, we introduce a function called
kMeansModify obeying the following conditions.

Cnew = kMeansModifyk(C)⇒ ∀a ∈ c1 ∈ C ∃c2 ∈ Cnew : a ∈ c2 ∧
∀a ∈ c2 ∈ Cnew ∃c1 ∈ C : a ∈ c1 (29.29)

In other words, kMeansModify translates one set of clusters C to another one Cnew

by redeeming Definition 29.2 on page 536. One (crude) example for an implementation of
kMeansModify is specified as Algorithm 29.1.

We demonstrate how k-means clustering works in Algorithm 29.2. As distance measure
dist (lines 23 and 25) usually the Euclidian distance between the centroids of the clusters c1
and c2, distcent(c1, c2), see page 539, is used.

11 http://en.wikipedia.org/wiki/K-nearest-neighbor_estimator [accessed 2007-07-03]

http://en.wikipedia.org/wiki/K-nearest-neighbor_estimator
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Algorithm 29.1: Cnew ←− kMeansModifyk(C)

Input: [implicit] k: the number of clusters wanted, k ≤ |A|
Input: [implicit] dist: the distance measure between clusters to be used
Input: [implicit] dist2: the distance measure between elements to be used
Input: C: the list of clusters c to be modified
Data: m: the index of the cluster C [m] with the lowest error
Data: n: the index of the cluster C [n] nearest to C [m]

Data: s: index of the cluster C [s] with the highest error
Output: Cnew: the modified list of closters

begin1

m←− m : errorc(C [m]) = min {C [i] ∀i ∈ [0, k − 1]}2

n←− n : dist(C [m], C [n]) = min {dist(C [m], C [i]) ∀i ∈ [0, k − 1] \ {m}}3

s←− s : errorc(C [s]) = max {errorc(C [i]) ∀i ∈ [0, k − 1] \ {m,n}}4

C [m]←− C [m] ∪ C [n]5

a←− a ∈ C [s] : dist2(a, centroid(C [s])) ≥ dist2(b, centroid(C [s])) ∀b ∈ C [s]6

C [n]←− {a}7

C [s]←− C [s] \ {a}8

return B9

end10

29.2.3 nth Nearest Neighbor Clustering

The nth nearest neighbor clustering algorithm is defined in the context of this book only. It
creates at most k clusters where the first k − 1 clusters contain exactly one element. The
remaining elements are all together included in the last cluster. The elements of the single-
element clusters are those which have the longest distance to their nth-nearest neighbor.
This clustering algorithm is suitable for reducing a large set to a smaller one which contains
still the most interesting elements (those in the single-element clusters). It has relatively low
complexity and thus runs fast, but on the other hand has the setback that dense aggregations
of ≥ n elements will be put into the “rest elements”-cluster. For n, normally a value of
n =
√
k is used.

nth nearest neighbor clustering uses the kth nearest neighbor distance function distρ
nn,k

introduced in Definition 28.63 on page 506 with its parameter k set to n. Do not mix this
parameter up with the parameter k of this clustering method – although they have the same
name, they are not the same. I know, I know, this is not pretty.

Notice that Algorithm 29.3 should only be applied if all the elements a ∈ A are unique,
i.e., there exists no two equal elements in A) which is, per definition, true for all sets. In a real
implementation, a preprocessing step should remove are duplicates from A before clustering
is performed. Especially our home-made nearest neighbor clustering variant is unsuitable
to process lists containing the same elements multiple times. Since all equal elements have
the same distance to their nth neighbor, it is likely that the result of the clustering is very
unsatisfying since one element may occur multiple times whereas a variety of different other
elements is ignored. Therefore, the aforementioned preprocessing should be applied, which
may have the drawback that we could possible obtain a set C with less than k clusters. In
the Sigoa system’s implementation of the nth nearest neighbor clustering, only one instance
of each group of equal elements in A is permitted to become a single-node cluster per run
and multiple runs are performed until k clusters have been created.

29.2.4 Linkage Clustering

The linkage method [1466, 2329] is used to create a set C containing at most k clusters.
This algorithm initially creates a cluster of each single element in the set A. This set C of
cluster c is reduced melting together the two closest clusters iteratively. Again, the distance
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Algorithm 29.2: C ←− kMeansClusterk(A)

Input: A: the set of elements a to be clustered
Input: [implicit] k: the number of clusters wanted, 0 < k ≤ |A|
Input: [implicit] dist: the distance measures between clusters to be used
Input: [implicit] dist2: the distance measures between elements to be used
Input: [implicit] kMeansModify: a function that modifies the cluster set
Data: C: the tuple of clusters c computed, |C| = k
Data: Acpy: a temporary copy of A used for initialization
Data: Cold: the cluster set of the previous inner iteration
Data: Cnew: the cluster set of the current inner iteration
Data: i: a counter variable for the loops
Data: d: the distance between the cluster {a} and the current cluster in Cold

Data: dmin: the minimum distance between {a} and any cluster in Cold

Data: imin: the index of that cluster with the minimum distance in Cold

Output: c: the set of clusters – all the items of the tuple B represented as set

begin1

Acpy ←− A2

k ←− min {k, |A|}3

Cnew ←− createList(k, ∅)4

i←− len(Cnew)− 15

while i > 0 do6

Cnew [i]←− {a ∈ Acpy}7

Acpy ←− Acpy \ C [i]8

i←− i− 19

Cnew [0]←− Acpy10

repeat11

C ←− Cnew12

Cnew ←− kMeansModifyk(Cnew)13

repeat14

Cold ←− Cnew15

i←− len(Cnew)− 116

while i > 0 do17

Cnew [i]←− ∅18

i←− i− 119

foreach a ∈ A do20

i←− len(Cold)− 121

imin ←− 022

dmin ←− dist({a} , Cold[0])23

while i > 0 do24

d←− dist({a} , Cold[i])25

if d < dmin then26

dmin ←− d27

imin ←− i28

i←− i− 129

Cnew [imin]←− Cnew [imin] ∪ {a}30

until Cold = Cnew31

until errorp(C) ≤ errorp(Cnew)32

return listToSet(C)33

end34
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Algorithm 29.3: C ←− nNearestNeighborClusterk(n)A

Input: A: the set of elements a to be clustered
Input: [implicit] k: the number of clusters wanted (0 < k ≤ |A|)
Input: [implicit] n: index for the nearest neighbors
Input: [implicit] dist: the distance measure to be used
Data: L: the sorted list of elements
Data: i: the counter variable
Output: C: the set of clusters c computed, |C| = k

begin1

L←− sortListd

(
setToList(A) , distρ

nn,kdist
)

2

i←− min {k, |L|} − 23

C ←− ∅4

while i ≥ 0 do5

C ←− C ∪ {L[i]}6

A←− A \ L[i]7

i←− i− 18

return C ∪ {A}9

end10

measure function dist (see line 11 of Algorithm 29.4) used can be any of distance measures
already introduced.

According to the cluster distance measure dist chosen, linkageCluster realizes different
types of linkage clustering algorithms12 (see Section 29.1.4 on page 539):

1. If dist(c1, c1) = distmax(c1, c1) denotes the maximum distance of the elements in two
clusters, complete linkage clustering is performed.

2. If dist(c1, c1) = distavg(c1, c1) denotes the mean distance of the elements in two clusters,
average linkage clustering is performed.

3. If dist(c1, c1) = distmin(c1, c1) denotes the minimum distance of the elements in two
clusters, single linkage clustering is performed.

29.2.5 Leader Clustering

The leader clustering algorithm is a very simple one-pass method to create clusters. Basically,
we begin with an empty leader list and an empty set of clusters. Step by step the elements
a are extracted from the set A subject to clustering. a is then compared to the elements in
the leader list in order to find one leader l with dist(a, l) smaller than a specified maximum
distance D. If such a leader exists, a is added to its cluster, otherwise a becomes leader
of a new cluster containing only itself. The leader clustering can either be performed by
using the first best leader l found with dist(a, l) < D and assign a to its cluster ([255],
Algorithm 29.5) or by comparing a to all possible leaders and thus finding the leader closest
to a dist(a, l) < dist(a, l2) ∀l2 ∈ leaders ([84], Algorithm 29.6).

12 http://en.wikipedia.org/wiki/Data_clustering#Agglomerative_hierarchical_clustering

[accessed 2007-07-03]

http://en.wikipedia.org/wiki/Data_clustering#Agglomerative_hierarchical_clustering
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Algorithm 29.4: C ←− linkageClusteribkA
Input: A: the set of elements a to be clustered
Input: [implicit] k: the number of clusters wanted (0 < k ≤ |A|)
Input: [implicit] dist: the distance measure to be used
Input: [implicit] dist2: the distance measure between elements a to be used by dist
Data: c1: the first cluster to investigate
Data: c2: the second cluster to investigate
Data: d: the distance between the clusters r1 and r2 currently investigated
Data: dmin: the minimum distance between two clusters cr1, cr2 found in the current

iteration
Data: cr1: the first cluster of the nearest cluster pair
Data: cr2: the second cluster of the nearest cluster pair
Output: C: the set of clusters c computed, |C| = k

begin1

C ←− ∅2

foreach a ∈ A do C ←− C ∪ {a}3

while |C| > k do4

dmin ←−∞5

cr1 ←− ∅6

cr2 ←− ∅7

foreach c1 ∈ C do8

foreach c2 ∈ C do9

if c1 6= c2 then10

d←− dist(c1, c2)11

if d ≤ dmin then12

dmin ←− d13

br1 ←− b114

br2 ←− b215

C ←− C \ cr116

C ←− C \ cr217

C ←− C ∪ {cr1 ∪ cr2}18

return C19

end20
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Algorithm 29.5: C ←− leaderClusterf
D(A)

Input: A: the set of elements a to be clustered
Input: [implicit] D: the maximum distance between an element an a cluster’s leader
Input: [implicit] dist: the distance measure to be used
Data: a: an element in A
Data: i: a counter variable
Data: L: the list of cluster leaders
Output: C: the list of clusters c computed

begin1

L←− ()2

B ←− ()3

foreach a ∈ A do4

i←− len(L)− 15

while i ≥ 0 do6

if dist(L[i], a) ≤ D then7

C [i]←− C [i] ∪ {a}8

i←− −29

i←− i− 110

if i ≥ −1 then11

L←− addListItem(L, a)12

C ←− addListItem(C, {a})13

return listToSet(C)14

end15

Algorithm 29.6: C ←− leaderClustera
D(A)

Input: A: the set of elements a to be clustered
Input: [implicit] D: the maximum distance between an element an a cluster’s leader
Input: [implicit] dist: the distance measure to be used
Data: a: an element in A
Data: i: a counter variable
Data: L: the list of cluster leaders
Output: C: the list of clusters c computed

begin1

L←− ()2

B ←− ()3

foreach a ∈ A do4

i←− len(L)− 15

j ←− 06

while i > 0 do7

if dist(L[i], a) < dist(L[j], a) then j ←− i8

if dist(L[j], a) ≤ D then9

C [j]←− C [j] ∪ {a}10

else11

L←− addListItem(L, a)12

B ←− addListItem(C, {a})13

return listToSet(C)14

end15
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Theoretical Computer Science

30.1 Introduction

Theoretical computer science1 is the branch of computer science2 that deals with the rather
mathematical, logical, and abstract aspects of computing. It subsumes areas like algorithmic
theory, complexity, the structure programming languages, and the solvability of problems.

30.1.1 Algorithms and Programs

In this and the following sections, we want to gain insight into the topic of algorithms, both
in local and distributed systems. This seems to be appropriate, since any global optimization
technique which we will discuss in this book is an algorithm. Often even a rather complicated
one. Sometimes we even want to use several computers to solve an optimization problem
cooperatively. Thus, we should know about the properties and theory of algorithms as well
as of distributed systems.

The second reason is that many example applications discussed in this book will concern
the automated syntheses of distributed algorithms. To understand these, knowledge of the
features of distributed algorithms is valuable.

What are Algorithms?

The term algorithm comprises essentially all forms of “directives what to do to reach a
certain goal”. A culinary receipt is an algorithm, for example, since it tells how much of
what is to be added to a meal in which sequence and how everything should be heated.
The commands inside the algorithms can be very concise or very imprecise, depending on
the area of application. How accurate can we, for instance, carry out the instruction “Add
a tablespoon of sugar.”? Hence, algorithms are a very wide field that there exist numerous
different, rather fuzzy definitions for the word algorithm [19, 86, 90, 446, 1213]:

Definition 30.1 (algorithm). According to Whatis.com3, an algorithm is a procedure or
formula for solving a problem. The word derives from the name of the mathematician,
Mohammed ibn-Musa al-Khwarizmi, who was part of the royal court in Baghdad and who
lived from about 780 to 850. Al-Khwarizmi’s work is the likely source for the word algebra
as well.

Definition 30.2 (algorithm). Wikipedia4 says that in mathematics, computing, linguis-
tics, and related disciplines, an algorithm is a procedure (a finite set of well-defined instruc-
tions) for accomplishing some task which, given an initial state, will terminate in a defined

1 http://en.wikipedia.org/wiki/Theoretical_computer_science [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Computer_science [accessed 2007-07-03]

3 http://searchvb.techtarget.com/sDefinition/0,,sid8_gci211545,00.html [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Algorithm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Computer_science
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci211545,00.html
http://en.wikipedia.org/wiki/Algorithm
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end-state. The computational complexity and efficient implementation of the algorithm are
important in computing, and this depends on suitable data structures.

Definition 30.3 (algorithm). An algorithm is a computable set of steps to achieve a
desired result according to the National Institute of Standards and Technology5.

Definition 30.4 (algorithm). Wolfram MathWorld6 defines algorithm as a specific set of
instructions for carrying out a procedure or solving a problem, usually with the require-
ment that the procedure terminate at some point. Specific algorithms sometimes also go
by the name method, procedure, or technique. The word ”algorithm” is a distortion of
al-Khwarizmi, a Persian mathematician who wrote an influential treatise about algebraic
methods. The process of applying an algorithm to an input to obtain an output is called a
computation.

X = createPop(n)pop

Input: n the size of the population to be created

Data: i a counter variable

Output: X the new, random populationpop

begin1

X ()pop2

i      n3

while i 0 do>4

Xpop appendList(X , create())pop5

i i-16

return Xpop7

end8

Algorithm

1 PROC createPop
2 push eax
3 push eax
4 call ArrayList::create
5 pop  ecx
6 @loop
7   push ecx
8   push eax
9
10   call create
11   push eax
12   call ArrayList::add
13   pop  eax
14   pop  ecx
15   loop @loop
16 RET EAX
17 END PROC

push eax

Program
(Schematic Assembly Language)

1 List<IIndividual> createPop(n) {
2   List<Individual> Xpop;
3   Xpop = new ArrayList<IIndividual>(n);
4   for(int i=n; i>0; i--) {
5     Xpop.add(create());
6     }
7   return Xpop;
8   }

Program
(Schematic Java, High-Level Language)
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Program
(Schematic Machine Language)
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Figure 30.1: The relation between algorithms and programs.

While an algorithm is a set of directions in a representation which is usually understand-
able for human beings, programs are intended to be processed by machines and are therefore
expressed in a more machine-friendly form. Originally, this was machine code. Nevertheless,
for more than sixty years [312], huge effort is being spent in order to allow us to write pro-
grams in more and more comprehensible syntax. A program is basically an algorithm realized
for a given computer or execution environment, as illustrated in Figure 30.1. The difference
between programs and algorithms hence today lies primarily in the degree of independence
from a given platform and the intention.

5 http://www.nist.gov/dads/HTML/algorithm.html [accessed 2007-07-03]

6 http://mathworld.wolfram.com/Algorithm.html [accessed 2007-07-03]

http://www.nist.gov/dads/HTML/algorithm.html
http://mathworld.wolfram.com/Algorithm.html
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Definition 30.5 (Program). A program7 is a set of instructions that describe a task or
an algorithm to be carried out on a computer. Therefore, the primitive instructions of the
algorithm must be expressed either in a form that the machine can process directly (machine
code8 [1622]), in a form that can be translated (1:1) into such code (assembly language [1793],
Java byte code [837], etc.), or in a high-level programming language9 [1350] which can be
translated (n:m) into the latter using special software (compiler) [1162].

In Genetic Programming, programs are grown and not algorithms since the evolved
structures are always bound to one specific simulation environment. The results may be
transformed to algorithms by removing this binding. This process can become very com-
plicated, especially for assembly language or machine code-like programs and there is no
automated way for doing this to the knowledge of the author.

Definition 30.6 ((Software) Process). In terms of software, a process10 is a program
that is currently executed. While a program only is a description of what to do, a process
is the procedure of actually doing it. In a program for example the number and types of
variables are described – in a process they are allocated and used.

Here we should also mention one of the most fundamental principle of electronic data
processing11, the IPO Model12. As sketched in Figure 30.2, it consists of three parts:

Process
(running Program)

outputinput

Figure 30.2: A process in the IPO model.

1. The input (IPO) is an external information or stimulus that enters the system.
2. The processing step (IPO) is the set of all actions taken upon/using the input. In terms

of software, these actions are performed by a process which is the running instance of a
program.

3. The output (IPO) comprises the results of the computation (processing phase) that leave
the system.

30.1.2 Properties of Algorithms

Besides these definitions, algorithms all share the following properties. Well, with few ex-
ceptions that we also will elaborate on.

Definition 30.7 (Abstraction). An algorithm describes the process of solving a problem
on a certain level of abstraction which is determined by the elementary algorithms and
elementary objects it uses and the applied formalism. One of the most important methods
of abstraction is the definition and reuse of sub-algorithms.

Definition 30.8 (Discrete). A discrete algorithm works step-wise, i. e., is build on base
of atomic executable instructions.

7 http://en.wikipedia.org/wiki/Computer_program [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Machine_code [accessed 2007-07-04]

9 http://en.wikipedia.org/wiki/High-level_programming_language [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Process_%28computing%29 [accessed 2007-07-03]

11 http://en.wikipedia.org/wiki/Electronic_data_processing [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/IPO_Model [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Electronic_data_processing
http://en.wikipedia.org/wiki/IPO_Model
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Definition 30.9 (Finite). The definition of a (static) finite algorithm has a limited length.
The sequence of instructions of static finite algorithms is thus finite. During its execution, a
(dynamic) finite algorithm uses only a limited amount of memory to store its interim results.

Definition 30.10 (Termination). Each execution of an algorithm terminates after a finite
number of steps and returns its results.

Definition 30.11 (Determinism). In each execution step of a deterministic algorithm,
there exists at most one way to proceed. If no way to proceed exists, the algorithm has
terminated.

Deterministic algorithms do not contain instructions that use random numbers in order
to decide what to do or how to modify data. Most of the optimization techniques included
in this book are randomized algorithms. They hence are not deterministic. We give an
introduction into this matter in Definition 30.18 on page 552.

Definition 30.12 (Determined). An algorithm is determined if it always yields the same
results (outputs) for the same inputs.

30.1.3 Complexity of Algorithms

For most problems, there exists more than one approach that will lead to a correct solution.
In order to find out which one is the “best”, we need some sort of metrics which we can
compare [2166, 2223].

The most important measures obtained by analyzing an algorithm13 are the time that
it takes to produce the wanted outcome and the storage space needed for internal data
[446]. We call those the time complexity and the space complexity dimensions. The time-
complexity denotes how many steps algorithms need until they return their results. The
space complexity determines how much memory an algorithm consumes at most in one run.
Of course, these measures depend on the input values passed to the algorithm. If we have an
algorithm that should decide whether a given number is prime or not, the number of steps
needed to find that out will differ if the inputs are 1 or 232582657 − 1. Therefore, for both
dimensions, the best-case, average-case, and the worst-case complexity exist.

In order to compare the time and space requirements of algorithms, some approximative
notations have been introduced [1159, 1894, 1162]. As we just have seen, the time and space
requirements of an algorithm normally depend on the size of its inputs. We can describe this
dependency as a function of this size. In real systems however, the knowledge of the exact
dependency is not needed. If we, for example, know that sorting n data elements with the
Quicksort algorithm14 [933, 1163] takes in average something about n log2 n steps, this is
sufficient enough, even if the correct number is 2n lnn ≈ 1.39n log2 n.

The Big-O-family notations introduced by Bachmann [96] and made popular by Landau
[1236] allow us to group functions together that rise at approximately the same speed.

Definition 30.13 (Big-O notation). The big-O15 notation is a mathematical notation
used to describe the asymptotical upper bound of functions.

f(x) ∈ O(g(x))⇔ ∃ x0,m ∈ R : m > 0 ∧ |f(x) | ≤ m|g(x) | ∀ x > x0 (30.1)

In other words, a function f(x) is in O of another function g(x) if and only if there exists
a real number x0 and a constant, positive factor m so that the absolute value of f(x) is
smaller (or equal) than m-times the absolute value of g(x) for all x that are greater than x0.

13 http://en.wikipedia.org/wiki/Analysis_of_algorithms [accessed 2007-07-03]

14 http://en.wikipedia.org/wiki/Quicksort [accessed 2007-07-03]

15 http://en.wikipedia.org/wiki/Big_O_notation [accessed 2007-07-03]
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http://en.wikipedia.org/wiki/Big_O_notation
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Therefore, x3 + x2 + x + 1 = f(x) ∈ O
(
x3
)

since for m = 5 and x0 = 2 it holds that
5x3 > x3 + x2 + x+ 1 ∀x ≥ 2.

In terms of algorithmic complexity, we specify the amount of steps or memory an algo-
rithm needs in dependency on the size of its inputs in the big-O notation. A discussion of
this topic and some examples can be found in Table 30.1.

class examples description

O(1) f1(x) = 2222,
f2(x) = sinx

Algorithms that have constant runtime for all
inputs are O(1).

O(logn) f3(x) = log x,
f4(x) = f4

(
x
2

)
+

1; f4(x < 1) = 0

Logarithmic complexity is often a feature of al-
gorithms that run on binary trees or search al-
gorithms in ordered sets. Notice that O(log n)
implies that only parts of the input of the al-
gorithm is read/regarded, since the input has
length n and we only perform m log n steps.

O(n) f5(x) = 23n+ 4,
f6(x) = n

2

Algorithms of O(n) require to access and pro-
cess their input a constant number of times.
This is for example the case when searching in
a linked list.

O(n log n) f7(x) = 23x+x log 7x Many sorting algorithms like quicksort and
mergesort are in O(n log n)

O
(
n2
)

f8(x) = 34x2,
f9(x) =

∑x+3
i=0 x− 2

Some sorting algorithms like selection sort have
this complexity. For many problems, O

(
n2
)
-

solutions are acceptable good.
O
(
ni
)

: i >
1, i ∈ R

f10(x) = x5 − x2 The general polynomial complexity. In this
group we find many algorithms that work on
graphs.

O(2n) f11(x) = 23 ∗ 2x Algorithms with exponential complexity per-
form slowly and fast become unfeasible with in-
creasing input size. For many hard problems,
there exist only algorithms of this class. Their
solution can otherwise only be approximated by
the means of randomized global optimization
techniques.

Table 30.1: Some examples of the big-O notation

Definition 30.14 (Big-Ω notation). The big-Ω notation is a mathematical notation used
to describe the asymptotical lower bound of functions.

f(x) ∈ Ω(g(x))⇔ ∃ x0,m ∈ R : m > 0 ∧ |f(x) | ≥ m|g(x) | ∀ x > x0 (30.2)

f(x) ∈ Ω(g(x))⇔ g(x) ∈ O(f(x)) (30.3)

Definition 30.15 (Θ notation). The Θ notation is a mathematical notation used to
describe both, an upper and a lower asymptotical bound of functions.

f(x) ∈ Θ(g(x))⇔ f(x) ∈ O(g(x)) ∧ f(x) ∈ Ω(g(x)) (30.4)

Definition 30.16 (Small-o notation). The small-o notation is a mathematical notation
used to define that a function is asymptotical negligible compared to another one.

f(x) ∈ o(g(x))⇔ lim
n→∞

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = 0 (30.5)
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Definition 30.17 (Small-ω notation). The small-ω notation is a mathematical notation
used to define that another function is asymptotical negligible compared to a special function.

f(x) ∈ ω(gx)⇔ lim
n→∞

∣∣∣∣
f(x)

g(x)

∣∣∣∣ =∞ (30.6)

f(x) ∈ ω(g(x))⇔ g(x) ∈ o(f(x)) (30.7)

30.1.4 Randomized Algorithms

Deterministic algorithms16 will always produce the same results when given the same inputs.
Such behavior comes closest to the original intention behind the definition of algorithms.
The execution of a recipe should always yield the same meal, sorting identical lists should
always result in, again identical, sorted lists. So in general, algorithms are considered to be
deterministic. For many problems however, deterministic algorithms are unfeasible. In global
optimization (see Section 1.1.1 on page 22), the problem space X is often extremely large
and the relation of an element’s structure and its utility as solution is not obvious. Hence,
the search space G often cannot be partitioned wisely and an exhaustive search would be the
only deterministic option left. Such an approach would take an infeasible long time. Here,
the only way out is using a randomized algorithm.

Definition 30.18 (Randomized Algorithm). A randomized algorithm17 includes at
least one instruction that acts on the basis of random numbers. In other words, a randomized
algorithm violates the constraint of determinism. Randomized algorithms are also often
called probabilistic algorithms [1473, 965, 1438, 964, 1474].

There are two general classes of randomized algorithms: Las Vegas and Monte Carlo
algorithms.

Definition 30.19 (Las Vegas Algorithm). A Las Vegas algorithm18 is a randomized
algorithm that never returns a wrong result [86, 1473, 965, 964].

Either it returns the correct result, reports a failure, or does not return at all. If a Las
Vegas algorithm returns, its outcome is deterministic (but not the algorithm itself). The
termination (see Definition 30.10 on page 550) however cannot be guaranteed. There usually
exists an expected runtime limit for such algorithms – their actual execution however may
take arbitrarily long. In summary, we can say that a Las Vegas algorithm terminates with
a positive probability and is (partially) correct.

Definition 30.20 (Monte Carlo Algorithm). A Monte Carlo algorithm19 always ter-
minates. Its result however can be correct or incorrect [1473, 965, 964]. In contrast to Las
Vegas algorithms, Monte Carlo algorithms always terminate but are (partially) correctly
only with a positive probability.

Definition 30.21 (Monte Carlo Method). Monte Carlo methods20 are a class of Monte
Carlo algorithms used for simulating the behavior of systems of different types. Therefore,
Monte Carlo methods are nondeterministic and often incorporate random numbers [845,
1339, 1744, 1294].

16 http://en.wikipedia.org/wiki/Deterministic_computation [accessed 2007-07-03], see
also Definition 30.11 on page 550

17 http://en.wikipedia.org/wiki/Randomized_algorithm [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Las_Vegas_algorithm [accessed 2007-07-03]

19 http://en.wikipedia.org/wiki/Monte_carlo_algorithm [accessed 2007-07-03]

20 http://en.wikipedia.org/wiki/Monte_Carlo_method [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Deterministic_computation
http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Las_Vegas_algorithm
http://en.wikipedia.org/wiki/Monte_carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_method


30.2 Distributed Systems and Distributed Algorithms 553

30.2 Distributed Systems and Distributed Algorithms

Various definitions have been issued for the terms distributed system and distributed algo-
rithms by several researchers such as Bal [122], Lamport [1235], Tanenbaum and van Steen
[2006], Mattern [1370], Tel [2010], Barbosa [146], Coulouris et al. [457], Ghosh [799], and
Mühl [1475]. These definitions most often only differ in minor details and can be summarized
as follows.

Definition 30.22 (Distributed System). A distributed system is a set of autonomous
systems (nodes) which are connected by a network and communicate via the exchange of
messages. [1475]

Definition 30.23 (Distributed Algorithm). Distributed algorithms [1370, 2010, 146]
are algorithms which are executed by multiple computers in a distributed system and coop-
eratively try to solve a given problem.

Distributed algorithms can be distinguished from sequential algorithms because they
run on multiple nodes in parallel in order to cooperatively solve one problem. They can
be distinguished from mere parallel algorithms since each node in the distributed system
executes instances of the same algorithm with a (usually) different view on the global state
[2010, 122, 2006].

The reason for this lack of a common view on the global state is that each node has only
knowledge about the information locally available on it. Information on the other nodes can
only be obtained via communication which usually comprises the exchange of messages.

Latency is the time difference between the moment where something is initiated and
the moment when its effects becoming observable [457]. Communication usually involves
latency. Whenever a process sends a message, its contents are handed down to the operating
system or a middleware. From this moment on, the process considers the message as sent.
The operating system now must initialize the communication, prepare the message for the
transmission medium, and send it to its destination(s).

The laws of physics induce an additional delay, preventing the message from instanta-
neously occurring at its target. This delay is normally negligible. Yet it is observable in
satellite communication, for example when the host of a news show talks with a reporter on
the other side of the globe.

Once a message arrives at the destination node, it is reassembled from the medium and
the operating system or middleware passes its contents to the receiving process. From the
moment on where the execution of this process is resumed, the message is considered as
received.

Of course, with technical effort such as special clocking, latency could be made transpar-
ent for the system. In general computer networks (let alone MANETs or sensor networks)
this is not possible and messages are always delayed. Because of this latency, the nodes can-
not have exactly the same view on the world and it is not possible to have an exact, globally
synchronized system time available. Furthermore, networks may induce arbitrary errors into
the message’s content and messages can even get lost, i. e., have an infinite latency.

Distributed algorithms can provide the following advantages (depending on their design):
modularity, flexibility, resource-sharing, no central point of failure, scalability because of
decentralization, robustness, high availability, and fault-tolerance. In turn, they may have the
following drawbacks, again depending on their design: higher complexity, no common view
on the global state, no global time, processes may fail, latency and faults in communication,
problems in termination detection, deadlocks, and race conditions.

Whether a distributed algorithm is adequate or not depends on the degree to which it
exploits the advantages of the distribution and how strongly the mentioned drawbacks are
present in its design. The quality of an adequate distributed algorithm can be determined
by its functionality, its communications complexity, i. e., how many messages need to be
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exchanged in order to solve its task, or its time complexity, i. e., how many computational
steps need to be performed on the single nodes.

TODO
Definition 30.24 (Scalability). Scalability21 is a measure describing how good a system
can grow or be extended for processing a higher computational load.

Definition 30.25 (Central Point Of Failure). A central (or single) point of failure is a
subsystem or process that, if it fails, leads to the collapse of the whole distributed system.
An example for central point of failures is central servers.

Definition 30.26 (Bottleneck). The bottleneck22 of a distributed application is the part
that has the most limiting influence on its performance.

Imagine, for instance, an hourglass. Here, the dilution in its center is the bottleneck that
limits the amount of sand that can fall down per time unit.

TODO

30.2.1 Network Topologies

Definition 30.27 (Network Topology). Network topology23 is the study of arrangement
of the components of a network such as connections and nodes. The network layout itself
can also be referred to as topology.

In the further text, we will use the term edge synonymously for link and connection and
the term vertex as synonym for node or computer since network topology is closely related
to graph theory.

Each computer network has exactly one physical topology which is the layout of its
physical components (computers, cables). This physical structure defines which nodes can
communicate directly with each other and which not. On top of that physical design, several
virtual/overlay topologies may be built.

Definition 30.28 (Overlay Network). An overlay network24 is a virtual network which
is built on top of another computer network. The nodes in the overlay network are connected
by virtual or logical links [50].

IP addresses25, for instance, form an overlay topology on top of MAC addresses26 in Ether-
nets27. A peer-to-peer network is an overlay network because it runs on top of the internet.
Several distributed algorithms require the nodes to be arranged in special topologies like
stars or rings. This can be achieved in arbitrary networks by defining an overlay structure
which performs according routing and address translations.

When speaking of topology, one would normally think about a hardwired network of
computers, connected with each other through Ethernet cabling and such and such. If we
consider a WLAN28 or a wireless sensor network as described in Definition 30.32 on page 559

21 http://en.wikipedia.org/wiki/Scalability [accessed 2008-02-08]

22 http://en.wikipedia.org/wiki/Bottleneck [accessed 2007-07-03]

23 http://en.wikipedia.org/wiki/Network_topology [accessed 2007-07-03]

24 http://en.wikipedia.org/wiki/Overlay_network [accessed 2007-07-03]

25 http://en.wikipedia.org/wiki/IP_address [accessed 2008-02-09]

26 http://en.wikipedia.org/wiki/Mac_address [accessed 2008-02-09]

27 http://en.wikipedia.org/wiki/Ethernet [accessed 2008-02-09]

28 http://en.wikipedia.org/wiki/Wireless_LAN [accessed 2008-02-08]
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on the other hand, there is of course no such thing as cabling. But still, there is a certain
topology: not all nodes may be able to directly contact each other since their radio trans-
mission ranges are limited. They may only be able to exchange messages directly with some
nodes in their physical neighborhood only. Hence, we can span a graph over this network,
where each node is connected to his neighbors in communication range only. This graph
then defines the topology.

Fig. 30.3.a: unrestricted
topology

Fig. 30.3.b: bus Fig. 30.3.c: star

Fig. 30.3.d: ring Fig. 30.3.e: hierarchy Fig. 30.3.f: grid

Fig. 30.3.g: fully
connected

Figure 30.3: Some simple network topologies

Unrestricted

In an unrestricted network topology as the one sketched in Fig. 30.3.a, we make only the
general assumption that there is no network partition. In other words, for all nodes n in the
network, there exists at least one path to each other node in the network. This path may,
of course, consist of multiple hops over multiple connections.

Bus

All nodes in a bus system (illustrated in Fig. 30.3.b) are connected to the same transmission
medium in a linear arrangement. All messages sent over the medium can be considered to
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be broadcasts that potentially can be received by all nodes more or less simultaneously. The
transmission medium has exactly two ends.

Star

Fig. 30.3.c shows an example for a star topology. Here, all nodes are connected to a single
node in the center of the network. This center could, for example, be an Ethernet hub29 or
switch30 that retransmits the messages received to their correct destination. It could as well
be a server that performs some specific tasks for the notes. For a detailed discussion of the
client-server architecture see Section 30.2.2.

Ring

In this topology, each node is connected to exactly two other nodes in a way that no partition
exists. The nodes are arranged in a sequence where the first and the last node are connected
with each other. An instance of the ring topology is illustrated in Fig. 30.3.d.

Hierarchy

Fig. 30.3.e illustrates a hierarchical topology where the nodes of the network are arranged
in form of a tree.

Grid

The nodes in a grid are laid out in a two-dimensional lattice so that each node (except those
at the borders of the grid) is connected with four neighbors: one to the left, one to the right,
one above and one below. Fig. 30.3.f is an instance of such a topology.

Fully Connected

In a fully connected network, as sketched in Fig. 30.3.g, each node is directly connected with
each other node.

30.2.2 Some Architectures of Distributes Systems

Client-Server Systems

Definition 30.29 (Client-Server). Client-server31 is a network architecture that sepa-
rates two types of nodes: the client(s) and the server(s) [2321, 72]. A client32 utilizes a service
provided by a server33. It does so by sending a request to the server. This request contains
details of the task to be carried out, for example the URL of a website to be returned. The
server then executes appropriate actions and, in most cases, sends a response to the client.
Usually, there is a small number of servers (normally one) which servers many clients.

Client-server architectures like the one illustrated in Figure 30.4 are the most basic and
the most common application logical architecture in distributed computing [457, 1370, 2006].
They are part of almost all internet applications like:

29 http://en.wikipedia.org/wiki/Ethernet_hub [accessed 2007-07-03]

30 http://en.wikipedia.org/wiki/Ethernet_switch [accessed 2007-07-03]

31 http://en.wikipedia.org/wiki/Client_server [accessed 2007-07-03]

32 http://en.wikipedia.org/wiki/Client_%28computing%29 [accessed 2007-07-03]

33 http://en.wikipedia.org/wiki/Server_%28computing%29 [accessed 2007-07-03]
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client
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clientclient

query/request

response

query/request
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Figure 30.4: Multiple clients connected with one server

1. Websites34 in the world wide web35 are obtained by using the HTTP36 protocol for
communication between a web browser37 and a web server38.

2. Application servers39 contain the business logic of corporations. They support online
shops40 with an underlying business model, for example.

3. Database servers41 provide computers in a network with access to large data sets. Fur-
thermore, they allow their clients to send structured queries that allow aggregation and
selection of specific data.

4. . . .

The major advantages of client-server systems are their simplicity. Local algorithms can
often be integrated into servers without too many problems while their adaptation to more
complicated architectures is, well, more difficult and error-prone. The heaviest weakness of
the client-server scheme is that the server represents a bottleneck (see Definition 30.25) and
a single point of failure (see Definition 30.25 on page 554).

Peer-To-Peer Networks

Definition 30.30 (Peer-To-Peer Network). Instead of being composed of client and
server nodes, a peer-to-peer42 network consists only of equal peer nodes. A peer node works
as a server for its fellow peers by providing certain functionality and simultaneous acts as
client utilizing an similar service from its peers [457, 1370, 2006, 1959, 39]. Therefore, a
peer node is often also called servent43, a combination of the words server and client. The
expression peer-to-peer is often abbreviated by P2P.

Peer-to-peer networks may have an arbitrary structure like the one sketched in
Figure 30.5. While client-server systems are limited to providing communication between
the clients and the server solely, peer-to-peer networks may resemble any sort of underlying
communication graph.

Peer-to-peer architectures circumvent the existence of single points of failure and can be
constructed to be very robust against bottlenecks. They furthermore are often ad hoc, i. e.,

34 http://en.wikipedia.org/wiki/Website [accessed 2007-07-03]

35 http://en.wikipedia.org/wiki/Www [accessed 2007-07-03]

36 http://en.wikipedia.org/wiki/Http [accessed 2007-07-03]

37 http://en.wikipedia.org/wiki/Web_browser [accessed 2007-07-03]

38 http://en.wikipedia.org/wiki/Web_server [accessed 2007-07-03]

39 http://en.wikipedia.org/wiki/Application_server [accessed 2007-07-03]

40 http://en.wikipedia.org/wiki/Online_shop [accessed 2007-07-03]

41 http://en.wikipedia.org/wiki/Database_server [accessed 2007-07-03]

42 http://en.wikipedia.org/wiki/Peer-to-peer [accessed 2007-07-03]

43 http://en.wikipedia.org/wiki/Servent [accessed 2007-07-03]
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Figure 30.5: A peer-to-peer system in an unstructured network

new peers may join the network at any time and leave it whenever they decide to do so.
This can also be regarded as a drawback since the structure (and thus, its computational
power and connectivity) of network may fluctuate heavily as well as the availability of data
provided by the peers.

If obeying the definition exactly, there are no centralized components in a peer-to-peer
network. There however exist hybrid networks where the peers for example register at a
dedicated server which keeps track on the users online. Also, there exist different hierarchical
or non-hierarchical overlay networks.

Important peer-to-peer-based applications are

1. File and content sharing systems [60, 1807] are the most influential and wide-spread
P2P systems. Millions of users today share music, videos, documents and software over
networks like Gnutella44 [420, 1740], Bittorrent45, appleJuice46 and the famous but shut-
down Napster47 network.

2. Many scientific applications like Seti@home48, Einstein@home49, and Folding@home50

rely on users all over the world that voluntarily provide their unused computational
resources. Such applications are most often constructed as screensavers that, after be-
coming active, download some pieces of data from a server and perform computations
on them. After finishing the work on the received data, a response is issued to the server.

3. Many instant messaging51 systems like talk52 utilize peer-to-peer protocols . Most often,
the clients need to log on and send status information to a server. Communication then
either works client-server-based or in P2P-manner. Especially when audio or video chats
come into play, peer-to-peer approaches are usually preferred.

4. . . .

44 http://en.wikipedia.org/wiki/Gnutella [accessed 2007-07-03]

45 http://en.wikipedia.org/wiki/BitTorrent [accessed 2007-07-03]

46 http://www.applejuicenet.de/ [accessed 2007-07-03]

47 http://en.wikipedia.org/wiki/Napster [accessed 2007-07-03]

48 http://en.wikipedia.org/wiki/Seti_at_home [accessed 2007-07-03]

49 http://en.wikipedia.org/wiki/Einstein%40Home [accessed 2007-07-03]

50 http://en.wikipedia.org/wiki/Folding%40home [accessed 2007-07-03]

51 http://en.wikipedia.org/wiki/Instant_messaging [accessed 2007-07-03]

52 http://en.wikipedia.org/wiki/Talk_%28Unix%29 [accessed 2007-07-03]
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Sensor Networks

Definition 30.31 (Sensor Network). A sensor network53 [1012, 1966, 469, 1025] is a net-
work of autonomous devices which are equipped with sensors and together measure physical
entities like temperature, sound, vibrations, pressure, motion, or such and such.

Definition 30.32 (Wireless Sensor Network). A wireless sensor network (WSN) [1697,
326, 2317, 1092, 1873] is a sensor network where the single nodes are connected wirelessly,
using techniques like wireless LAN54, Bluetooth55, or radio56.

Micro-controller

Memory

Energy
Source

Communi-cation

Sensors

+

-

3.5`` Diskette HDD

Figure 30.6: A block diagram outlining building blocks of a sensor node.

Figure 30.6 sketches the building blocks of a sensor node. For communication with other
nodes, short range radios, Bluetooth, or wireless LAN adapters are often added. The core
of a sensor node is a microcontroller attached with RAM and ROM memory for code and
data. The purpose of senor networks is to measure some environmental parameters like tem-
perature, humidity, or brightness. Thus, sensor nodes have one or multiple sensors attached.

Since they are autonomous devices usually not connected to power lines, sensor nodes
have to be equipped with some sort of energy source. Chemical batteries are used to store
energy, but often power scavenging units [574, 1769, 1610, 1698] like, for example, solar cells
[1881, 1050, 1537], thermal [1988] or kinetic energy harvesters [2149, 1609, 1229] are added.
The field of energy supply of sensor nodes is critical and subject to active research [1843, 688,
382, 767]. Batteries have limited capacity and are hard to replace after the network has been
deployed. If no additional power scavenging unit is available, the sensor nodes will eventually
stop functioning and become useless after all their energy is consumed. For extending this
lifetime, energy intense operations like communication via radio transmissions need to be
reduced as much as possible.

The size of the sensor nodes ranges from shoe box down to matchbox dimensions. There
is a strong wish to produce smaller and smaller nodes. Small sensors are recognized less

53 http://en.wikipedia.org/wiki/Sensor_network [accessed 2007-07-03]

54 http://en.wikipedia.org/wiki/Wireless_lan [accessed 2007-07-03]

55 http://en.wikipedia.org/wiki/Bluetooth [accessed 2007-07-03]

56 http://en.wikipedia.org/wiki/Radio [accessed 2007-07-03]
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obviously and blend better in their environment. Since they require fewer raw material,
they might become much cheaper than their larger pendants. On the other hand, with this
movement in the direction of sensor that are really tiny, some hard constraints arise. The
size of the battery limits the amount of energy that can be stored, as well as the extent of
a solar cell limits its energy production. The node size also restricts the dimensions of the
memory and the sensors of the node [397].

Other important research topics are data fusion and transportation in a WSN [611, 846]
as deployment and maintenance [2009, 957].

Widespread sensor node architectures are:

1. BTNodes57 are autonomous wireless communication and computing platforms based
on a Bluetooth radio and a microcontroller. Developed at the ETH Zurich, BTNodes
serve especially as demonstration, teaching, and research platforms. Fig. 30.7.a shows a
BTNode.

2. Crossbow’s MICA2 58 motes are multipurpose nodes. These systems are applied widely
in real-world applications like environmental control in agriculture and outdoor sports
as well as for indoor sports and military purposes. A picture of the Mica2Dot platform
can be found in Fig. 30.7.b.

3. Scatterweb59 provide both, a research platform (MSB nodes, illustrated in Fig. 30.7.c)
and an industrial sensor network (ScatterNodes).

4. Dust Networks60 developed their SmartMesh for building wireless solutions for the global
market. Their nodes use the Time Synchronized Mesh Protocol and middle-range radio
to provide the reliability of a typical WLAN in their sensor networks. Fig. 30.7.d shows
a Dust Networks Evaluation Mote.

5. . . .

A small example application demonstrating the use of sensor networks is discussed
in Section 24.1.2 on page 414.

Properties of Peer-To-Peer Systems and Sensor Networks

1. Current peer-to-peer networks are often large-scale, with tens of thousands [1807] up
to millions [2262] of users/nodes online. Although networks of thousands of sensors are
a future goal, the number of nodes in sensor networks has not yet reached this extent.
However, systems of several hundreds of nodes have already been deployed [468, 1990].

2. Since wireless sensor networks have limited transmission range, it is possible that not all
nodes in a network can communicate directly with each other. The same issue exists in
the internet, but there it is solved in a transparent manner by routers. In sensor networks
however, dedicated hardware routers normally do not exist. Therefore, special routing
protocols [1978, 1387, 386] are applied. Here we see a strong relation between sensor
networks and peer-to-peer systems: Each sensor may act as a sender of messages as well
as router for other nodes. There is no generic hierarchy or division between senders or
routers.

3. Especially in peer-to-peer applications, there are strong fluctuations in the network mem-
bership. In content sharing networks for example, new users continuously join and leave
the network. In sensor networks on the other hand, volatility in the network structure
arises from newly deployed nodes or nodes that become inactive because they ran out
of battery power. A sensor node spends much of its time in sleep mode (so do I) and
may be regarded as inactive in this time. When it triggers back to active mode, it again

57 http://www.btnode.ethz.ch/ [accessed 2007-07-03]

58 http://www.xbow.com/Products/productdetails.aspx?sid=156 [accessed 2007-07-03]

59 http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/ [accessed 2007-07-03] and http://

www.scatterweb.com/ [accessed 2007-07-03]

60 http://www.dustnetworks.com/ [accessed 2007-07-03]
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Fig. 30.7.a: BTNode Fig. 30.7.b: Mica2Dot Fig. 30.7.c: MSB
Mote

Fig. 30.7.d: Dust
Networks Evalu-
ation Mote

Figure 30.7: Images of some sensor network platforms

becomes member of the network. Furthermore, networks of mobile sensors have large
fluctuations in their topology per default.

4. Since sensor networks utilize sleep cycles in order to reduce energy consumption, mes-
sages that are routed may arbitrarily be delayed or even get lost.

5. P2P networks often represent very heterogeneous environments, consisting of computers
of different architectures and operating systems. Sensor networks on the other hand are
most often homogeneous systems.

30.3 Grammars and Languages

Languages are the most important means for communication between higher animals 61.
Formal languages can also be used define the formats for data being stored by or exchanged
between computers and/or human beings. When analyzing a statement in a given language,
we distinguish between its syntax and semantic.

Definition 30.33 (Syntax). The syntax62 of a language is the set of rules that governs
its structure. Each valid statement of a language must obey its syntactical structure. The
sentence “I am reading a book.” is a sequence of a subject, a predicate, and an object.

Definition 30.34 (Semantic). The semantic63 refers to the meaning of a statement. The
sentence “I am reading a book.” has the meaning that the writer of it is visually obtaining
information from a set of bounded pages filled with written words.

61 http://en.wikipedia.org/wiki/Language [accessed 2007-07-04]

62 http://en.wikipedia.org/wiki/Syntax [accessed 2007-07-03]

63 http://en.wikipedia.org/wiki/Semantics [accessed 2007-07-03]
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30.3.1 Syntax and Formal Languages

Let us now take a closer look on the syntax of formal languages [381, 1166].

Definition 30.35 (Alphabet). A finite set Σ of symbols (characters) α ∈ Σ with a total
order (see Section 27.7.2 on page 463) defined on it is called an alphabet.

Definition 30.36 (Character String). A character string64 (or word) over an alphabet
Σ is any finite sequence of symbols α ∈ Σ. Character strings have the following properties:

1. The empty character string ε is a character string over Σ.
2. If x is a character string over Σ, then αx is also a character string over Σ for all α ∈ Σ.
3. β is a character string over the alphabet Σ if and only if it can be created using the two

rules above.

Definition 30.37 (Concatenation). The concatenation65 α◦β of two character strings
α = α1α2α3. . .αn and β = β1β2β3. . .βm over the alphabet Σ is the character string α◦β =
α1α2α3..αnβ1β2β3..βm which begins with α immediately followed (and ended by) β.

The set of all strings of length l over the alphabet Σ is called Σl with Σ0 = {ε} ∀Σ.
The set of all strings on Σ is called Σ∗, i. e., Σ∗ = ∪∞l=0Σ

l. It is also called Kleene star66

(or Kleene closure).

Definition 30.38 (Lexeme). A lexeme67 is the lowest level of syntactical unit of a language
[381]. It denotes a set of words that have the same meaning, like run, runs, ran, and running
in English. A lexeme belongs to a particular syntactical category and has a semantic meaning.

Based on these definitions, we can consider a sentence to be a sequence of lexemes which,
in turn, are character strings over some alphabet.

Definition 30.39 (Language). A language L over the alphabet Σ is a subset of Σ∗ [1166].
L is the set of all sentences over an alphabet Σ that are valid according to its rules in syntax
(the grammar) [395].

When describing the formal syntax of a language, there are two possible approaches:

1. We can define recognizers that determine the structure of a sentence and can decide
whether it belongs to the language or not. Recognizers are, for instance, used in compilers
[865].

2. A generative grammar can be defined from which all possible sentences of a language
can be constructed.

30.3.2 Generative Grammars

A generative grammar G of a language L is a formal specification that allows us to construct
every single sentence in L by applying recursive replacement rules. Therefore, we define
non-terminal symbols (also called variables) which do not occur in the language’s text and
terminal symbols that do. One example of such a grammar is:

1 sentence −→ subject verb object

2 subject −→ Alice ∨ Bob

3 verb −→ writes ∨ reads

4 object −→ cipher -text ∨ plain text

Listing 30.1: A simple generative grammar.

64 http://en.wikipedia.org/wiki/Character_string [accessed 2007-07-03]

65 http://en.wikipedia.org/wiki/Concatenation [accessed 2007-07-10]

66 http://en.wikipedia.org/wiki/Kleene_star [accessed 2007-07-03]

67 http://en.wikipedia.org/wiki/Lexeme [accessed 2007-07-03]
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Here we have four productions, the terminal symbols Alice, Bob, writes, reads,
cipher-text, plain-text, plus five non-terminal symbols (sentence, subject, verb, and
object).

Definition 30.40 (Formal Grammar). A formal grammar68 G = (N,Σ,P, S) is a 4-
tuple consisting of:

1. a finite set N of non-terminal symbols (variables),
2. the alphabet Σ, a finite set of terminal symbols,
3. a finite set P of productions (also called rules), and
4. at least one start symbol S ∈ N which belongs to the set of non-terminal symbols N .

Notice that the alphabet Σ here is not limited to letters or numerals, but may contain words,
sentences, or even arbitrarily long texts. Additionally, we call the set V = N ∪Σ including
terminal and non-terminal symbols the grammar symbols.

The Chomsky Hierarchy

The Chomsky hierarchy stands for a hierarchy of formal grammars that generate a formal
language. It was first described by the linguist Chomsky [394] in 1956 [394, 396, 1175] and
distinguishes four different classes of grammars. Starting with an unbounded grammar (type-
0), more and more restrictions are imposed on the allowed production rules. Hence, each
type contains all grammar types on higher levels fully.

Grammar Allowed Rules Languages

Type-0 α→ β,α, β ∈ V ∗, α 6= ε recursive enumerable
Type-1 αAβ → αγβ, A ∈ N , α, β, γ ∈ V ∗, γ 6= ε context-sensitive

(CSG)
Type-2 A→ γ, A ∈ N , γ ∈ V ∗ context-free ()
Type-3 A→ aB (right-regular) or A→ Ba (left-

regular), A→ a, A,B ∈ N , a ∈ Σ
regular

Table 30.2: The Chomsky Hierarchy

Table 30.2 illustrates the Chomsky hierarchy. As already mentioned, V is the set con-
taining all terminal and non-terminal symbols and V ∗ is its Kleene closure.

30.3.3 Derivation Trees

A derivation tree69 is a common way to describe how a sentence in a context-free language
can be derived from the start symbol of a given generative grammar. The inner nodes of a
derivation tree are the non-terminal symbols in N , the root is the start symbol S, and the
leaves are the terminal symbols from the alphabet Σ. Each edge constitutes one expansion
according to a production of the grammar.

Assume an example grammar G = (N,Σ,P, S) with N = {T}, Σ = {1,+, a}, S = T,
and the productions P as defined the below.

1 T −→ T+T

2 T −→ 1

3 T −→ a

Listing 30.2: An example context-free generative grammar G.

68 http://en.wikipedia.org/wiki/Formal_grammar [accessed 2007-07-03]

69 http://en.wikipedia.org/wiki/Context-free_grammar#Derivations_and_syntax_trees [ac-

cessed 2007-07-16]
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With this grammar we can construct the following sentence:

1 T −→ T+T

2 T+T −→ T+T+T

3 T+T+T −→ a+T+T

4 a+T+T −→ a+1+T

5 a+1+T −→ a+1+a

Listing 30.3: An example expansion of G.

S

S S

S S

a 1 a

non-terminal
Symbols (N)

terminal
Symbols (S)

Figure 30.8: The derivation of the example expansion of the grammar G.

Figure 30.8 illustrates the derivation tree that belongs to this example expansion of the
example grammar G.

30.3.4 Backus-Naur Form

The Backus-Naur (BNF) form70 is a metasyntax used to express context-free grammars
[109, 1156]. Such Chomsky Type-2 grammars are the theoretical basis of most common
programming languages and data formats, like for example C and XML71. The BNF allows
specifying production rules in simple, human and machine-understandable manner.

In BNF specifications, each rule consists of two parts: a non-terminal symbol on the
left-hand side and an expansion on the right-hand side. Non-terminal symbols are contained
in arrow brackets and terminal symbols are written plain. For expansions, the BNF provides
two constructs: a sequence of symbols and the alternative which is denoted with a pipe
character “|”.

Beginning with the start symbol S = S, the example below allows us to generate arbitrary
natural numbers from N. A nonZero is either 1,2,.., or 9 and a normal number may also be
zero. A natural number is either a nonZero number or a natural number with a number at
the end. Notice that expanding nonZero will always lead to the first digit being a non-zero
digit since a fully expanded rule cannot contain any variables (non-terminal symbols). As
start symbol S = S, we use natural.

1 <nonZero > ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2 <number > ::= 0 | <nonZero >

3 <natural > ::= <nonZero > | <natural > <number >

4 <S> ::= <natural >

Listing 30.4: Natural numbers – a small BNF example.

70 http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form [accessed 2007-07-03]

71 http://www.w3.org/TR/2006/REC-xml-20060816/ [accessed 2007-07-03]
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30.3.5 Extended Backus-Naur Form

The extended Backus-Naur form72 is an extension of the BNF metasyntax that provides
additional operators and simplifications [722, 1623, 1166]. Unlike the Backus-Naur form, the
terminal symbols are included in quotation marks and the non-terminal symbols are written
without arrow brackets. The items of sequences can now be separated by commas and each
rule ends with a semicolon. The EBNF adds options, which are denoted by square brackets.
The sequence inside such options may either occur zero or one time in the expanded rule.
Curly brackets define expressions that can be left away or repeated arbitrary often during
expansion.

The example below demonstrates the application of these new features by providing
a grammar for natural numbers equal to the one shown for the BNF. The rules natural

and natural2 are equivalent. Here we also specify a rule for all integer numbers from Z by
prefixing a natural number with an optional -.

1 nonZero ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" |

2 "8" | "9" ;

3 number ::= "0" | nonZero ;

4 natural ::= nonZero | natural , number ;

5 natural2 ::= nonZero | nonZero , {number} ;

6 integer ::= ["-"], natural | "0" ;

7 S ::= integer ;

Listing 30.5: Integer numbers – a small EBNF example.

The ISO norm ISO/IEC 14977 [722] for EBNF defines additional extension mechanisms
which we will not discuss here.

30.3.6 Attribute Grammars

An attribute grammar73 (AG) is a context-free grammar enriched with attributes, rules, and
conditions for these attributes [1157, 1158, 1160, 1596]. With attributes attached to non-
terminal symbols, it becomes possible to provide context-sensitive information. Attribute
grammars are often used in compilers to check rules that cannot be validated with the means
of mere context-free grammars. With attribute grammars, syntax trees can be translated
directly into intermediate languages or into code for some specific machine.

An attribute grammar AG = (G,A,R) consists of three components:

1. a context-free grammar G, where G = (N,Σ,P, S) as specified in Definition 30.40 on
page 563,

2. a finite set of attributes A where each attribute a ∈ A has a set of possible values
a = {a1, a2, .., an}, and

3. a set of semantic rules R.

To each grammar symbol X ∈ V , a finite set of attributes A(X) ⊆ A is associated. This
set is partitioned into two disjoint subsets, the inherited attributes I(X) ⊆ A(X) and the
synthesized attributes T (X) ⊆ A(X). The value of a synthesized attribute is determined by
the attributes attached to the children of the symbol in the derivation tree it is assigned to.
Inherited attributes get their value from the parent or siblings of the symbols they belong
to. In the original definition by Knuth [1157], this was the other way round but the form
discussed here has prevailed [1596]. The start symbol S ∈ N and the terminal symbols in Σ
do not have inherited attributes (I(S) = ∅, ∀σ ∈ Σ ⇒ I(σ) = ∅).

A good example for synthesized attributes is given in [21] from where I will borrow. AGs
are most often not used as generative grammars but as guidelines for parsers that read for
instance source code of a programming language.

72 http://en.wikipedia.org/wiki/Ebnf [accessed 2007-07-03]

73 http://en.wikipedia.org/wiki/Attribute_grammar [accessed 2007-07-03]
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Let us consider a simple grammar for integer mathematics with the two expressions +

and *.

1 E ::= F "+" E |

2 F

3 F ::= integer "*" F |

4 integer

Listing 30.6: A simple context-free grammar.

For each symbol X in V let X.val be the numeric value associated with it. For terminal
symbols of the type integer, this is simply the lexeme provided by the lexical analyzer. The
two other terminal characters + and * have no value assigned. The values of the non-terminal
symbols E and F should be the results of the expressions defined by them. These attributes
are computed (synthesized) by the semantic rules from the attributes of their child nodes.

1 Production Rule

2 E ::= F "+" E | E.val = F.val + E2.val

3 F E.val = F.val

4 F ::= integer "*" F | F.val = integer.val * F2.val

5 integer F.val = integer.val

Listing 30.7: A small example for attribute grammars.

E .val = F .val + E .val1 3 2 = 210

F .val = integer .val * F .val3 7 4 = 21

F .val = integer .val4 8 = 3

E .val = F .val2 5 = 10

F .val = integer .val * F .val5 9 6 = 10

F .val = integer .val6 0 = 5

integer .val = 77

integer .val = 38

integer .val = 29

integer .val = 50

E1

int8

F5

int0

7 3 2 5* *+

+

*

*int9

F4

E2F3

int7

F6

Figure 30.9: An instantiation of the grammar from Listing 30.7.

Figure 30.9 illustrates the derivation tree of a sentence of the simple attribute gram-
mar from Listing 30.7. The non-terminal symbols are sometimes annotated with subscript
numbers (like E2) which have no meaning and only serve for clarity. While this Listing 30.7
is an example for the usage of synthesized attributes, symbol tables used in compilers are
instances of inherited attributes.

A special form of attribute grammars, the reflective attribute grammar, is the basis of
the Gads 2 Genetic Programming system discussed in Section 4.5.7 on page 185.

L-Attributed Grammars

L-attributed grammars74 are a class of attribute grammars that can be parsed in one left-to-
right traversal of the abstract syntax tree (see Section 4.1.1 on page 158). Such grammars are
the foundations for many programming languages and allow convenient top-down parsing75.

74 http://en.wikipedia.org/wiki/L-attributed_grammar [accessed 2007-07-04]

75 http://en.wikipedia.org/wiki/Top-down_parsing [accessed 2007-07-04]
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S-Attributed Grammars

An attribute grammar is called S-attributed76 if it allows only synthesized attributes [452].
Because of this restriction, such grammars can be parsed top-down as well as directly bottom-
up77 and are supported by various tools like Bison78 and Flex79.

30.3.7 Extended Attribute Grammars

Extended Attribute Grammars developed by Watt [2162] and Madsen [1344] (EAGs) are a
form of attribute grammars where the semantic (attribute-concerning) rules are no longer
separated from the syntax productions [1874]. Instead, both are combined in a declarative
form where each non-terminal symbol is accompanied by its attributes listed in a predeter-
mined order. The new syntax for non-terminal symbols is

1 <n la lb lc ...>

Listing 30.8: Syntax of an Extended Attribute Grammar symbol.

While n ∈ N is a non-terminal symbol and a, b, and c are values of attributes α, β, and γ
defined as expressions over their respective attribute value domain. In an extended attribute
grammar, we can define a set of inherited attributes I(n) and a set of synthesized attributes
T (n) for each non-terminal symbol n. In our example Listing 30.8, l therefore has to be
replaced with either ↓ which means that the following attribute is inherited (↓ a⇔ α ∈ I(n))
or ↑ denoting a synthesized attribute (↑ a ⇔ α ∈ T (n.parent)) where n.parent stands for
the parent node of n in the derivation tree. Terminal symbols cannot have attributes. Again,
notice that the identifiers a, b, and c do not denote the attribute names but expressions
that define their values. Attributes in EAGs are solely identified by their position in the
non-terminal symbol specifications.

How this approach works is best understood when again, using a simple example bor-
rowed from [1874]. Assume the grammar G1 = (N,Σ,P, S) with the non-terminal symbols
N = {S, X, Y, Z}, the alphabet Σ = {x, y, z, ε}, productions P as defined below and the start
symbol S = S. Additionally, X, Y, and Z are equipped with one synthesized attribute v ∈ N0.

1 <S> ::= <X ↑v><Y ↑v><Z ↑v>
2 <X ↑v+1> ::= <X ↑v>"x"
3 <Y ↑v+1> ::= <Y ↑v>"y"
4 <Z ↑v+1> ::= <Z ↑v>"z"
5 <X ↑0> ::= ε
6 <Y ↑0> ::= ε
7 <Z ↑0> ::= ε

Listing 30.9: The small example G1 for Extended Attribute Grammars.

In the listing, below a typical expansion of G1 is illustrated. Since the same attribute v is
attached to all three non-terminals X, Y, and Z, the terminal symbols x, y, and z will always
occur equally often. The context-sensitive grammar specified in Listing 30.9 thus defines
sentences in the form xnynzn.

1 <S> −→ <X ↑2><Y ↑2><Z ↑2> −→ <X ↑1>x<Y ↑2><Z ↑2>
2 −→ <X ↑0>xx <Y ↑2><Z ↑2> −→ xx <Y ↑2><Z ↑2>
3 −→ xx <Y ↑1>y<Z ↑2> −→ xx <Y ↑0>yy <Z ↑2>
4 −→ xxyy <Z ↑2> −→ xxyy <Z ↑1>z −→ xxyy <Z ↑0>zz
5 −→ xxyyzz

Listing 30.10: A typical expansion of G1.

76 http://en.wikipedia.org/wiki/S-attributed_grammar [accessed 2007-07-04]

77 http://en.wikipedia.org/wiki/Bottom-up_parsing [accessed 2007-07-04]

78 http://en.wikipedia.org/wiki/GNU_Bison [accessed 2007-07-04]

79 http://en.wikipedia.org/wiki/Flex_lexical_analyser [accessed 2007-07-04]
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Another example for extended attribute grammars, again borrowed from [1874], demon-
strates the specification of binary numbers. We can define a grammar G2 = (N,Σ,P, S) for
all binary numbers. In this grammar, the start symbol S will have an attribute including the
value of number represented by the generated sentence. Here we need three non-terminal
symbols N = {S, T, B} and only two terminal symbols Σ = {0, 1}. The productions P are
specified as follows:

1 <S ↑b> ::= <T ↓0 ↑b>
2 <T ↓a ↑b> ::= <B ↓a ↑b>
3 <T ↓a ↑b+c> ::= <T ↓a+1 ↑b><B ↓a ↑c>
4 <B ↓a ↑0> ::= "0"

5 <B ↓a ↑2a> ::= "1"

Listing 30.11: An extended attribute grammar G2 for binary numbers.

Figure 30.10 illustrates one possible expansion of the start symbol S = S with the
extended attribute grammar G2. As you can see, S has attached the (decimal) value 10

corresponding to the (binary) value 1010 of the binary string represented by the generated
sentence.

<S  10>

<T  0  10>

<B  0  0><T  1  10>

<B  3  8>

<B  2  0><T  3  8>

<B  1  2><T  2  8>

“1” “0” “1” “0”

Figure 30.10: One possible expansion of the example grammar G2.

Extended Attribute Grammars are sufficient to specify the syntax and semantics of many
programming languages [2162].

30.3.8 Adaptive Grammars

Definition 30.41 (Adaptive Grammar). An Adaptive Grammar80 G = (N,Σ,P, S) is
a formal grammar developed by Shutt [1874] in which the set of non-terminal symbols N ,
the set of terminal symbols Σ and the set of productions P may vary during parsing.

Shutt [1874] furthermore discusses Recursive Adaptive Grammars (RAG) which are a
Turing-complete formalism but yet retain the elegance of context-free grammars.

80 http://en.wikipedia.org/wiki/Adaptive_grammar [accessed 2007-07-13]
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30.3.9 Christiansen Grammars

Christiansen [402] introduces an adaptable grammar model that combines Extended At-
tribute Grammars with the ability to adapt according to Definition 30.41 [402, 405, 406].

Unfortunately, Christiansen [403] calls his adaptable attribute grammars “generative
grammars” [403, 404] which has already another meaning (see Section 30.3.2 on page 562).
We therefore resort to the term “Christiansen Grammars” coined by Shutt [1874] from whom
we again will borrow the examples. As described in [402, 406], a Christiansen Grammar is an
Extended Attribute Grammar where the first attribute of each non-terminal symbol n ∈ N is
an inherited Christiansen Grammar itself. This attribute is called language attribute and the
expansion of the non-terminal symbol it belongs to must be done according to the grammar
represented by it.

1 <n ↓g la lb ...>

The statement X<n ↓g l . . . >Z ::= XYZ (with X, Y, Z ∈ V and n ∈ N) hence only holds
if <n ↓g la . . . >::= Y according to the grammar attribute g.

Let us start with a simple example grammar G3 = (N,Σ,P, S) with the non-terminal
symbols alpha-list and alpha, the Latin alphabet as set of terminal symbols Σ, the
alpha-list as start symbol S and the set of productions P as specified below.

1 <alpha -list ↓g ↑w> ::= <alpha ↓g ↑w>
2 <alpha -list ↓g ↑w1◦w2 > ::= <alpha ↓g ↑w1 ><alpha -list ↓g ↑w2 >
3 <alpha ↓g ↑"a"> ::= "a"

4 . . .
5 <alpha ↓g ↑"z"> ::= "z"

Listing 30.12: A Christiansen Grammar creating character strings.

It clearly generates the character strings over the Latin alphabet. The start symbol has
two attributes: The inherited Christiansen Grammar g will be handed down to all generated
symbols. The attribute w on the other hand is synthesized from these symbols and contains
the character string generated.

Basing on this grammar which still is a mere EAG in principle, we build the Christiansen
Grammar G4 = (N,Σ,P, S) for a subset of the C (or Java) programming language where
all value assignments are valid:

1 . . .
2 <program ↓g0 > ::= "{"<decl -list ↓g0 ↑g1 >
3 <stmnt -list ↓g1 >"}"
4 <decl -list ↓g ↑g> ::= ε
5 <decl -list ↓g0 ↑g2 > ::= <decl ↓g0 ↑g2 ><decl -list ↓g1 ↑g2 >
6 <decl ↓g ↑g+new -rule > ::= "int" <alpha -list ↓g ↑w> ";"

7 where new -rule is <id ↓h> ::= w

8 <stmnt -list ↓g> ::= ε
9 <stmnt -list ↓g> ::= <stmnt ↓g><stmnt -lst ↓g>

10 <stmnt ↓g> ::= <id ↓g> "=" <id ↓g> ";"

Listing 30.13: Christiansen Grammar for a simple programming language.

Whenever the non-terminal symbol decl is expanded, it also adds a new rule to the
grammar. By introducing a new production for the symbol id, the declared variable becomes
available in stmt since the grammar is synthesized upwards to the production for program

and then inherited downwards into stmt-lst. A more thorough example of Christiansen
Grammar in the context of Genetic Programming can be found in Listing 4.7.

30.3.10 Tree-Adjoining Grammars

Tree-adjoining grammars81 (TAG, also called tree-adjunct grammars) are another method
for defining formal grammars which has been developed by Joshi [1072]. [1704, 1073] Different

81 http://en.wikipedia.org/wiki/Tree-adjoining_grammar [accessed 2007-07-03]
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from BNF and EBNF, they are based on trees instead of plain strings. The inner nodes of
the (fully expanded) trees correspond to non-terminal symbols and the leaves to terminal
symbols.

S

NP VP

V NP

John likes Lyn

correspond to non-terminal symbols

correspond to terminal symbols

Figure 30.11: An example TAG tree.

The simple TAG tree illustrated in Figure 30.11 is borrowed from [1073] as well as some
of the following examples. The tree structure of tree-adjoining grammars has one striking
advantage compared to the flat rules in context-free grammars: the increased domain of
locality [1704]. If we process for example an EBNF rule, we can only expand the non-
terminal symbols at our current “level” of the derivation tree. Below we show that a text
in an EBNF grammar similar to the one of Figure 30.11 could be resolved step by step.
The variable VP expanded in line 8 for instance cannot be accessed or modified in line 10
anymore, although it is clearly part of the sentence construction.

1 S ::= NP , VP ;

2 NP ::= "John" | "Lyn" ;

3 VP ::= V, NP ;

4 V ::= "likes" ;

5

6 text −→ S

7 text −→ NP VP

8 text −→ "John" VP

9 text −→ "John" V NP

10 text −→ "John" "likes" NP

11 text −→ "John" "likes" "Lyn"

Listing 30.14: Another simple context-free grammar.

The extended domain of locality (EDL) in TAG trees is utilized with the two modification
operators substitution and adjunction.

We can substitute a tree β into a tree α if there is a non-terminal leaf symbol ν in α
that has the same label as the root of β. The stump of β then replaces the node ν in α. In
Figure 30.12 we outline how two trees β1 and β2 are substituted into a TAG tree α and a
new tree α′ is created.

Substitution is equivalent to the non-terminal expansion in BNF. The adjunction op-
erator however adds access to the aforementioned layers which are buried in context-free
grammars. In order to perform an adjunction, the tree α has to include one non-terminal
symbol ν at some random place. The root of the auxiliary tree is also labeled with ν and
so is at least one of its leafs. We now can replace the node marked with ν in α with tree β.
Whatever was attached to ν before now replaces the leaf node ν in β. The leaf node ν in beta
often is additionally marked with an asterisk (∗). Figure 30.13 sketches such a replacement,
with the result that the new sentence α′ now contains the word "really".

With adjunction, TAGs are somewhere in between context-sensitive and context-free
grammars. In the definition of a tree-adjoining grammar G = (N,Σ,A, I, S), A is the set
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Figure 30.12: An example for the substitution operation.

of auxiliary trees to be used in the adjunction operations. I is the set of initial trees that
can be substituted into existing trees. The unison of I and A, E = I ∪ A is called the set
of elementary trees and replaces the set of productions P used in Chomsky grammars. N
and Σ retain their meaning as set of non-terminal and terminal symbols respectively. Trees
with the non-terminal symbol X ∈ N as root are called X-type trees. S ∈ N denotes the
starting symbol and there must be at least one S-type elementary tree.

Definition 30.42 (Lexicalized Tree-Adjoining Grammars). A lexicalized tree-
adjoining grammar (LTAG) is a tree-adjoining grammar where each elementary tree t ∈ E
contains a terminal symbol X ∈ Σ. Although they are more restricted, LTAGs are equivalent
to TAGs.

A discussion on derivation trees of tree-adjoining grammars can be found in Section 4.5.9
on page 189.

30.3.11 S-expressions

S-expressions82 (where S stands for symbolic) or sexp are data structures for presenting
complex data. They are probably best known for their usage in the Lisp83 [1377, 1379, 1378]
and Scheme84 [612] programming languages. Their most common feature is that they are
parenthesized prefix notations (often also known as Polish notation85).

82 http://en.wikipedia.org/wiki/S-expression [accessed 2007-07-03]

83 http://en.wikipedia.org/wiki/Lisp_programming_language [accessed 2007-07-03]

84 http://en.wikipedia.org/wiki/Scheme_%28programming_language%29 [accessed 2007-07-03]

85 http://en.wikipedia.org/wiki/Polish_notation [accessed 2007-07-04]

http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Lisp_programming_language
http://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://en.wikipedia.org/wiki/Polish_notation
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Figure 30.13: An example for the adjunction operation.

In 1997, Rivest [1742] handed in a standardization draft for S-expressions to be considered
for publication as RFC. It was, however, never approved but still is the foundation for many
other publications and RFCs.

1 (defun fibonacci (N)

2 (if (or (zerop N) (= N 1))

3 1

4 (+ (fibonacci (- N 1)) (fibonacci (- N 2)))))

Listing 30.15: A small Lisp-example: How to compute Fibonacci numbers.
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GNU Free Documentation License (FDL)

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

A.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

A.2 Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as ”you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
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If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Exam-
ples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, ”Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as ”Acknowledgements”,
”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when you
modify the Document means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

A.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in Section A.4.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

A.4 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
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in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

A.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of Sec-
tion A.3 and Section A.43 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page.
If there is no section Entitled ”History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the sec-
tion, and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.
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L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option des-
ignate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other section
titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

A.6 Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in Section A.5 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original
documents, forming one section Entitled ”History”; likewise combine any sections Entitled ”Ac-
knowledgements”, and any sections Entitled ”Dedications”. You must delete all sections Entitled
”Endorsements.”

A.7 Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.
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A.8 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of Section A.4 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

A.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of Section A.5. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the
requirement (Section A.5) to Preserve its Title (Section A.2) will typically require changing the
actual title.

A.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

A.11 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
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with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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GNU Lesser General Public License (LPGL)

Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU

Library Public License, version 2, hence the version number 2.1]

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and
change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide to use
it. You can use it too, but we suggest you first think carefully about whether this license or the
ordinary General Public License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish); that you receive source code or can get it if you
want it; that you can change the software and use pieces of it in new free programs; and that you
are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these
rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or can
get the source code. If you link other code with the library, you must provide complete object files
to the recipients, so that they can relink them with the library after making changes to the library
and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer
you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free
library. Also, if the library is modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original author’s reputation will not be
affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish
to make sure that a company cannot effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified in this license.
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Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated libraries,
and is quite different from the ordinary General Public License. We use this license for certain
libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original library.
The ordinary General Public License therefore permits such linking only if the entire combination
fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking
other code with the library.

We call this license the ”Lesser” General Public License because it does Less to protect the user’s
freedom than the ordinary General Public License. It also provides other free software developers
Less of an advantage over competing non-free programs. These disadvantages are the reason we
use the ordinary General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job as
widely used non-free libraries. In this case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU C
Library in non-free programs enables many more people to use the whole GNU operating system,
as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does en-
sure that the user of a program that is linked with the Library has the freedom and the wherewithal
to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a ”work based on the library” and a ”work that uses the library”.
The former contains code derived from the library, whereas the latter must be combined with the
library in order to run.

B.2 Terms and Conditions for Copying, Distribution and
Modification

1. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called ”this License”). Each licensee
is addressed as ”you”.
A ”library” means a collection of software functions and/or data prepared so as to be conve-
niently linked with application programs (which use some of those functions and data) to form
executables.
The ”Library”, below, refers to any such software library or work which has been distributed
under these terms. A ”work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it, ei-
ther verbatim or with modifications and/or translated straightforwardly into another language.
(Hereinafter, translation is included without limitation in the term ”modification”.)
”Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.
Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true
depends on what the Library does and what the program that uses the Library does.

2. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
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copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this
License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the

files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under

the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by

an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)
These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of
to this License. (If a newer version than version 2 of the ordinary GNU General Public License
has appeared, then you can specify that version instead if you wish.) Do not make any other
change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.
This option is useful when you wish to copy part of the code of the Library into a program that
is not a library.

5. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange.
If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

6. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a ”work that uses the Library”.
Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the
scope of this License.



584 B GNU Lesser General Public License (LPGL)

However, linking a ”work that uses the Library” with the Library creates an executable that is
a derivative of the Library (because it contains portions of the Library), rather than a ”work
that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.
When a ”work that uses the Library” uses material from a header file that is part of the Library,
the object code for the work may be a derivative work of the Library even though the source
code is not. Whether this is true is especially significant if the work can be linked without the
Library, or if the work is itself a library. The threshold for this to be true is not precisely defined
by law.
If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing
this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall under
Section 6, whether or not they are linked directly with the Library itself.

7. As an exception to the Sections above, you may also combine or link a ”work that uses the
Library” with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used in it and
that the Library and its use are covered by this License. You must supply a copy of this License.
If the work during execution displays copyright notices, you must include the copyright notice
for the Library among them, as well as a reference directing the user to the copy of this License.
Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable ”work that uses the Library”, as object code and/or
source code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes
the contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism
is one that (1) uses at run time a copy of the library already present on the user’s computer
system, rather than copying library functions into the executable, and (2) will operate
properly with a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy.

For an executable, the required form of the ”work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a special
exception, the materials to be distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

8. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:
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a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form of the
same work.

9. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

10. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Library (or any work based on the Library), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

11. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify
the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

12. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Library at all. For example, if a patent license would not permit
royalty-free redistribution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply
in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up
to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

13. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

14. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and ”any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose
any version ever published by the Free Software Foundation.

15. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
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sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

B.3 No Warranty

1. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY ”AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.4 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can do so
by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary
General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and each file should
have at least the ”copyright” line and a pointer to where the full notice is found.

one line to give the library’s name and an idea of what it does. Copyright (C) year name of
author

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a ”copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:
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Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for tweaking
knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990 Ty Coon, President of Vice

That’s all there is to it!





C

Credits and Contributors

In this section I want to give credits to whom they deserve (by directly or indirectly con-
tributing to this book). So its props to:

Stefan Achler
For working together at the 2007 DATA-MINING-CUP Contest.
See Section 22.1.2 on page 374 and [2178].

Steffen Bleul
For working together at the 2006, 2007, and 2008 Web Service Challenge.
See Section 22.2 on page 383 and [225, 2179, 226, 2184]

Raymond Chiong
For co-authoring a bookchapter corresponding to Section 1.4 and by doing so, helping to
correct many mistakes.
See Section 1.4 on page 56

Distributed Systems Group, University of Kassel
To the whole Distributed Systems Group at the University of Kassel for being supportive
and coming over again and again with new ideas and helpful advices.
Each and every research project described in this book.

Qiu Li
For careful reading and pointing out inconsistencies and spelling mistakes.
See Chapter 27

Gan Min
For careful reading and pointing out inconsistencies and spelling mistakes.
See especially the Pareto optimization area Section 1.2.2 on page 31.

Kurt Geihs
For being supportive and contributing to many of my research projects.
See for instance Section 22.1.2 on page 374 and [2176, 2177, 2180, 225, 226]

Martin Göb
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adaptive differential evolution. In Proceedings of the Second International Conference
on Bioinspired Optimization Methods and their Application, BIOMA 2006, pages
35–44, 2006. In proceedings [669]. Online available at http://labraj.uni-mb.si/

index.php/Bibliografija [accessed 2007-08-13].
[289] A. Brindle. Genetic algorithms for function optimization. PhD thesis, University

of Alberta, Department of Computer Science, Edmonton, 1981. Technical Report
TR81-2.

[290] David Brittain, Jon Sims Williams, and Chris McMahon. A genetic algorithm ap-
proach to planning the telecommunications access network. In Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97), pages 623–628,
1997. In proceedings [98]. Online available at http://citeseer.ist.psu.edu/

brittain97genetic.html [accessed 2008-08-01].
[291] Proceedings of the 14th International Conference on Soft Computing, MENDEL’08,

June 18–20, 2009, Brno, Czech Republic.
[292] Proceedings of the 15th International Conference on Soft Computing, MENDEL’09,

June 17–26, 2009, Brno, Czech Republic.
[293] Proceedings of the 12th International Conference on Soft Computing, MENDEL’06,

May 31–June 2, 2006, Brno University of Technology, Brno, Czech Republic. Brno
University of Technology, Faculty of Mechanical Engineering. ISBN: 8-0214-3195-4.

[294] Donald E. Brown, Christopher L. Huntley, and Andrew R. Spillane. A parallel genetic
heuristic for the quadratic assignment problem. In Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, pages 406–415, 1989. In proceedings [1820].

[295] Will N. Browne and Charalambos Ioannides. Investigating scaling of an abstracted
lcs utilising ternary and s-expression alphabets. In GECCO’07: Proceedings of the
2007 GECCO conference companion on Genetic and evolutionary computation, pages
2759–2764, 2007. doi:10.1145/1274000.1274067. In proceedings [2037]. Online avail-
able at http://portal.acm.org/citation.cfm?id=1274000.1274067 [accessed 2007-08-

01].

http://drops.dagstuhl.de/portals/index.php?semnr=06501
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06501
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06501
http://www.w3.org/TR/2006/REC-xml-20060816
http://dx.doi.org/10.1007/BF02579017
http://www.springerlink.com/content/854188435g26v0h5/fulltext.pdf
http://www.springerlink.com/content/854188435g26v0h5/fulltext.pdf
http://amazon.com/gp/product/B000GXZFFG
http://holtz.org/Library/Natural%20Science/Physics/
http://holtz.org/Library/Natural%20Science/Physics/
http://labraj.uni-mb.si/index.php/Bibliografija
http://labraj.uni-mb.si/index.php/Bibliografija
http://citeseer.ist.psu.edu/brittain97genetic.html
http://citeseer.ist.psu.edu/brittain97genetic.html
http://books.google.com/books?as_isbn=8021431954
http://dx.doi.org/10.1145/1274000.1274067
http://portal.acm.org/citation.cfm?id=1274000.1274067


REFERENCES 619

[296] Jason Brownlee. Learning classifier systems. Technical Report 070514A, Complex
Intelligent Systems Laboratory, Centre for Information Technology Research, Faculty
of Information and Communication Technologies, Swinburne University of Technol-
ogy Melbourne, Australia, May 2007. Online available at http://www.ict.swin.

edu.au/personal/jbrownlee/2007/TR24-2007.pdf [accessed 2008-04-03].
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[335] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Rajkumar Roy,
Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish, Graham Kendall, Stew-
art W. Wilson, Mark Harman, Joachim Wegener, Dipankar Dasgupta, Mitchell A.
Potter, Alan C. Schultz, Kathryn A. Dowsland, Natasa Jonoska, and Julian Fran-
cis Miller, editors. Proceedings of Genetic and Evolutionary Computation - GECCO
2003, Genetic and Evolutionary Computation Conference, Part II, volume 2724/2003
of Lecture Notes in Computer Science (LNCS), July 12–16, 2003, The Holiday
Inn Chicago – Mart Plaza, 350 N. Orleans St., Chicago, IL 60654, USA. Springer
Berlin/Heidelberg. ISBN: 978-3-54040-603-7. doi:10.1007/3-540-45110-2. See also
[334, 1573].

[336] Buyang Cao and Fred Glover. Tabu search and ejection chains-application to a node
weighted version of the cardinality-constrained tsp. Management Science, 43(7):908–
921, July 1997. ISSN: 0025-1909.

[337] Hongqing Cao, Jingxian Yu, and Lishan Kang. An evolutionary approach for model-
ing the equivalent circuit for electrochemical impedance spectroscopy. In Proceedings

http://citeseer.ist.psu.edu/cantu-paz99designing.html
http://citeseer.ist.psu.edu/cantu-paz99designing.html
http://books.google.com/books?as_isbn=9780792372219
http://books.google.com/books?as_isbn=0792372212
https://computation.llnl.gov/casc/sapphire/dtrees/oc1.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.7300
http://dx.doi.org/10.1162/106365600750078808
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.236
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.236
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/98013.ps.Z
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.213
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.213
http://books.google.com/books?as_isbn=9783540406020
http://dx.doi.org/10.1007/3-540-45105-6
http://books.google.com/books?as_isbn=9783540406037
http://dx.doi.org/10.1007/3-540-45110-2


REFERENCES 623

of the 2003 Congress on Evolutionary Computation CEC2003, pages 1819–1825, 2003.
In proceedings [1803].

[338] Mathieu S. Capcarrère, Alex Alves Freitas, Peter J. Bentley, Colin G. Johnson, and
Jon Timmis, editors. Advances in Artificial Life, Proceedings of the 8th European
Conference, ECAL 2005, volume 3630 of Lecture Notes in Computer Science (LNCS),
subseries Lecture Notes in Artificial Intelligence (LNAI), September 5–9, 2005, Uni-
versity of Kent, Canterbury, Kent (UK). Springer Verlag. ISBN: 3-5402-8848-1.

[339] Alain Cardon, Theirry Galinho, and Jean-Philippe Vacher. An agent based architec-
ture for job-shop scheduling problem using the spirit of genetic algorithm. In Pro-
ceedings of EUROGEN’99, pages 12–19, 1999. In proceedings [1413]. Online available
at http://www.mit.jyu.fi/eurogen99/papers/vacher12.ps [accessed 2008-06-07].

[340] Alain Cardon, Theirry Galinho, and Jean-Philippe Vacher. A multi-objective genetic
algorithm in job shop scheduling problem to refine an agents’ architecture. In Pro-
ceedings of EUROGEN’99, 1999. In proceedings [1413]. Online available at http://
www.jeo.org/emo/cardon99.ps.gz [accessed http://citeseer.ist.psu.edu/244765.html]2008-04-05.

[341] Alain Cardon, Theirry Galinho, and Jean-Philippe Vacher. Using genetic algorithm
in job-shop scheduling problem to constraints negociators’ agents. In Proceedings of
EUROGEN’99, pages 20–27, 1999. In proceedings [1413].

[342] Peter A. Cariani. Extradimensional bypass. Biosystems, 64:47–53, January 2002.
doi:10.1016/S0303-2647(01)00174-5. Online available at http://dx.doi.org/10.

1016/S0303-2647(01)00174-5 and 2008-11-01 [accessed .]

[343] Anthony Jack Carlisle. Applying the Particle Swarm Optimizer to Non-Stationary
Environments. PhD thesis, Graduate Faculty of Auburn University, December 2002.
Advisors: Gerry V. Dozier. Online available at http://antho.huntingdon.edu/

publications/default.html [accessed 2007-08-19].
[344] Anthony Jack Carlisle and Gerry V. Dozier. Tracking changing extrema with adap-

tive particle swarm optimizer. In Proceedings of the 5th Biannual World Automa-
tion Congress, WAC 2002, volume 13, pages 265–270, June 9–13, 2002, Orlando,
Florida, USA. doi:10.1109/WAC.2002.1049555. Online available at http://antho.

huntingdon.edu/publications/default.html [accessed 2007-08-19].
[345] Charles W. Carroll. An Operations Research Approach to the Economic Optimization

of a Kraft Pulping Process. PhD thesis, Institute of Paper Chemistry, Appleton,
Wisconsin, USA, Georgia Institute of Technology, June 1959. Online available at
http://hdl.handle.net/1853/5853 [accessed 2008-11-15].

[346] Charles W. Carroll. The created response surface technique for optimizing nonlinear,
restrained systems. Operations Research, 9(2):169–184, March–April 1961. ISSN:
0030-364X. doi:10.1287/opre.9.2.169.

[347] Ted Carson and Russell Impagliazzo. Hill-climbing finds random planted bisec-
tions. In Symposium on Discrete Algorithms, Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, volume 12, pages 903–909. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001, Washington,
D.C., United States. ISBN: 0-8987-1490-7. Online available at http://portal.

acm.org/citation.cfm?id=365411.365805 and http://citeseer.ist.psu.edu/

carson01hillclimbing.html [accessed 2007-09-11].
[348] E. F. Carter. The generation and application of random numbers. Forth Dimensions,

XVI(1 and 2), 1994, Oakland California.
[349] Richard A. Caruana and J. David Schaffer. Representation and hidden bias: Gray

vs. binary coding for genetic algorithms. In John E. Laird, editor, Machine Learning,
Proceedings of 5th International Conference on Machine Learning, pages 153–161,
June 1988, Ann Arbor, Michigan, USA. Morgan Kaufmann, San Mateo, California.
ISBN: 0-9346-1364-8.

[350] George Casella and Roger L. Berger. Statistical Inference. Duxbury Advanced
Series. Dubury Thomson Learning / Duxbury Press, 511 Forest Lodge Road, Pa-

http://books.google.com/books?as_isbn=3540288481
http://www.mit.jyu.fi/eurogen99/papers/vacher12.ps
http://www.jeo.org/emo/cardon99.ps.gz
http://www.jeo.org/emo/cardon99.ps.gz
http://dx.doi.org/10.1016/S0303-2647(01)00174-5
http://dx.doi.org/10.1016/S0303-2647(01)00174-5
http://dx.doi.org/10.1016/S0303-2647(01)00174-5
2008-11-01
http://antho.huntingdon.edu/publications/default.html
http://antho.huntingdon.edu/publications/default.html
http://dx.doi.org/10.1109/WAC.2002.1049555
http://antho.huntingdon.edu/publications/default.html
http://antho.huntingdon.edu/publications/default.html
http://hdl.handle.net/1853/5853
http://dx.doi.org/10.1287/opre.9.2.169
http://books.google.com/books?as_isbn=0898714907
http://portal.acm.org/citation.cfm?id=365411.365805
http://portal.acm.org/citation.cfm?id=365411.365805
http://citeseer.ist.psu.edu/carson01hillclimbing.html
http://citeseer.ist.psu.edu/carson01hillclimbing.html
http://books.google.com/books?as_isbn=0934613648


624 REFERENCES

cific Grove, CA 93950, USA, second edition, June 18, 2001. ISBN: 0-5342-4312-6,
978-0-53424-312-8.

[351] George Casella and Roger L. Berger. Statistical Inference. Duxbury Thomson Learn-
ing, Pacific Grove, CA, USA, second edition, 2002. ISBN: 0-5342-4312-6.

[352] Mike Cattolico, editor. GECCO’06: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, July 8–12, 2006, Renaissance Seattle Hotel,
515 Madison Street, Seattle, Washington 98104, USA. ACM Press, New York, NY,
USA. ISBN: 1-5959-3186-4. ACM order number 910060.

[353] H. John Caulfield, Shu-Heng Chen, Heng-Da Cheng, Richard J. Duro, Vasant
Honavar, Etienne E. Kerre, Mi Lu, Manuel Grana Romay, Timothy K. Shih, Dan
Ventura, Paul P. Wang, and Yuanyuan Yang, editors. Proceedings of the Sixth Joint
Conference on Information Science (JCIS 2002), Section: The Fourth International
Workshop on Frontiers in Evolutionary Algorithms (FEA 2002), March 8–13, 2002,
Research Triangle Park, North Carolina, USA. JCIS / Association for Intelligent Ma-
chinery, Inc. ISBN: 0-9707-8901-7. Workshop held in conjunction with Sixth Joint
Conference on Information Sciences.

[354] Daniel Joseph Cavicchio, Jr. Adaptive Search using Simulated Evolution. PhD thesis,
The University of Michigan, College of Literature, Science, and the Arts, Computer
and Communication Sciences Department, Ann Arbor, Michigan, USA, August 1970.
Published as Technical Report. Chairman: John Henry Holland. Online available at
http://hdl.handle.net/2027.42/4042 [accessed 2007-10-31], ID: bab9712.0001.001.

[355] Daniel Joseph Cavicchio, Jr. Reproductive adaptive plans. In ACM’72: Proceedings
of the ACM annual conference, pages 60–70, 1972, Boston, Massachusetts, United
States. ACM, New York, NY, USA. doi:10.1145/800193.805822. Online available at
http://doi.acm.org/10.1145/800193.805822 [accessed 2008-09-25].

[356] Walter Cedeño and Dimitris K. Agrafiotis. Using particle swarms for the develop-
ment of qsar models based on k-nearest neighbor and kernel regression. Journal
of Computer-Aided Molecular Design, 17(2–4):255–263, February 2003. ISSN: 0920-
654X (Print) 1573-4951 (Online). doi:10.1023/A:1025338411016. Online available
at http://www.springerlink.com/content/j523757110202636/ and http://www.

dimitris-agrafiotis.com/ [accessed 2007-08-21].
[357] Carlos Artemio Ceollo Coello. A short tutorial on evolutionary multiobjective op-

timization. In First International Conference on Evolutionary Multi-Criterion Op-
timization, pages 21–40, 2001. In proceedings [2331]. Online available at http://

citeseer.ist.psu.edu/coellocoello01short.html [accessed 2007-07-29].
[358] Carlos Artemio Ceollo Coello. Theoretical and numerical constraint-handling tech-

niques used with evolutionary algorithms: A survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering, 191(11–12):1245–1287, January 4,
2002. ISSN: 0045-7825. doi:10.1016/S0045-7825(01)00323-1. Online available at
http://dx.doi.org/10.1016/S0045-7825(01)00323-1 [accessed 2009-02-28].

[359] Carlos Artemio Ceollo Coello. A comprehensive survey of evolutionary-
based multiobjective optimization techniques. Knowledge and Information Sys-
tems, 1(3):269–308, August 1999. Online available at http://www.lania.mx/

~ccoello/EMOO/informationfinal.ps.gz and http://citeseer.ist.psu.edu/

coello98comprehensive.html [accessed 2007-08-25].
[360] Carlos Artemio Ceollo Coello. An updated survey of evolutionary multiobjective

optimization techniques: State of the art and future trends. In 1999 Congress on
Evolutionary Computation, pages 3–13, 1999. In proceedings [69]. Online available
at http://citeseer.ist.psu.edu/coellocoello99updated.html [accessed 2007-08-25].

[361] Carlos Artemio Ceollo Coello, Gary B. Lamont, and David A. van Veldhuizen. Evo-
lutionary Algorithms for Solving Multi-Objective Problems, volume 5 of Genetic and
Evolutionary Computation. Kluwer Academic Publishers / Springer, second edition,
1st ed: 2002, 2nd ed: 2007. ISBN: 0-3064-6762-3, 978-0-30646-762-2, 0-3873-3254-5,

http://books.google.com/books?as_isbn=0534243126
http://books.google.com/books?as_isbn=9780534243128
http://books.google.com/books?as_isbn=0534243126
http://books.google.com/books?as_isbn=1595931864
http://books.google.com/books?as_isbn=0970789017
http://hdl.handle.net/2027.42/4042
http://dx.doi.org/10.1145/800193.805822
http://doi.acm.org/10.1145/800193.805822
http://dx.doi.org/10.1023/A:1025338411016
http://www.springerlink.com/content/j523757110202636/
http://www.dimitris-agrafiotis.com/
http://www.dimitris-agrafiotis.com/
http://citeseer.ist.psu.edu/coellocoello01short.html
http://citeseer.ist.psu.edu/coellocoello01short.html
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
http://citeseer.ist.psu.edu/coello98comprehensive.html
http://citeseer.ist.psu.edu/coello98comprehensive.html
http://citeseer.ist.psu.edu/coellocoello99updated.html
http://books.google.com/books?as_isbn=0306467623
http://books.google.com/books?as_isbn=9780306467622
http://books.google.com/books?as_isbn=0387332545


REFERENCES 625

978-0-38733-254-3, 978-0-38736-797-2. doi:10.1007/978-0-387-36797-2. Series Editor:
David E. Goldberg and John R. Koza. Partly online available at http://books.

google.de/books?id=sgX_Cst_yTsC [accessed 2008-10-20].
[362] Vinton Cerf, Yogen Dalal, and Carl Sunshine. Specification of internet transmission

control program (december 1974 version). Request for Comments (RFC) 675, Net-
work Working Group, December 1974. Online available at http://tools.ietf.org/
html/rfc675 [accessed 2008-06-13].
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Germany. Springer, Berlin / Heidelberg. ISBN: 3-6420-1008-3, 978-3-64201-008-8.
doi:10.1007/978-3-642-01009-5.

http://books.google.com/books?as_isbn=0262531968
http://books.google.com/books?as_isbn=9780262031417
http://books.google.com/books?as_isbn=3540634762
http://books.google.com/books?as_isbn=9783540634768
http://dx.doi.org/10.1007/BFb0027161
http://books.google.com/books?as_isbn=0077095065
http://books.google.com/books?as_isbn=9780077095062
http://books.google.com/books?as_isbn=0780393635
http://books.google.com/books?as_isbn=0471988553
http://books.google.com/books?as_isbn=9780471988557
http://books.google.com/books?as_isbn=9780470841631
http://dx.doi.org/10.1002/047084163X
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/corno_2002_emctpi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/corno_2002_emctpi.html
http://www.cad.polito.it/pap/db/cec2002.pdf
http://dx.doi.org/10.3115/977180.977232
http://dx.doi.org/10.3115/977180.977232
http://www.aclweb.org/anthology-new/E/E91/E91-1052.pdf
http://www.aclweb.org/anthology-new/E/E91/E91-1052.pdf
http://dx.doi.org/10.1007/978-3-540-76286-7_11
http://citeseer.ist.psu.edu/653221.html
http://www.asap.cs.nott.ac.uk/patat/patat04/151.pdf
http://books.google.com/books?as_isbn=3642010083
http://books.google.com/books?as_isbn=9783642010088
http://dx.doi.org/10.1007/978-3-642-01009-5


REFERENCES 633

[456] Carlos Cotta and Jano I. van Hemert, editors. Proceedings of the 7th European
Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP
2007, volume 4446/2007 of Lecture Notes in Computer Science (LNCS), April 11–13,
2007, Valencia, Spain. Springer. ISBN: 978-3-54071-614-3.

[457] George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-
cepts and Design. Pearson Education / Addison-Wesley Longman, fourth rev. edi-
tion, June 2005. ISBN: 0-3212-6354-5, 978-0-32126-354-4. Partly online available at
http://books.google.de/books?id=d63sQPvBezgC [accessed 2008-11-25].

[458] Richard Courant. Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of the American Mathematical Society, 49(1):1–23, 1943. ISSN:
1936-881X, 0002-9904. doi:10.1090/S0002-9904-1943-07818-4. Mathematical Reviews
number (MathSciNet): MR0007838, Zentralblatt MATH identifier: 0063.00985 Online
available at http://www.ams.org/bull/1943-49-01/S0002-9904-1943-07818-4/

home.html and http://projecteuclid.org/euclid.bams/1183504922 [accessed 2008-

11-15].
[459] Steven H. Cousins. Species diversity measurement: Choosing the right index. Trends

in Ecology and Evolution (TREE), 6(6):190–192, June 1991. ISSN: 0169-5347.
doi:10.1016/0169-5347(91)90212-G. Online available at http://dx.doi.org/10.

1016/0169-5347(91)90212-G [accessed 2008-11-10].
[460] David Roxbee Cox and Nancy Reid. The Theory of the Design of Experiments, vol-

ume 86 of Monographs on Statistics and Applied Probability. CRC Press / Taylor and
Francis LLC, June 6, 2000. ISBN: 978-1-58488-195-7, 1-5848-8195-X. Catalogue no.
C195X. Partly online available at http://books.google.com/books/crc_press?

id=rCgKVbhJ0BYC [accessed 2008-08-18].
[461] Louis Anthony Cox, Jr., Lawrence Davis, and Yuping Qiu. Dynamic anticipatory

routing in circuit-switched telecommunications networks. In Handbook of Genetic
Algorithms, pages 124–143. Van Nostrand Reinhold, 1991. In collection [495].

[462] Nichael Lynn Cramer. A representation for the adaptive generation of simple se-
quential programs. In Proceedings of the 1st International Conference on Genetic
Algorithms and their Applications, pages 183–187, 1985. In proceedings [856]. Online
available at http://www.sover.net/~nichael/nlc-publications/icga85/index.
html [accessed 2007-09-06].

[463] Raphael Crawford-Marks and Lee Spector. Size control via size fair genetic operators
in the PushGP genetic programming system. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 733–739, 2002. In pro-
ceedings [1245]. Online available at http://citeseer.ist.psu.edu/608051.html

and http://alum.hampshire.edu/~rpc01/gp234.pdf [accessed 2007-12-25].
[464] Ronald L. Crepeau. Genetic evolution of machine language software. In

Proceedings of the Workshop on Genetic Programming: From Theory to Real-
World Applications, pages 121–134, 1995. In proceedings [1757]. Online available
at http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/crepeau_1995_GEMS.html

and http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7001 [ac-

cessed 2008-09-17].
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[471] Djurdje Cvijović and Jacek Klinowski. Taboo search: an approach to the multiple
minima problem. Science, 267(5198):664–666, February 3, 1995. ISSN: 0036-8075.
doi:10.1126/science.267.5198.664.

[472] Walling Cyre. Learning grammars with a modified classifier system. In CEC’02:
Proceedings of the Congress on Evolutionary Computation, pages 1366–1371, 2002.
In proceedings [703].

[473] Zbigniew J. Czech and Piotr Czarnas. Parallel simulated annealing for the
vehicle routing problem with time windows. In 10th Euromicro Workshop
on Parallel, Distributed and Network-based Processing (PDP’02), pages 376–
383. IEEE Computer Society, January 9–11, 2002, Canary Islands, Spain.
ISBN: 0-7695-1444-8. doi:10.1109/EMPDP.2002.994313. Online available
at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.5766 [ac-

cessed http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.8805]2008-10-27.

D

[474] António Gaspar Lopes da Cunha. A multi-objective evolutionary algorithm for solv-
ing traveling salesman problems: Application to the design of polymer extruders. In
Proceedings of the 7th International Conference on Adaptive and Natural Computing
Algorithms, ICANNGA 2005, Part II, pages 189–193, 2005. In proceedings [1725].

[475] António Gaspar Lopes da Cunha and José António Colaço Gomes Covas. RPS-
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Friedrich Vieweg & Sohn Verlag / GWV Fachverlage GmbH (Springer Sci-
ence+Business Media), Wiesbaden, Germany, July 2004. ISBN: 3-5280-5570-7.

[790] Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon. Parallel stochastic hill-climbing
with small teams. In Lynne E. Parker, Frank E. Schneider, and Alan C. Schultz,
editors, Proceedings from the 2005 International Workshop on Multi-Robot Systems,
volume III of Multi-Robot Systems: From Swarms to Intelligent Automata, pages
65–77. Springer, 2005. ISBN: 978-1-40203-388-9. Presented at 2005 International
Workshop on Multi-Robot Systems. L.E.Parker et al. Online available at http://

www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.parish.pdf [accessed 2007-08-18].
[791] Hannes Geyer, Peter Ulbig, and Siegfried Schulz. Encapsulated evolution strategies

for the determination of group contribution model parameters in order to predict
thermodynamic properties. In PPSN V: Proceedings of the 5th International Confer-
ence on Parallel Problem Solving from Nature, pages 978–987, 1998. In proceedings
[624].

[792] Hannes Geyer, Peter Ulbig, and Siegfried Schulz. Use of evolutionary algorithms for
the calculation of group contribution parameters in order to predict thermodynamic
properties – part 2: Encapsulated evolution strategies. Computers and Chemical
Engineering, 23(7):955–973, July 1, 1999. doi:10.1016/S0098-1354(99)00270-7.

[793] Hannes Geyer, Peter Ulbig, and Siegfried Schulz. Verschachtelte evolution-
sstrategien zur optimierung nichtlinearer verfahrenstechnischer regressionsprob-
leme. Chemie Ingenieur Technik, 72(4):369–373, 2000. ISSN: 1522-2640.
doi:10.1002/1522-2640(200004)72:4<369::AID-CITE369>3.0.CO;2-W. Online avail-
able at http://www3.interscience.wiley.com/cgi-bin/fulltext/76500452/

PDFSTART [accessed 2007-08-27].
[794] Andreas Geyer-Schulz. Holland classifier systems. In APL’95: Proceedings of the

international conference on Applied programming languages, pages 43–55, 1995,
San Antonio, Texas, United States. ACM Press, New York, NY, USA. ISBN:
0-8979-1722-7. doi:10.1145/206913.206955. Online available at http://doi.acm.

org/10.1145/206913.206955 [accessed 2007-09-12].
[795] Andreas Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine

Learning, volume 3 of Studies in Fuzziness and Soft Computing. Physica-Verlag,
2nd rev edition edition, January 1997. ISBN: 978-3-79080-964-0. First edition: 1995.

http://books.google.com/books?as_isbn=3540298967
http://books.google.com/books?as_isbn=9783540298960
http://dx.doi.org/10.1007/11579427
http://doi.acm.org/10.1145/62959.62965
http://doi.acm.org/10.1145/62959.62965
http://books.google.com/books?as_isbn=9780471315315
http://books.google.com/books?as_isbn=0471127418
http://books.google.com/books?as_isbn=9780471127413
http://books.google.de/books?id=MCHCaJAHFJAC
http://books.google.com/books?as_isbn=0262510529
http://www.aaai.org/Conferences/AAAI/aaai83.php
http://books.google.com/books?as_isbn=3528055707
http://books.google.com/books?as_isbn=9781402033889
http://www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.parish.pdf
http://www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.parish.pdf
http://dx.doi.org/10.1016/S0098-1354(99)00270-7
http://dx.doi.org/10.1002/1522-2640(200004)72:4%3C369::AID-CITE369%3E3.0.CO;2-W
http://www3.interscience.wiley.com/cgi-bin/fulltext/76500452/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/76500452/PDFSTART
http://books.google.com/books?as_isbn=0897917227
http://dx.doi.org/10.1145/206913.206955
http://doi.acm.org/10.1145/206913.206955
http://doi.acm.org/10.1145/206913.206955
http://books.google.com/books?as_isbn=9783790809640


662 REFERENCES

[796] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software En-
gineering. Pearson Education, Prentice Hall, second edition, September 19, 2002.
ISBN: 978-0-13305-699-0.

[797] Ashish Ghosh and Lakhmi C. Jain, editors. Evolutionary Computation in
Data Mining, volume 163/2005 of Studies in Fuzziness and Soft Computing.
Springer Berlin / Heidelberg, 2005. ISBN: 978-3-54022-370-2, 3-5402-2370-3.
doi:10.1007/3-540-32358-9.

[798] Ashish Ghosh and Shigeyoshi Tsutsui, editors. Advances in Evolutionary Com-
puting – Theory and Applications. Natural Computing Series. Springer-Verlag
New York, Inc., New York, NY, USA, November 22, 2002. ISBN: 3-5404-3330-9,
978-3-54043-330-9. Series editors: G. Rozenberg, Thomas Bäck, Ágoston E. Eiben,
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[881] Ulrich Hammel and Thomas Bäck. Evolution strategies on noisy functions: How to
improve convergence properties. In Proceedings of the Third Conference on Parallel
Problem Solving from Nature, PPSN III, pages 159–168, 1994. In proceedings [492].
Online available at http://citeseer.ist.psu.edu/24308.html [accessed 2008-07-19].

[882] Richard W. Hamming. Error-detecting and error-correcting codes. Bell Sys-
tem Technical Journal, 29(2):147–169, 1950. Online available at http://

guest.engelschall.com/~sb/hamming/ and http://garfield.library.upenn.

edu/classics/classics_h.html [accessed 2007-08-13].
[883] Michelle Okaley Hammond and Terence Claus Fogarty. Co-operative oulip-

ian generative literature using human based evolutionary computing. In
Late breaking paper at Genetic and Evolutionary Computation Conference
(GECCO’2005), 2005. In proceedings [1764]. Distributed on CD-ROM at
GECCO-2005. Online available at http://www.cs.bham.ac.uk/~wbl/biblio/

gecco2005lbp/papers/56-hammond.pdf [accessed 2007-08-29].
[884] Lin Han and Xingshi He. A novel opposition-based particle swarm optimization for

noisy problems. In ICNC’07: Proceedings of the Third International Conference on
Natural Computation, volume 3, pages 624–629, 2007. doi:10.1109/ICNC.2007.119.
In proceedings [997].

[885] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining.
MIT Press, Cambridge, MA, August 2001. ISBN: 0-2620-8290-X

[886] Hisashi Handa, Dan Lin, Lee Chapman, and Xin Yao. Robust solu-
tion of salting route optimisation using evolutionary algorithms. In Evo-
lutionary Computation, proceedings of CEC 2006, pages 3098–3105, 2006.
doi:10.1109/CEC.2006.1688701. Online available at http://escholarship.lib.

okayama-u.ac.jp/industrial_engineering/2/ [accessed 2008-06-19].
[887] James V. Hansen, Paul Benjamin Lowry, Rayman Meservy, and Dan McDonald.

Genetic programming for prevention of cyberterrorism through previous dynamic
and evolving intrusion detection. Decision Support Systems, 43(4):1362–1374, Au-
gust 2007. doi:10.1016/j.dss.2006.04.004. Special Issue Clusters. Online avail-
able at http://dx.doi.org/10.1016/j.dss.2006.04.004 and http://ssrn.com/

abstract=877981 [accessed 2008-06-17].
[888] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation

distributions in evolution strategies: the covariance matrix adaptation. In Pro-
ceedings of IEEE International Conference on Evolutionary Computation, pages
312–317, 1996. In proceedings [1006]. Online available at http://citeseer.

ist.psu.edu/hansen96adapting.html and http://www.bionik.tu-berlin.de/

ftp-papers/CMAES.ps.Z [accessed 2007-09-20].
[889] Nikolaus Hansen and Andreas Ostermeier. Convergence properties of evolution strate-

gies with the derandomized covariance matrix adaption: The (µ/µi, λ)-cma-es. In
Hans-Jürgen Zimmermann, editor, Eufit’97 – 5th European Congress on Intelligent

http://books.google.com/books?as_isbn=9783540672661
http://www.virginia.edu/~risk/mcdm98.html
http://www.virginia.edu/~risk/mcdm98.html
http://books.google.com/books?as_isbn=0444413138
http://books.google.com/books?as_isbn=9780444413130
http://amazon.com/gp/product/B000UUMGXE
http://books.google.com/books?as_isbn=0387900926
http://citeseer.ist.psu.edu/24308.html
http://guest.engelschall.com/~sb/hamming/
http://guest.engelschall.com/~sb/hamming/
http://garfield.library.upenn.edu/classics/classics_h.html
http://garfield.library.upenn.edu/classics/classics_h.html
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005lbp/papers/56-hammond.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005lbp/papers/56-hammond.pdf
http://dx.doi.org/10.1109/ICNC.2007.119
http://books.google.com/books?as_isbn=026208290X
http://dx.doi.org/10.1109/CEC.2006.1688701
http://escholarship.lib.okayama-u.ac.jp/industrial_engineering/2/
http://escholarship.lib.okayama-u.ac.jp/industrial_engineering/2/
http://dx.doi.org/10.1016/j.dss.2006.04.004
http://dx.doi.org/10.1016/j.dss.2006.04.004
http://ssrn.com/abstract=877981
http://ssrn.com/abstract=877981
http://citeseer.ist.psu.edu/hansen96adapting.html
http://citeseer.ist.psu.edu/hansen96adapting.html
http://www.bionik.tu-berlin.de/ftp-papers/CMAES.ps.Z
http://www.bionik.tu-berlin.de/ftp-papers/CMAES.ps.Z


670 REFERENCES

Techniques and Soft Computing, pages 650–654. Verlag Mainz, Wissenschaftsverlag,
1997, Aachen. Online available at http://citeseer.ist.psu.edu/356709.html [ac-

cessed 2007-08-27].
[890] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation

in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001. Online avail-
able at http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf and http://

citeseer.ist.psu.edu/hansen01completely.html [accessed 2007-08-27].
[891] Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adapta-

tion of arbitrary normal mutation distributions in evolution strategies: The generat-
ing set adaptation. In Proceedings of the 6th International Conference on Genetic
Algorithms, pages 57–64, 1995. In proceedings [636]. Online available at http://

citeseer.ist.psu.edu/261932.html [accessed 2007-08-27].
[892] P. Hansen. The steepest ascent mildest descent heuristic for combinatorial program-

ming. In Talk presented at the Congress on Numerical Methods in Combinatorial
Optimization. Academic Press, 1986, Capri, Italy.

[893] Pierre Hansen, editor. Proceedings of the 5th International Conference on Multiple
Criteria Decision Making: Essays and Surveys on Multiple Criteria Decision Making
(MCDM’1982), volume 209 of Lecture Notes in Economics and Mathematical Sys-
tems, 1982, Mons, Belgium. Springer. ISBN: 978-0-38711-991-5. Published in March
1983.

[894] Jin-Kao Hao, Evelyne Lutton, Edmund M. A. Ronald, Marc Schoenauer, and Do-
minique Snyers, editors. Selected Papers of the Third European Conference on
Artificial Evolution, AE’97, volume 1363 of Lecture Notes in Computer Science
(LNCS), October 22–24, 1997, Nı̂mes, France. Springer Berlin/Heidelberg. ISBN:
3-5406-4169-6, 978-3-54064-169-8. doi:10.1007/BFb0026588. Published in May 1998.

[895] Simon Harding and Julian Francis Miller. Evolution of robot controller using cartesian
genetic programming. In Genetic Programming, Proceedings of EuroGP 2005, pages
62–73, 2005. doi:10.1007/b107383. In proceedings [1116]. Online available at http://
www.cartesiangp.co.uk/papers/2005/hmeurogp2005.pdf [accessed 2009-06-26]2007-11-
03.

[896] Georges Raif Harik. Learning gene linkage to efficiently solve problems of bounded
difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor,
1997. Doctoral Committee: Professor Keki and Professor David and E. Goldberg and
Georges Raif Harik and Georges Raif Harik and Co-chairs Keki and B. Irani and B.
Irani and David E. Goldberg. Online available at http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.54.7092 [accessed 2008-10-17].

[897] Werner Harke. Smart Home – Vernetzung von Haustechnik und Kommunikationssys-
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ary techniques for constrained multiobjective optimization problems. In Kalyanmoy
Deb, editor, Multi-criterion Optimization Using Evolutionary Methods, pages 115–
116, 1999. In proceedings [142]. Online available at http://citeseer.ist.psu.

edu/208779.html [accessed 2007-08-24].
[1055] Yaochu Jin, editor. Knowledge Incorporation in Evolutionary Computation, vol-

ume 167 of Studies in Fuzziness and Soft Computing. Springer, Springer Distri-
bution Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany, 2004. ISBN:
978-3-54022-902-5. Partly online available at http://books.google.de/books?

id=kD_FXkAKn9IC [accessed 2008-05-31].
[1056] Wilhelm Ludvig Johannsen. Elemente der exakten Erblichkeitslehre (mit Grundzügen
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[1217] Guido Krüger. Handbuch der Java-Programmierung. Addison-Wesley, 4. aktualisierte
edition, 2006. ISBN: 3-8273-2361-4, 3-8273-2447-5. Online available at http://www.
javabuch.de/ [accessed 2007-07-03].

[1218] John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas Strang, edi-
tors. UbiComp 2007: Ubiquitous Computing. Proceedings of the 9th International
Conference, volume 4717 of Lecture Notes in Computer Science, September 16–19,
2007, Innsbruck, Austria. Springer Berlin / Heidelberg. ISBN: 978-3-54074-852-6.
doi:10.1007/978-3-540-74853-3.

[1219] Ben Kuipers and Bonnie Webber, editors. Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial
Intelligence Conference, AAAI 97, IAAI 97, July 27–31, 1997, Providence, Rhode
Island, USA. AAAI Press/The MIT Press. ISBN: 0-2625-1095-2. See http://www.

aaai.org/Conferences/AAAI/aaai97.php [accessed 2007-09-06] and http://www.aaai.

org/Conferences/IAAI/iaai97.php [accessed 2007-09-06].
[1220] Anup Kumar, Rakesh M. Pathak, M. C. Gupta, and Yash P. Gupta. Genetic algo-

rithm based approach for designing computer network topolgies. In CSC’93: Pro-
ceedings of the 1993 ACM conference on Computer science, pages 358–365, Febru-
ary 16–18, 1993, Indianapolis, Indiana, United States. ACM, New York, NY, USA.
ISBN: 0-8979-1558-5. doi:10.1145/170791.170871. Online available at http://doi.

acm.org/10.1145/170791.170871 [accessed 2008-08-01].
[1221] Sanjeev Kumar and Peter J. Bentley. Computational embryology: past, present and

future. In Advances in evolutionary computing: theory and applications, pages 461–
477. Springer, 2003. In collection [798]. Online available at http://www.cs.ucl.ac.
uk/staff/P.Bentley/KUBECH1.pdf [accessed 2007-08-17].

[1222] Sourav Kundu, Kazuto Seto, and Shigeru Sugino. Genetic algorithm based design
of passive elements for vibration control. In Proceedings of 4th MOVIC Conference
(Conference On Motion and Vibration Control), volume 3, pages 1183–1188, Au-
gust 1998. Online available at http://citeseer.ist.psu.edu/349539.html and
http://en.scientificcommons.org/362076 [accessed 2007-08-13].

[1223] Sourav Kundu, Kazuto Seto, and Shigeru Sugino. Genetic algorithm application to
vibration control of tall flexible structures. In Proceedings of The First IEEE Inter-
national Workshop on Electronic Design, Test and Applications (DELTA’02), pages
333–337, January 29–31, 2002, Christchurch, New Zealand. IEEE Computer Society,
Los Alamitos, CA, USA. ISBN: 0-7695-1453-7. doi:10.1109/DELTA.2002.994641.

[1224] Vera Kurkova, Nigel C. Steele, Roman Neruda, and Miroslav Karny, editors. Pro-
ceedings of the 5th International Conference on Artificial Neural Networks and Ge-

http://books.google.com/books?as_isbn=9780387250670
http://books.google.de/books?id=YQxWzAEnINIC
http://books.google.de/books?id=YQxWzAEnINIC
http://books.google.com/books?as_isbn=9780387976877
http://books.google.com/books?as_isbn=9783540692805
http://dx.doi.org/10.1109/TEVC.2005.850260
http://www.cs.nott.ac.uk/~nxk/PAPERS/IEEE-TEC-lastVersion.pdf
http://citeseer.ist.psu.edu/krishnapuram01lowcomplexity.html
http://de.scientificcommons.org/583343
http://books.google.com/books?as_isbn=3827323614
http://books.google.com/books?as_isbn=3827324475
http://www.javabuch.de/
http://www.javabuch.de/
http://books.google.com/books?as_isbn=9783540748526
http://dx.doi.org/10.1007/978-3-540-74853-3
http://books.google.com/books?as_isbn=0262510952
http://www.aaai.org/Conferences/AAAI/aaai97.php
http://www.aaai.org/Conferences/AAAI/aaai97.php
http://www.aaai.org/Conferences/IAAI/iaai97.php
http://www.aaai.org/Conferences/IAAI/iaai97.php
http://books.google.com/books?as_isbn=0897915585
http://dx.doi.org/10.1145/170791.170871
http://doi.acm.org/10.1145/170791.170871
http://doi.acm.org/10.1145/170791.170871
http://www.cs.ucl.ac.uk/staff/P.Bentley/KUBECH1.pdf
http://www.cs.ucl.ac.uk/staff/P.Bentley/KUBECH1.pdf
http://citeseer.ist.psu.edu/349539.html
http://en.scientificcommons.org/362076
http://books.google.com/books?as_isbn=0769514537
http://dx.doi.org/10.1109/DELTA.2002.994641


698 REFERENCES

netic Algorithms, ICANNGA, 2001, Prague, Czech Republic. Springer Verlag, Berlin.
ISBN: 978-3-21183-651-4.

[1225] Frank Kursawe. A variant of evolution strategies for vector optimization. In Pro-
ceedings of the 1st Workshop on Parallel Problem Solving from Nature, PPSN I,
pages 193–197, 1990. In proceedings [1842]. Online available at http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.47.8050 and http://www.lania.mx/

~ccoello/kursawe.ps.gz [accessed 2009-04-23].
[1226] Ibrahim Kuscu. Evolving a generalised behavior: Artificial ant problem revisited.

In 7th Annual Conference on Evolutionary Programming, page 799 ff., 1998. ISBN:
3-5406-4891-7. In proceedings [1670].

[1227] Chung Min Kwan and C. S. Chang. Application of evolutionary algorithm on a
transportation scheduling problem – the mass rapid transit. In Proceedings of the
2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 2, pages
987–994, 2005. In proceedings [449]. Online available at http://www.lania.mx/

~ccoello/EMOO/kwan05.pdf.gz [accessed 2007-08-27].
[1228] Raymond S. K. Kwan, Ann S. K.Kwan, and Anthony Wren. Driver scheduling using

genetic algorithms with embedded combinatorial traits. In Proceedings of 7th Inter-
national Conference on Computer-Aided Scheduling of Public Transport, volume 471,
pages 81–102. Springer, Berlin, August 1997, Cambridge/Boston, MA, USA. ISBN:
3-5406-5775-4. Online available at http://www.citeulike.org/user/ilapla/

article/1443013 and http://citeseer.ist.psu.edu/kwan97driver.html [accessed

2007-07-29].
[1229] John Kymissis, Clyde Kendall, Joseph Paradiso, and Neil Gershenfeld. Par-

asitic power harvesting in shoes. In ISWC’98: Proceedings of the 2nd IEEE
International Symposium on Wearable Computers, page 132, 1998. IEEE Com-
puter Society, Washington, DC, USA. ISBN: 0-8186-9074-7. Online available
at http://www.media.mit.edu/resenv/papers.html and http://citeseer.ist.

psu.edu/kymissis98parasitic.html [accessed 2007-08-01].

L

[1230] Jeffrey C. Lagraias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Con-
vergence properties of the nelder-mead simplex method in low dimensions. SIAM
Journal on Optimization (SIOPT), 9(1):112–147, 1998. ISSN: 1052-6234 (print)
/ 1095-7189 (electronic). Online available at http://www.aoe.vt.edu/~cliff/

aoe5244/nelder_mead_2.pdf [accessed 2008-06-14].
[1231] Chih-Chung Lai, Chuan-Kang Ting, and Ren-Song Ko. An effective genetic algorithm

for improving wireless sensor network lifetime. In GECCO’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, pages 2260–2260, 2007.
doi:10.1145/1276958.1277395. In proceedings [2037]. Online available at http://

doi.acm.org/10.1145/1276958.1277395 [accessed 2008-10-25]. Poster Session: Real-world
applications: posters. See also [1231].

[1232] Chih-Chung Lai, Chuan-Kang Ting, and Ren-Song Ko. An effective genetic algorithm
to improve wireless sensor network lifetime for large-scale surveillance applications. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, pages
3531–3538, 2007. doi:10.1109/CEC.2007.4424930. In proceedings [1005]. See also
[1231].

[1233] Jouni Lampinen and Ivan Zelinka. Mechanical engineering design optimization by
differential evolution. In New Ideas in Optimization, pages 127–146. McGraw-Hill,
1999. In collection [448].

[1234] Jouni Lampinen and Ivan Zelinka. On stagnation of the differential evolution
algorithm. In Proceedings of MENDEL 2000, 6th International Mendel Confer-
ence on Soft Computing, pages 76–83, 2000. In proceedings [1591]. Online avail-

http://books.google.com/books?as_isbn=9783211836514
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.8050
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.8050
http://www.lania.mx/~ccoello/kursawe.ps.gz
http://www.lania.mx/~ccoello/kursawe.ps.gz
http://books.google.com/books?as_isbn=3540648917
 http://www.lania.mx/~ccoello/EMOO/kwan05.pdf.gz
 http://www.lania.mx/~ccoello/EMOO/kwan05.pdf.gz
http://books.google.com/books?as_isbn=3540657754
http://www.citeulike.org/user/ilapla/article/1443013
http://www.citeulike.org/user/ilapla/article/1443013
http://citeseer.ist.psu.edu/kwan97driver.html
http://books.google.com/books?as_isbn=0818690747
http://www.media.mit.edu/resenv/papers.html
http://citeseer.ist.psu.edu/kymissis98parasitic.html
http://citeseer.ist.psu.edu/kymissis98parasitic.html
http://www.aoe.vt.edu/~cliff/aoe5244/nelder_mead_2.pdf
http://www.aoe.vt.edu/~cliff/aoe5244/nelder_mead_2.pdf
http://dx.doi.org/10.1145/1276958.1277395
http://doi.acm.org/10.1145/1276958.1277395
http://doi.acm.org/10.1145/1276958.1277395
http://dx.doi.org/10.1109/CEC.2007.4424930


REFERENCES 699

able at http://citeseer.ist.psu.edu/317991.html and http://www.lut.fi/

~jlampine/MEND2000.ps [accessed 2007-08-13].
[1235] Leslie Lamport. Time, clocks, and the ordering of events in a distributed sys-

tem. Communications of the ACM, 21(7):558–565, July 1978. ISSN: 0001-
0782. doi:10.1145/359545.359563. Operating Systems. Editor: R. Stockton
Gaines. Online available at http://research.microsoft.com/users/lamport/

pubs/time-clocks.pdf and http://portal.acm.org/citation.cfm?id=359563

[accessed 2007-08-01]. Also: Report CA-7603-2911, Massachusetts Comptuter Association,
Wakefield, Massachusetts, USA, March 1976.

[1236] Edmung Landau. Handbuch der Lehre von der Verteilung der Primzahlen. B. G.
Teubner, Leipzig, Germany, 1909. Reprinted by Chelsea, New York, 1953.

[1237] Christopher G. Langdon, editor. Artificial Life: The Proceedings of an Interdisci-
plinary Workshop on the Synthesis and Simulation of Living Systems, volume 6 of
Santa Fe Institute Studies in the Science of Complexity, September 1987, Los Alamos,
New Mexico, USA. Addisson-Wesley Publishing Company, Reading, MA, USA / Red-
wood City, CA, USA. ISBN: 0-2010-9356-1, 978-0-20109-356-8. Published in January
1989.

[1238] William B. Langdon. Genetic Programming and Data Structures: Genetic Program-
ming + Data Structures = Automatic Programming! Genetic Programming. Springer,
April 30, 1998. ISBN: 0-7923-8135-1.

[1239] William B. Langdon. The halting probability in von Neumann architectures. Techni-
cal Report CSM-456, Computer Science, University of Essex, UK, July 2006. 2 page
summary of [1243]. Online available at http://www.cs.bham.ac.uk/~wbl/biblio/

gp-html/langdon_2006_eurogp2p.html [accessed 2008-11-09].
[1240] William B. Langdon and Riccardo Poli. Better trained ants for genetic pro-

gramming. Technical Report CSRP-98-12, University of Birmingham, School of
Computer Science, April 2, 1998. Online available at http://citeseer.ist.

psu.edu/105696.html and ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/

CSRP-98-12.ps.gz [accessed 2007-08-05].
[1241] William B. Langdon and Riccardo Poli. Fitness causes bloat: Mutation. In Pro-

ceedings of the First European Workshop on Genetic Programming, pages 37–48,
1998. In proceedings [141]. Online available at http://citeseer.ist.psu.edu/

langdon98fitness.html and ftp://ftp.cwi.nl/pub/W.B.Langdon/papers/WBL.

euro98_bloatm.ps.gz [accessed 2007-09-09].
[1242] William B. Langdon and Riccardo Poli. Foundations of Genetic Programming.

Springer, Berlin, first edition, January 2002. ISBN: 3-5404-2451-2.
[1243] William B. Langdon and Riccardo Poli. The halting probability in von neu-

mann architectures. In 9th European Conference on Genetic Programming, pages
225–237, 2006. In proceedings [429]. Online available at http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7637 and http://www.cs.bham.

ac.uk/~wbl/biblio/gp-html/langdon_2006_eurogp.html [accessed 2008-11-09]. See also
[1239].

[1244] William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster. The
evolution of size and shape. In Advances in Genetic Programming 3, chap-
ter 8, pages 163–190. MIT Press, 1999. In collection [1936]. Online available at
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.ps.gz and http://citeseer.ist.

psu.edu/langdon99evolution.html [accessed 2007-09-07].
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theorie für Wirtschaftswissenschaftler. Springer-Lehrbuch. Springer, 1997. ISBN:
3-5406-1731-0, 978-3-54061-731-0.

[1653] Riccardo Poli. Evolution of recursive transition networks for natural language recog-
nition with parallel distributed genetic programming. Technical Report CSRP-96-19,
School of Computer Science, The University of Birmingham, Birmingham B15 2TT,
United Kingdom, December 1996. Online available at http://citeseer.ist.psu.

edu/90834.html [accessed 2007-11-04]. See also [1656].
[1654] Riccardo Poli. Parallel distributed genetic programming. Technical Report CSRP-

96-15, School of Computer Science, The University of Birmingham, Birmingham B15
2TT, United Kingdom, September 1996. See [1659]. Online available at http://

citeseer.ist.psu.edu/86223.html [accessed 2007-11-04].
[1655] Riccardo Poli. Some steps towards a form of parallel distributed genetic pro-

gramming. In The 1st Online Workshop on Soft Computing (WSC1). Nagoya
University, Japan, August 19-30, 1996. Originally published as technical report,
CSRP-96-14, University of Birmingham, School of Computer Science, 1996. Online
available at http://cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.

pdf and http://citeseer.ist.psu.edu/156274.html [accessed 2007-11-04].
[1656] Riccardo Poli. Evolution of recursive transistion networks for natural language recog-

nition with parallel distributed genetic programming. In Proceedings of the Workshop
on Artificial Intelligence and Simulation of Behaviour (AISB), International Work-
shop on Evolutionary Computing, Selected Papers, pages 163–177, 1997. In proceed-
ings [447]. Online available at http://cswww.essex.ac.uk/staff/rpoli/papers/

Poli-AISB-1997.pdf and http://citeseer.ist.psu.edu/355686.html [accessed 2007-

11-04]. See also [1653].

http://jeb.biologists.org/cgi/reprint/209/12/2362.pdf
http://books.google.com/books?as_isbn=9783540284598
http://books.google.com/books?as_isbn=3540284591
http://dx.doi.org/10.1007/b102053
http://books.google.de/books?id=kKr3rKhPU7oC
http://books.google.de/books?id=kKr3rKhPU7oC
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2170
http://www.research.att.com/~mgcr/doc/grasp-hao.pdf
http://biomet.oxfordjournals.org/cgi/reprint/37/1-2/149
http://biomet.oxfordjournals.org/cgi/reprint/37/1-2/149
http://www.GEATbx.com
http://www.GEATbx.com
http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v38.pdf
http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v38.pdf
http://books.google.com/books?as_isbn=3540617310
http://books.google.com/books?as_isbn=9783540617310
http://citeseer.ist.psu.edu/90834.html
http://citeseer.ist.psu.edu/90834.html
http://citeseer.ist.psu.edu/86223.html
http://citeseer.ist.psu.edu/86223.html
http://cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.pdf
http://cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.pdf
http://citeseer.ist.psu.edu/156274.html
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-AISB-1997.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-AISB-1997.pdf
http://citeseer.ist.psu.edu/355686.html


REFERENCES 735

[1657] Riccardo Poli. Discovery of symbolic, neuro-symbolic and neural networks with
parallel distributed genetic programming. In 3rd International Conference on Ar-
tificial Neural Networks and Genetic Algorithms, ICANNGA’97, 1997. In proceed-
ings [1902]. Online available at http://cswww.essex.ac.uk/staff/rpoli/papers/
Poli-ICANNGA1997.pdf and http://citeseer.ist.psu.edu/poli97discovery.

html [accessed 2007-11-04].
[1658] Riccardo Poli. Evolution of graph-like programs with parallel distributed genetic pro-

gramming. In Genetic Algorithms: Proceedings of the Seventh International Confer-
ence, pages 346–353, 1997. In proceedings [98]. Online available at http://citeseer.
ist.psu.edu/578015.html and http://cswww.essex.ac.uk/staff/poli/papers/

Poli-ICGA1997-PDGP.pdf [accessed 2007-11-04].
[1659] Riccardo Poli. Parallel distributed genetic programming. In New Ideas in Op-

timization, pages 403–432. McGraw-Hill Education, 1999. In collection [448], see
also [1654]. Online available at http://cswww.essex.ac.uk/staff/rpoli/papers/
Poli-NIO-1999-PDGP.pdf [accessed 2007-11-04].

[1660] Riccardo Poli. A simple but theoretically-motivated method to control bloat in ge-
netic programming. In Proceedings of 6th European Conference on Genetic Program-
ming, EuroGP 2003, pages 204–217, 2003. In proceedings [1786].

[1661] Riccardo Poli and William B. Langdon. A new schema theory for genetic program-
ming with one-point crossover and point mutation. In Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 278–285, 1997. In proceedings
[1208]. Online available at http://citeseer.ist.psu.edu/327495.html [accessed 2008-

06-14]. See also [1662].
[1662] Riccardo Poli and William B. Langdon. A new schema theory for genetic program-

ming with one-point crossover and point mutation. Technical Report CSRP-97-3,
The University of Birmingham, School of Computer Science, B15 2TT, UK, January
1997. Revised August 1997. Online available at http://www.cs.bham.ac.uk/~wbl/
biblio/gp-html/poli_1997_schemaTR.html and ftp://ftp.cs.bham.ac.uk/pub/

tech-reports/1997/CSRP-97-03.ps.gz [accessed 2008-06-17]. See also [1661].
[1663] Riccardo Poli, William B. Langdon, Marc Schoenauer, Terry Fogarty, and Wolfgang

Banzhaf, editors. Late Breaking Papers at EuroGP’98: The First European Work-
shop on Genetic Programming, April 14-15, 1998, Paris, France. Distributed at the
workshop. See alse [141].

[1664] Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fogarty, edi-
tors. Proceedings of the Second European Workshop on Genetic Programming, vol-
ume 1598/1999 of Lecture Notes in Computer Science (LNCS), May 26-27, 1999,
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[1746] Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of a steady-state

genetic algorithm. In Foundations of Genetic Algorithms 5, pages 57–68, 1998. In
proceedings [139]. Online available at http://eprints.ecs.soton.ac.uk/451/02/

FOGA.ps and http://citeseer.ist.psu.edu/rogers99modelling.html [accessed 2007-

08-28].
[1747] Daniel S. Rokhsar, Philip Warren Anderson, and Daniel L. Stein. Self-organization

in prebiological systems: Simulations of a model for the origin of genetic information.
Journal of Molecular Evolution, 23(2):119–126, June 1986. ISSN: 0022-2844 (print),
1432-1432 (online). doi:10.1007/BF02099906. Online available at http://www.

springerlink.com/content/m268540162062735/fulltext.pdf [accessed 2008-07-02].

http://citeseer.ist.psu.edu/345595.html
http://people.cs.uchicago.edu/~matei/papers/ic.pdf
http://citeseer.ist.psu.edu/ripeanu02mapping.html
http://citeseer.ist.psu.edu/ripeanu02mapping.html
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://people.csail.mit.edu/rivest/Sexp.txt
http://dx.doi.org/10.1214/aoms/1177729586
http://projecteuclid.org/euclid.aoms/1177729586
http://projecteuclid.org/euclid.aoms/1177729586
http://books.google.com/books?as_isbn=0387212396
http://books.google.com/books?as_isbn=9780387212395
http://books.google.de/books?id=HfhGAxn5GugC
http://hampshire.edu/lspector/robinson-div3.pdf
http://hampshire.edu/lspector/robinson-div3.pdf
http://citeseer.ist.psu.edu/498673.html
http://eprints.ecs.soton.ac.uk/451/02/FOGA.ps
http://eprints.ecs.soton.ac.uk/451/02/FOGA.ps
http://citeseer.ist.psu.edu/rogers99modelling.html
http://dx.doi.org/10.1007/BF02099906
http://www.springerlink.com/content/m268540162062735/fulltext.pdf
http://www.springerlink.com/content/m268540162062735/fulltext.pdf


REFERENCES 743

[1748] Dumitru Roman, Uwe Keller, and Holger Lausen. WSMO – Web Service Modeling
Ontology. Digital Enterprise Research Institute (DERI), February 2004. Online
available at http://www.wsmo.org/2004/d2/v0.1/20040214/ [accessed 2007-09-02]. See
also http://www.wsmo.org/ [accessed 2007-09-02] and [1749].

[1749] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
service modeling ontology. Applied Ontology, 1(1):77–106, 2005. See also http://

www.wsmo.org/ [accessed 2007-09-02] and [1748].
[1750] Simon Ronald. Preventing diversity loss in a routing genetic algorithm with hash

tagging. Complexity International, 2, April 1995. ISSN: 1320-0683. Online available
at http://www.complexity.org.au/ci/vol02/sr_hash/ [accessed 2007-07-28].

[1751] Simon Ronald. Genetic Algorithms and Permutation-Encoded Problems. Diversity
Preservation and a Study of Multimodality. PhD thesis, University Of South Aus-
tralia. Department of Computer and Information Science, 1996.

[1752] Simon Ronald. Robust encodings in genetic algorithms: A survey of encoding
issues. In IEEE Forth International Conference on Evolutionary Computation
(IEEE/ICEC’97), pages 43–48, 1997. doi:10.1109/ICEC.1997.592265. In proceed-
ings [106].

[1753] Min rong Chen, Yong zai Lu, and Gen ke Yang. Multiobjective extremal optimization
with applications to engineering design. Journal of Zhejiang University – Science
A, 8(12):1905–1911, November 2007. ISSN: 1673-565X (Print) 1862-1775 (Online).
doi:10.1631/jzus.2007.A1905.

[1754] Wan rong Jih and Jane Yung jen Hsu. Dynamic vehicle routing using hybrid ge-
netic algorithms. In IEEE International Conference on Robotics and Automation,
volume 1, pages 453–458, May 10–15, 1999, Detroid, Michigan. ISBN: 0-7803-5180-0.
INSPEC Accession Number: 6345736. doi:10.1109/ROBOT.1999.770019. Online
available at http://neo.lcc.uma.es/radi-aeb/WebVRP/data/articles/DVRP.pdf
[accessed 2008-10-27].

[1755] Peter Roosen and Fred Meyer. Determination of chemical equilibria by means of
an evolution strategy. In PPSN-II, Parallel problem solving from nature 2, pages
411–420, 1992. In proceedings [1357].

[1756] Justinian Rosca. Generality versus size in genetic programming. In Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, pages 381–387, 1996. In
proceedings [1207]. Online available at http://citeseer.ist.psu.edu/75165.html
and ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz [accessed 2007-09-07].

[1757] Justinian P. Rosca. Proceedings of the workshop on genetic programming: From
theory to real-world applications. Technical Report 95.2, University of Rochester,
National Resource Laboratory for the Study of Brain and Behavior, Morgan Kauf-
mann, San Mateo, California, Rochseter, New York, USA, July 9, 1995, Tahoe City,
California, USA. Held in conjunction with the twelfth International Conference on
Machine Learning.

[1758] Justinian P. Rosca. An analysis of hierarchical genetic programming. Techni-
cal Report TR566, The University of Rochester, Computer Science Department,
Rochester, New York, 1527, USA, March 1995. Online available at ftp://ftp.

cs.rochester.edu/pub/u/rosca/gp/95.tr566.ps.gz and http://citeseer.ist.

psu.edu/rosca95analysis.html [accessed 2008-02-24].
[1759] Justinian P. Rosca and Dana H. Ballard. Causality in genetic programming. In

Proceedings of the 6th International Conference on Genetic Algorithms (ICGA95),
pages 256–263, 1995. In proceedings [636]. Online available at http://citeseer.

ist.psu.edu/rosca95causality.html [accessed 2007-08-12].
[1760] Richard S. Rosenberg. Simulation of genetic populations with biochemical properties.

PhD thesis, The University of Michigan, College of Literature, Science, and the Arts,
Computer and Communication Sciences Department, Ann Arbor, MI, USA, June

http://www.wsmo.org/2004/d2/v0.1/20040214/
http://www.wsmo.org/
http://www.wsmo.org/
http://www.wsmo.org/
http://www.complexity.org.au/ci/vol02/sr_hash/
http://dx.doi.org/10.1109/ICEC.1997.592265
http://dx.doi.org/10.1631/jzus.2007.A1905
http://books.google.com/books?as_isbn=0780351800
http://dx.doi.org/10.1109/ROBOT.1999.770019
http://neo.lcc.uma.es/radi-aeb/WebVRP/data/articles/DVRP.pdf
http://citeseer.ist.psu.edu/75165.html
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.tr566.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.tr566.ps.gz
http://citeseer.ist.psu.edu/rosca95analysis.html
http://citeseer.ist.psu.edu/rosca95analysis.html
http://citeseer.ist.psu.edu/rosca95causality.html
http://citeseer.ist.psu.edu/rosca95causality.html


744 REFERENCES

1967. Online available at http://hdl.handle.net/2027.42/7321 [accessed 2008-10-17].
Other Identifiers: UMR3370, ORA Project 08333, ID: bad1552.0001.001.

[1761] Paul L. Rosin and Freddy Fierens. Improving neural network generalisation. In Pro-
ceedings of the International Geoscience and Remote Sensing Symposium, “Quanti-
tative Remote Sensing for Science and Applications”, IGARSS’95, volume 2, pages
1255–1257. IEEE, July 10–14, 1995, Florenz, Italy. ISBN: 0-7803-2567-2. INSPEC
Accession Number: 5112834. doi:10.1109/IGARSS.1995.521718. Online available
at http://citeseer.ist.psu.edu/165458.html and http://users.cs.cf.ac.uk/

Paul.Rosin/resources/papers/overfitting.pdf [accessed 2007-09-13].
[1762] Claudio Rossi, Elena Marchiori, and Joost N. Kok. An adaptive evolutionary al-

gorithm for the satisfiability problem. In SAC’00: Proceedings of the 2000 ACM
symposium on Applied computing, volume 1, pages 463–469, 2000, Como, Italy. ACM
Press, New York, NY, USA. ISBN: 1-5811-3240-9. doi:10.1145/335603.335912. Online
available at http://doi.acm.org/10.1145/335603.335912 and http://citeseer.

ist.psu.edu/335101.html [accessed 2007-08-24].
[1763] Gerald P. Roston. A Genetic Methodology for Configuration Design. PhD thesis,

Department of Mechanical Engineering of Carnegie Mellon University, Pittsburgh,
PA 15213-3891, USA, December 1994. Advisors: Rober Sturges, Jr. and William
“Red” Wittaker. Online available at http://citeseer.ist.psu.edu/213003.html

and http://www.ri.cmu.edu/pubs/pub_3335.html [accessed 2007-08-15].
[1764] Franz Rothlauf, editor. Late Breaking Papers at Genetic and Evolutionary Computa-

tion Conference, GECCO 2005, June 25–29, 2005, Loews L’Enfant Plaza Hotel, 480
L’enfant Plaza Sw, Washington, D.C. 20024, USA. See also [202, 199, 1766]. Also
distributed on CD-ROM at GECCO-2005.

[1765] Franz Rothlauf. Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag, second edition, August 2002 (1st ed.), 2006 (2nd ed.). ISBN:
978-3-79081-496-5, 3-5402-5059-X, 978-3-54025-059-3. Foreword by David E. Gold-
berg. Partly online available at http://books.google.de/books?id=fQrSUwop4JkC
[accessed 2008-02-27].

[1766] Franz Rothlauf, Misty Blowers, Jürgen Branke, Stefano Cagnoni, Ivan I. Garibay,
Ozlem Garibay, Jörn Grahl, Gregory Hornby, Edwin D. de Jong, Tim Kovacs, San-
jeev Kumar, Claudio F. Lima, Xavier Llorà, Fernando Lobo, Laurence D. Merkle,
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[1966] Ivan Stojmenović, editor. Handbook of Sensor Networks: Algorithms and Architec-

tures. Wiley-Interscience, October 5, 2005. ISBN: 978-0-47168-472-5.
[1967] Robert R. Stoll. Set Theory and Logic. Dover Publications, reprint edition, October 1,

1979. ISBN: 0-4866-3829-4, 978-0-48663-829-4.
[1968] Tobias Storch and Ingo Wegener. Real royal road functions for constant population

size. In Genetic and Evolutionary Computation – GECCO 2003, pages 1406–1417,
2003. doi:10.1007/3-540-45110-2 14. In proceedings [335]. See also [1969, 1970].

[1969] Tobias Storch and Ingo Wegener. Real royal road functions for constant population
size. Computational Intelligence CI-167/04, Design and Management of Complex
Technical Processes and Systems by means of Computational Intelligence Methods,
Collaborative Research Center 531, University of Dortmund, February 2004. Secre-
tary of the SFB 531. Online available at http://hdl.handle.net/2003/5456 [accessed

2008-07-22]. See also [1968, 1970].
[1970] Tobias Storch and Ingo Wegener. Real royal road functions for constant population

size. Theoretical Computer Science, 320(1):123–134, June 12, 2004. ISSN: 0304-3975.
doi:10.1016/j.tcs.2004.03.047. Online available at http://dx.doi.org/10.1016/j.

tcs.2004.03.047 [accessed 2008-07-22]. See also [1968, 1969].
[1971] Rainer Storn. Differential evolution design of an IIR-filter with requirements for mag-

nitude and group delay. Technical Report TR-95-026, International Computer Science
Institute, 1947 Center Street, Berkeley, CA 94704-1198, Berkeley, CA, 1995. On-
line available at http://citeseer.ist.psu.edu/storn95differential.html and
http://www.icsi.berkeley.edu/ftp/pub/techreports/1995/tr-95-026.pdf [ac-

cessed 2007-08-13].
[1972] Rainer Storn. On the usage of differential evolution for function optimization. In

M. Smith, M. Lee, J. Keller, and J. Yen, editors, 1996 Biennial Conference of the
North American Fuzzy Information Processing Society, pages 519–523, 1996. IEEE
Press, Piscataway, NJ.

[1973] Rainer Storn. Designing digital filters with differential evolution. In New Ideas in
Optimization, pages 109–125. McGraw-Hill Education, 1999. In collection [448].

[1974] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces. Technical Report
TR-95-012, International Computer Science Institute, 1947 Center Street, Berkeley,
CA 94704, Berkeley, CA, 1995. Online available at http://citeseer.ist.psu.

edu/182432.html and http://http.icsi.berkeley.edu/~storn/TR-95-012.pdf

[accessed 2007-08-13].
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2001. Supervisors: Arnold Kirstner and Werner Koch. Online available at http://

www-ra.informatik.uni-tuebingen.de/mitarb/streiche/ [accessed 2007-08-17].
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tems Group, Wilhelmshöher Allee 73, 34121 Kassel, Germany, University of Kas-
sel, October 14, 2008. Persistent Identifier: urn:nbn:de:hebis:34-2008101424484.
Online available at https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:
de:hebis:34-2008101424484 and http://www.it-weise.de/documents/files/

WSTG2008GOAATATDS.pdf [accessed 2008-10-17].
[2187] Thomas Weise, Michael Zapf, and Kurt Geihs. Evolving proactive aggre-

gation protocols. In Genetic Programming – Proceedings of the 11th Euro-
pean Conference on Genetic Programming, EuroGP 2008, pages 254–265, 2008.
doi:10.1007/978-3-540-78671-9 22. In proceedings [1579]. Online available at http://
www.it-weise.de/documents/files/WZG2008DGPFa.pdf and http://dx.doi.org/

10.1007/978-3-540-78671-9_22 [accessed 2009-06-26].
[2188] Thomas Weise, Alexander Podlich, Kai Reinhard, Christian Gorldt, and Kurt Geihs.

Evolutionary freight transportation planning. In EvoTRANSLOG, 3rd European
Workshop on Evolutionary Computation in Transportation and Logistics, pages 768–
777, 2009. doi:10.1007/978-3-642-01129-0 87. In proceedings [802]. Nominated for
best paper award. Online available at http://www.it-weise.de/documents/files/
WPRGG2009EFTP.pdf [accessed 2009-06-26].

[2189] August Weismann. The Germ-Plasm – A Theory of Heredity. Charles Scrib-
ner’s Sons, New York, USA, 1893. Translated by W. Newton Parker, Ph.D. and
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Science (LNCS), 1996, Montréal, Québec, Canada. Springer. ISBN: 3-5406-0923-7.
See also [1453, 1454, 1364].

[2191] Eric W. Weisstein. K-means clustering algorithm, 1999–2006. From MathWorld–
A Wolfram Web Resource. Online available at http://mathworld.wolfram.com/

K-MeansClusteringAlgorithm.html [accessed 2007-08-11].
[2192] Justin Werfel and Radhika Nagpal. Extended stigmergy in collective construction.

IEEE Intelligent Systems, 21(2):20–28, March/April 2006. doi:10.1109/MIS.2006.25.
Online available at http://hebb.mit.edu/people/jkwerfel/ieeeis06.pdf [accessed

2008-06-12].

http://dx.doi.org/10.1109/HIS.2007.11
http://www.it-weise.de/documents/files/WZKG2007DGPFg.pdf
http://www.it-weise.de/documents/files/WZKG2007DGPFg.pdf
http://books.google.com/books?as_isbn=9780769531632
http://www.it-weise.de/documents/files/WBCG2008ICIW.pdf
http://www.it-weise.de/documents/files/WBCG2008ICIW.pdf
http://dx.doi.org/10.1145/1389095.1389252
http://www.it-weise.de/documents/files/WNSRG2008GECCO.pdf
http://wm-urn.org/?urn=urn:nbn:de:hebis:34-2008101424484
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2008101424484
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2008101424484
http://www.it-weise.de/documents/files/WSTG2008GOAATATDS.pdf
http://www.it-weise.de/documents/files/WSTG2008GOAATATDS.pdf
http://dx.doi.org/10.1007/978-3-540-78671-9_22
http://www.it-weise.de/documents/files/WZG2008DGPFa.pdf
http://www.it-weise.de/documents/files/WZG2008DGPFa.pdf
http://dx.doi.org/10.1007/978-3-540-78671-9_22
http://dx.doi.org/10.1007/978-3-540-78671-9_22
http://dx.doi.org/10.1007/978-3-642-01129-0_87
http://www.it-weise.de/documents/files/WPRGG2009EFTP.pdf
http://www.it-weise.de/documents/files/WPRGG2009EFTP.pdf
http://www.esp.org/books/weismann/germ-plasm/facsimile/
http://www.esp.org/books/weismann/germ-plasm/facsimile/
http://books.google.com/books?as_isbn=3540609237
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
http://dx.doi.org/10.1109/MIS.2006.25
http://hebb.mit.edu/people/jkwerfel/ieeeis06.pdf


782 REFERENCES

[2193] Justin Werfel, Yaneer Bar-Yam, Daniela Rus, and Radhika Nagpal. Distributed
construction by mobile robots with enhanced building blocks. In IEEE International
Conference on Robotics and Automation (ICRA), May 15–19, 2006, Hilton in the
Walt Disney World Resort hotel, Walt Disney World Resort, Orlando, Florida (Lake
Buena Vista), USA. Online available at http://www.eecs.harvard.edu/~rad/ssr/
papers/icra06-werfel.pdf [accessed 2008-06-12].

[2194] Gregory M. Werner and Michael G. Dyer. Evolution of communication in artificial
organisms. In Artificial Life II, pages 659–687, 1992. Redwood City, CA. In proceed-
ings [1248]. Online available at http://www.isrl.uiuc.edu/~amag/langev/paper/
werner92evolutionOf.html [accessed 2008-07-28].

[2195] Thomas H. Westerdale. The bucket brigade is not genetic. In Proceedings of the 1st
International Conference on Genetic Algorithms, pages 45–59, 1985. In proceedings
[856].

[2196] Thomas H. Westerdale. A reward scheme for production systems with overlapping
conflict sets. IEEE Transactions on Systems, Man and Cybernetics, 16(3):369–383,
1986. ISSN: 0018-9472.

[2197] Thomas H. Westerdale. Altruism in the bucket brigade. In Proceedings of the Second
International Conference on Genetic algorithms and their application, pages 22–26,
1987. In proceedings [857].

[2198] A. Wetzel. Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial
Optimization. PhD thesis, University of Pittsburgh, Pittsburgh, PA, 1983. Unpub-
lished manuscript, technical report.

[2199] Ingrid Wetzel. Information systems development with anticipation of change:
Focussing on professional bureaucracies. In Proceedings of Hawaii International
Conference on Systems Sciences, HICSS 34. IEEE Computer Society, January
2001, Maui, Hawaii, USA. Online available at http://citeseer.ist.psu.edu/

532081.html and http://swt-www.informatik.uni-hamburg.de/publications/

download.php?id=177 [accessed 2007-09-02].
[2200] James F. Whidborne, D.-W. Gu, and Ian Postlethwaite. Algorithms for the method

of inequalities – a comparative study. In Procedings of the 1995 American Control
Conference, volume 5, pages 3393–3397, June 21–23, 1995, Seattle, Washington, USA.
ISBN: 0-7803-2445-5. INSPEC Accession Number: 5080557. FA19 = 9:15.

[2201] Peter Alexander Whigham. Context-free grammar and genetic programming. Techni-
cal Report Technical Report CS20/94, Department of Computer Science, Australian
Defence Force Academy, University of New South Wales, Canberra ACT 2600, Aus-
tralia, 1994.

[2202] Peter Alexander Whigham. Grammatically-based genetic programming. In Proceed-
ings of the Workshop on Genetic Programming: From Theory to Real-World Ap-
plications, pages 33–41, 1995. In proceedings [1757]. Online available at http://

citeseer.ist.psu.edu/whigham95grammaticallybased.html [accessed 2007-08-15].
[2203] Peter Alexander Whigham. Inductive bias and genetic programming. In First Inter-

national Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, GALESIA, pages 461–466, 1995. In proceedings [2309]. Online available
at http://citeseer.ist.psu.edu/343730.html [accessed 2008-08-15].

[2204] Peter Alexander Whigham. Grammatical bias for evolutionary learning. PhD thesis,
School of Computer Science, University College, University of New South Wales, Aus-
tralian Defence Force Academy, Canberra, New South Wales, Australia, October 14,
1996. Order Number: AAI0597571.

[2205] Peter Alexander Whigham. Search bias, language bias, and genetic program-
ming. In Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 230–237, 1996. In proceedings [1207]. Online available at http://citeseer.

ist.psu.edu/whigham96search.html and ftp://www.cs.adfa.edu.au/pub/xin/

whigham_gp96.ps.gz [accessed 2007-09-09].

http://www.eecs.harvard.edu/~rad/ssr/papers/icra06-werfel.pdf
http://www.eecs.harvard.edu/~rad/ssr/papers/icra06-werfel.pdf
http://www.isrl.uiuc.edu/~amag/langev/paper/werner92evolutionOf.html
http://www.isrl.uiuc.edu/~amag/langev/paper/werner92evolutionOf.html
http://citeseer.ist.psu.edu/532081.html
http://citeseer.ist.psu.edu/532081.html
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177
http://books.google.com/books?as_isbn=0780324455
http://citeseer.ist.psu.edu/whigham95grammaticallybased.html
http://citeseer.ist.psu.edu/whigham95grammaticallybased.html
http://citeseer.ist.psu.edu/343730.html
http://citeseer.ist.psu.edu/whigham96search.html
http://citeseer.ist.psu.edu/whigham96search.html
ftp://www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz
ftp://www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz


REFERENCES 783

[2206] R. C. White, jr. A survey of random methods for parameter optimization. Simulation,
17(5):197–205, 1971. doi:10.1177/003754977101700504. Online available at http://
sim.sagepub.com/cgi/reprint/17/5/197?ck=nck [accessed 2008-03-26].

[2207] L. Darell Whitley. A genetic algorithm tutorial. Technical Report CS-93-103, Com-
puter Science Department, Colorado State University, Fort Collins, March 10, 1993.
Online available at http://citeseer.ist.psu.edu/177719.html [accessed 2007-11-29].
See also [2208].

[2208] L. Darell Whitley. A genetic algorithm tutorial. Statistics and Comput-
ing, 4(2):65–85, June 1994. ISSN: ISSN 0960-3174 (Print) 1573-1375 (On-
line). doi:10.1007/BF00175354. Online available at http://samizdat.mines.

edu/ga_tutorial/ga_tutorial.ps and http://www.citeulike.org/user/Bc91/

article/1449453 [accessed 2007-08-12]. Also published as technical report [2207].
[2209] L. Darrell Whitley, editor. Proceedings of the Second Workshop on Foundations

of Genetic Algorithms (FOGA), July 26–29, 1992, Vail, Colorado, USA. Morgan
Kaufmann, San Mateo, CA, USA. ISBN: 1-5586-0263-1. Published February 1, 1993.

[2210] L. Darrell Whitley, editor. Late Breaking Papers at Genetic and Evolutionary Com-
putation Conference (GECCO’00), July 8–12, 2000, The Riviera Hotel and Casino,
Las Vegas, Nevada, USA. See also [2216].

[2211] L. Darrell Whitley. The GENITOR algorithm and selective pressure: Why rank-
based allocation of reproductive trials is best. In Proceedings of the 3rd International
Conference on Genetic Algorithms, pages 116–121, 1989. In proceedings [1820]. On-
line available at http://citeseer.ist.psu.edu/531140.html and http://www.cs.

colostate.edu/~genitor/1989/ranking89.ps.gz [accessed 2007-08-21].
[2212] L. Darrell Whitley. Cellular genetic algorithms. In Proceedings of the 5th Interna-

tional Conference on Genetic Algorithms, page 658, 1993. In proceedings [730].
[2213] L. Darrell Whitley and Timothy Starkweather. Genitor ii.: A distributed genetic

algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 2(3):189–
214, July 1990. ISSN: 0952-813X. doi:10.1080/09528139008953723.

[2214] L. Darrell Whitley and Michael D. Vose, editors. Proceedings of the Third Workshop
on Foundations of Genetic Algorithms (FOGA), July 31–August 2, 1994, Estes Park,
Colorado, USA. Morgan Kaufmann, San Francisco, CA, USA. ISBN: 1-5586-0356-5.
Published June 1, 1995.

[2215] L. Darrell Whitley, V. Scott Gordon, and Keith E. Mathias. Lamarckian evolu-
tion, the baldwin effect and function optimization. In PPSN III: Proceedings of the
International Conference on Evolutionary Computation. The Third Conference on
Parallel Problem Solving from Nature, pages 6–15, 1994. In proceedings [492]. On-
line available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

18.2428 [accessed 2008-09-11].
[2216] L. Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector, Ian C. Parmee,
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Γ , 532
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Fraglets, 216, 404

evolution of, 404
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A⋆ Search, 296
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ACO, 245
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module, 70, 202
Action, 238
AdaBoost, 383
Adaptive Grammar, 568
Adaptive Walk, 297

fitter dynamics, 297
greedy dynamics, 297
one-mutant, 297
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functional, 222
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ADL, 198
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Aggregate Function, 415
Aggregating
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Aggregation, 414, 415
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linear, 29
proactive, 415
reactive, 415
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AI, 373
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AIMGP, 193–195
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Algorithm, 547
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anytime, 222
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determinism, 550
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distributed, 553
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evolutionary, 95
evolve, 219
finite, 550
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Monte Carlo, 552
optimization, 48

baysian, 70
probabilistic, 22, 552
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All-Or-Nothing, 223, 404
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ANN, 197, 374
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Antisymmetrie, 463
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Anytime Algorithm, 222
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Assimilation

genetic, 279
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S-attributed, 567
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Autocorrelation, 63
Automatically Defined Functions, 167, 196
Automatically Defined Groups, 199
Automatically Defined Link, 198
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Auxiliary Tree, 570

Average, 416

Backus-Naur Form, 564
extended, 565

Baldwin, 278
effect, 278
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näıve, 374
Bayesian Optimization Algorithm, 70
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Bernoulli

distribution, 483
experiment, 483
trial, 483

Best-First Search, 295
BFS, 291
BGP, 172
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Binomial Distribution, 483, 511
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Bluetooth, 559
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BOA, 70
Boosting, 383
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Broadcast-Distributed Parallel Evolutionary Al-

gorithm, 304
BTNodes, 560
Bucket Brigade, 240
Building Block, 152
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C, 193, 194
CACSD, 34
Candidate

solution, 42
Cartesian Genetic Programming, 67, 199, 201,
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embedded, 201
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complexity, 331

Causality, 62, 83, 346
CDF, 470

continous, 471
discrete, 471

CEC, 105, 246
Cellular Automaton, 160, 231
Cellular Encoding, 174
Central Limit Theorem, 489
Central Point Of Failure, 554
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CFG, 563, 564
CGE, 186
CGP, 67, 199–202

embedded, 201
CGPS, 193
Change

non-synonymous, 66
synonymous, 66

Character String, 562
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model, 221
Chemical Engineering, 87, 105, 142, 227, 230,

231, 251, 265, 284
Chemistry, 87, 105, 142, 227, 230, 231, 251, 265,

284
algorithmic, 204
artificial, 213

Chi-square Distribution, 490
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Christiansen

grammar, 186, 569
Christiansen Grammar, 186

evolution, 186
Christiansen Grammars, 569
Chromosome, 145
Chromosomes

string
fixed-length, 146
variable-length, 148

tree, 162
CI, 109, 503
CISC, 193
Class

equivalence, 464
Classifier, 238
Classifier Systems, 233, 234, 378, 445

learning, 233, 239, 374
non-learning, 239

Clearing, 134
Client, 556
Client-Server, 301, 556
Closure, 178, 226
CLT, 489
Clustering, 535
k-means, 540
nth nearest neighbor, 541
algorithm, 536
hierarchical, 535
leader, 543
linkage, 541
partitional, 535, 540
partitions, 536
square error, 540

Co-Evolution, 269
Code Bloat, 399
Codons, 172
Coefficient

negative slope, 63
Coefficient of Variation, 475
Combination, 467
Combinatorics, 467
Communication, 87, 105, 142, 160, 246, 254, 265,

271, 274, 280, 291
Completeness, 44, 290

weak, 44
Complexity Catastrophe, 331
Compress, 201
Computational Embryogeny, 155
Computational Intelligence, 109
Computer

science
theoretical, 547

Computing
amorphous, 413
ubiquitous, 411, 413

Concatenation, 562
Condition, 236
Confidence

coefficient, 504
interval, 503

Connection Register, 205
Content Sharing, 558
Contest, 373
Continuous Distributions, 484
Contravariance, 386
Convergence

domino, 58, 59, 85, 338
premature, 58
prevention, 136

Correlation
fitness distance, 62
genotype-fitness, 63
operator, 62

Count, 472
Covariance, 386, 475
CPU, 193, 206



798 INDEX

Creation, 137, 146, 148, 162, 197
Credit Assignment Problem, 239
Criterion

termination, 54
Criticality

self-organized, 269
Crossbow, 560
Crossover, 98, 138, 147–149, 164

homologous, 148, 195, 404
point, 147
SAAN, 198
simplex, 287
single-point, 147, 165
SSAAN, 198
SSIAN, 198
sticky, 195
strong context preserving, 165
tree, 164

CS, 233
CSG, 563
CSP, 87, 105
Cumulative Distribution Function, 470
Cut, 153
Cut & Splice, 148
Cytosine, 42

Dagstuhl Seminar, 106
Data Mining, 105, 142, 160, 174, 227, 231, 233,

254, 284, 373, 535
DATA-MINING-CUP, 373, 374
Database Server, 557
DE, 229, 230, 286
Death Penalty, 34
Deceptiveness, 63, 69, 333
Deceptivity, 63, 69
Decile, 478
Decision Maker

external, 37
Decision Tree, 374
Decreasing, 463

monotonically, 463
Default Hierarchy, 238, 378
Defense, 105
Defined Length, 150
DELB, 230
Deme, 301
Density Estimation, 506

crowding distance, 507
Kernel, 508
nearest neighbor, 506
Parzen window, 508

Deoxyribonucleic acid, 42
Deoxyribose, 42
Depth-First Search, 292

iterative deepenining, 294
Depth-limited Search, 293
Derivation Tree, 563
DERL, 230
DES, 229

Design, 87, 105, 230, 271, 280
circuit, 105, 142, 160, 174, 202, 230, 231, 251,

265
Detector, 234
Determined, 550
Determinism, 550
DFS, 292
Differential Evolution, 229, 230, 286
Differential Evolution Strategy, 229
Discrete, 549
Discrete Distributions, 479
Distance

Euclidian, 538
Hamming, 537
Manhattan, 537
Measure, 537

Distributed algorithms, 553
Distribution, 299, 470, 479, 484
χ2, 490
Binomial, 483, 511
chi-square, 490
continuous, 484
discrete, 479
exponential, 489, 530
normal, 486, 529

multivariate, 488
standard, 486

Poisson, 480
Student’s t, 494
t, 494
uniform, 479, 485, 527, 529, 530

continuous, 485
discrete, 479

Diversification, 60
Diversity, 59, 226
DMC, 373
DNA, 42, 172, 195
do not Care, 378, 382
DoE, 317
Domination, 31
Domino

convergence, 58, 59, 85, 338
Don’t Care, 150, 236
Downhill Simplex, 283
DPE, 338
Drunkyard’s Walk, 294
Duplication, 137
Dust Networks, 560

E-code, 145
EA, 95, 101, 105, 108–110, 414
EA/AE, 106
EAG, 567, 568
EARL, 233
EBNF, 565
ECGP, 201
ECJ, 186
Economics, 87, 105, 142, 160, 184, 265
Edge Encoding, 174
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EDI, 195
Editing, 165
EDL, 570
Effect

Baldwin, 278
hiding, 279

Effector, 234
Efficiency

Pareto, 31
home, 558
Elitism, 103
Embrogeny, 154

artificial, 154
Embryogenesis, 154
Embryogenic, 154
Embryogeny

artificial, 155
computational, 155

EMO, 106
EMOO, 96, 109
Encapsulation, 166
Encoding

cellular, 174
edge, 174

Endnote, 591
Energy Source, 559
Engineering, 87, 105, 230, 271, 280

electrical, 105, 142, 160, 174, 202, 230, 231,
251, 265

Entropy, 478
continuous, 478
differential, 478
information, 478

Entscheidungsproblem, 220
Environment, 234

protection, 105, 227
surveillance, 105, 227

EO, 269, 271
Eoarchean, 97
EP, 101, 231, 232
Ephemeral Random Constants, 398
Epistacy, 68
Epistasis, 63, 68, 344, 352, 353

in Genetic Programming, 202
in GPMs, 204
positional, 203
semantic, 202

Epistatic Road, 336
Epistatic Variance, 63
Equilibrium, 269

punctuated, 65, 269
Equivalence

class, 464
relation, 464

eRBGP, 211, 212
ERL, 233
Error, 499
α, 509

β, 509
mean square, 499
threshold, 62, 338
type 1, 509
type 2, 509

Error Threshold, 62, 338
ES, 100, 227, 228
Estimation Theory, 499
Estimator, 499

best linear unbiased, 503
maximum likelihood, 502
point, 499
unbiased, 499

Euclidean Algorithm, 357
Euclidian Distance, 538
EUROGEN, 106, 143, 228, 232
EuroGP, 160
Evaluation, 53
Event

certain, 467
conflicting, 467
elementary, 466
impossible, 467
random, 466

EvoCOP, 106
Evolution

autoconstructive, 215
Baldwinian, 278
differential, 229
Lamarckian, 278

Evolution Strategy, 100, 227, 228
Evolutionary Algorithm, 95, 105, 108–110

basic, 98
broadcast-distributed parallel, 304
cycle, 96
generational, 102
multi-objective, 96
parallelization, 300
steady state, 102

Evolutionary Operation, 101, 283
randomized, 101

Evolutionary Programming, 101, 201, 231, 232
Evolutionary Reinforcement Learning, 233
Evolvability, 62, 65
EVOP, 101
EvoWeb, 402
EvoWorkshops, 107
Expand, 201
expand, 289
Expected value, 473
Experiment

design of, 317
factorial, 317

Exploitation, 60, 62
Exploration, 60, 289
Exponential Distribution, 489
Extended Backus-Naur Form, 565
External Decision Maker, 37
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Extinctive Selection, 102
left, 102
right, 102

Extradimensional Bypass, 85
Extrema Selection, 67
Extremal Optimization, 269–271

generalized, 270

Factorial, 467
False Negative, 509
False Positive, 509
FDC, 62
FDL, 575
FEA, 107
Fibonacci Path, 341
File Sharing, 558
Finance, 87, 105, 142, 160, 184, 265
Finite, 550
Finite State Machine, 158, 231, 355
Fisher’s Exact Test, 524
Fitness, 46

nature, 100
optimization, 100

Fitness Assignment, 111
Pareto ranking, 112
Prevalence ranking, 112
Tournament, 120
weighted sum, 112

Fitness Landscape, 47
deceptive, 63
ND, 333
neutral, 64
NK, 329
NKp, 332
NKq, 332
p-Spin, 332
rugged, 61
technological, 332

Fly, 234
FOCI, 107
FOGA, 143
home, 558
Forma, 62, 80, 81

analysis, 80
Formae, 81
Formal Grammar, 563
Free Lunch

no, 76
Frequency

absolute, 468
relative, 468

Frog, 234
FSM, 160, 231
Full, 163
Fully Connected, 556
Function, 462

ADF, 167, 196
aggregate, 415
automatically defined, 167, 196

benchmark, 327
cumulative distribution, 470
gamma, 532
monotone, 463
objective, 21
penalty, 34

adaptive, 34
dynamic, 34

probability density, 472
probability mass, 471
synthesis, 160, 174, 191, 202
trap, 64, 333
zeta, 532

Functional, 462
Functionality, 462
FWGA, 143

G3P, 177
GA, 100, 141–144

messy, 152
Gads, 179–181, 185, 204

1, 179
2, 185

GAGS, 179
GALESIA, 143
Game, 105, 160, 231, 254
Gamma, 532
Gamma System, 216
Gauss-Markov Theorem, 503
GCD, 357, 358

problem, 357
GCL, 207
GE, 181, 182, 184, 204
GECCO, 107, 143, 161, 246, 251
GEM, 108, 143
Gene, 43
Gene Expression Programming, 172, 174
Generality, 74
Generation, 53
Generational, 102
Generative Grammar, 562
Genetic Algorithm, 100, 141–144, 242, 287

cellular, 305
cycle, 141
for deriving software, 179
grammar-based, 179
messy, 70, 152

Genetic Algorithms, 158
natural representation, 145
real-encoded, 145

Genetic Assimilation, 279
Genetic Network Programming, 199
Genetic Programming, 100, 157, 160–162

binary, 172
byte code, 194
compiling system, 193
crossover

homologous, 195
epistasis, 202
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grammar-guided, 177
linear, 191, 192

page-based, 195
ontogenic, 214
parallel distributed, 196
rule-based, 207

extended, 211
stack-based, 192
standard, 158
strongly typed, 178
TAG, 187, 191
tree-adjoining grammar-guided, 187, 191
tree-based, 158, 159, 162

Genetic Programming Kernel, 179
GENITOR, 103
Genome, 42, 144
Genomes

string, 146
tree, 162

Genotype, 43
Genotype-Phenotype Mapping, 44, 83, 154, 171
Genotype-Phenotype mapping, 154
GEO, 270
Geometry, 142, 160, 174, 227, 251, 265
GEP, 172–174
GEWS, 184
GFC, 63
GGGP, 177
Glass

spin, 48, 332
Global Optimization Algorithm, 49
GNP, 199
Gnutella, 558
Goal Attainment, 36
Goal Programming, 36
GP, 100, 157, 160–162

epistasis, 202
GPK, 179
GPM, 44, 154, 171, 173

epistasis, 204
GPTP, 161
Gradient, 53

descend, 53
Gradient Descent

stochastic, 256
Grammar, 176

adaptive, 568
recursive, 568

attribute, 565
BNF, 564
Christiansen, 569

evolution, 186
context-free, 563, 564
context-sensitive, 563
derivation tree, 563
EBNF, 565
formal, 563
generative, 562, 569

induction, 160, 233
L-attributed, 566
recursive enumerable, 563
regular, 563
S-attributed, 567
TAG, 569
tree-adjoining, 569

lexicalized, 571
tree-adjunct, 569

lexicalized, 571
Grammatical Evolution, 181, 184

Christiansen, 186, 204
Granularity, 446
Graph

butterfly, 420
GRASP, 61, 256, 257
Greatest Common Divisor, 357
Greedy Search, 295
Grid, 556
Grow, 163
Guanine, 42
Guarded Command Language, 207

HAIS, 88
Halting Criterion, 54
Halting Problem, 221

reductio ad absurdum, 221
Hamming Distance, 537
HBGA, 141
HC, 253, 254
Herman, 157
Heuristic, 22, 295

admissible, 296
monotonic, 296

Heuristic Random Optimization, 260
Hiding Effect, 279
Hierarchy, 556

Chomsky, 563
default, 238, 378

HiGP, 214
Hill Climbing, 253, 254

multi-objective, 254
randomized restarts, 256
stochastic, 256

HIS, 88
Histogram, 506
Homologous Crossover, 148, 195
Homology, 195
HRO, 260
HSMPSO, 286
HTTP, 557
Hydrogen Bond, 42
Hyperplane, 150
Hypothesis

building block, 152, 334

IAAI, 89
ICANNGA, 108, 143, 161
ICGA, 143
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ICNC, 89, 108, 246, 251
IDDFS, 294, 387
IF-FOOD-AHEAD, 356
Image Processing, 105, 142, 227, 233, 265, 535
Implicit Parallelistm, 99
Increasing, 463

monotonically, 463
Individual, 47
IndividualPrinterPipe, 451
inequalities

method of, 34
Information

management, 535
processing, 535

Information Management, 535
Information Processing, 535
Informed Search, 295
Injective, 462
Injectivity, 462
Input, 549
Input-Processing-Output, 157, 549
Instant Messaging, 558
Intel, 193
Intelligence

artificial, 373
Intensification, 60
Interval, 456

confidence, 503
Intrinsic Parallelism, 99
Intron, 146, 181, 197, 224

explicitly defined, 195
implicit, 195

Inversion, 153
Inviable Code, 225
IP, 403
IPO, 157
IPO Model, 549
Irreflexivenss, 463
isGoal, 289
Island Hopping, 302
Island Model, 302
Isolated, 68
Isolation

by distance, 306
Iteration, 53
IWLCS, 234

JAPHET, 194
Java, 439
java.io.Serializable, 442
java.util.Random, 527, 529
JB, 171
JBGP, 194
JME, 194
Juxtapositional, 154
JVM, 194

Kauffman NK, 329
Kernel Density Estimation, 508

KES, 89
Kleene closure, 562
Kleene star, 562
Kurtosis, 476

excess, 476

Lamarck, 63, 224, 278
Lamarckism, 278
LAN, 559
Landscape

fitness, 47
problem, 48

Language, 561, 562
formal, 562
guarded command, 207

Language Attribute, 569
Laplace

assumption, 467
Large Numbers

law of, 478
Las Vegas Algorithm, 552
LCG, 527
LCS, 101, 207, 233, 234, 378

Michigan-style, 243
Pitt, 242
Pittsburgh-style, 243

LDSE, 286
Learning

machine, 160, 174, 231, 251, 261, 265, 274
Learning Classifier System

Michigan-style, 243
Pittsburgh-style, 243

Learning Classifier Systems, 101, 233, 234, 378
LEFT, 356
Left-total, 461
Length

defined, 150
Levels-back, 200
Lexeme, 189, 562
LGP, 191, 192

page-based, 195
LGPL, 581
License, 4, 575, 581

FDL, 575
LGPL, 581

Life
artificial, 213

Lifting, 167
Likelihood, 500

function, 500
Linear Aggregating, 29
Linear Congruential Generator, 527
Linear Genetic Programming

page-based, 195
Linear Order, 464
Linkage, 70

Average, 539
Complete, 539
Single, 539
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List, 459
addListItem, 459
appendList, 459
countOccurences, 460
createList, 459
deleteListItem, 459
deleteListRange, 459
insertListItem, 459
listToSet, 461
removeListItem, 461
setToList, 461
sortList, 460
subList, 460
search (sorted), 460
search (unsorted), 460
sorting, 460

LLN, 478
Local Search, 290
Locality, 62, 83
Locus, 43
LOGENPRO, 179
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